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Abstract. Frequent itemset mining and high-utility itemset mining have been widely
applied to the extraction of useful information from databases. However, with the
proliferation of the Internet of Things, smart devices are generating vast amounts
of data daily, and studies focusing on individual dimensions are increasingly un-
able to support decision-making. Hence, the concept of a skyline query consider-
ing frequency and utility (which returns a set of points that are not dominated by
other points) was introduced. However, in most cases, firms are concerned about
not only the frequency of purchases but also quantities. The skyline quantity-utility
pattern (SQUP) considers both the quantity and utility of items. This paper proposes
two algorithms, FSKYQUP-Miner and FSKYQUP, to efficiently mine SQUPs. The
algorithms are based on the utility-quantity list structure and include an effective
pruning strategy which calculates the minimum utility of SQUPs after one scan of
the database and prunes undesired items in advance, which greatly reduces the num-
ber of concatenation operations. Furthermore, this paper proposes an array structure
superior to utilmax for storing the maximum utility of quantities, which further
improves the efficiency of pruning. Extensive comparison experiments on differ-
ent datasets show that the proposed algorithms find all SQUPs accurately and effi-
ciently.

Keywords: Internet of Things, skyline quantity-utility patterns (SQUPs), utility-
quantity list, minimum utility of SQUPs (MUSQ), quantity maximum utility of the
array (QMUA).

1. Introduction

The Internet of Things (IoT) has resulted in the daily generation of massive amounts of
data, making the extraction of valuable information a significant challenge. Data mining
techniques, also known as knowledge discovery from databases (KDD) [2,18,30,47], can
be applied in this endeavor. Association rule mining (ARM) [3,4,5] and frequent item-set
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mining (FIM) [16,17,27,48] are traditional methods for processing data. ARM typically
finds not only frequent itemset (FI) patterns based on a user-defined minimum support
threshold (minsup) but also correlations or causal structures between different item sets
based on a minimum confidence threshold (minconf ). ARM and FIM are widely applied
in fields such as news recommendation, weather correlation analysis, precision marketing,
and price prediction.

Both FIM and ARM count how many times a commodity appears in a transaction
by measuring if a specific commodity or a combination of commodities is present. This
means that other essential factors, such as the profit of the commodity or the number of
purchases, are not considered. In practice, these factors are often more important to the
user. In order to further satisfy the needs of users, a concept called high-utility itemset
mining (HUIM) has been proposed, it is gradually becoming the focus of research in the
field of big data [6,14,44,45]. In a large shopping mall, for example, the number of luxury
bags sold in a single day is much lower than the number of daily necessities. However,
the profits generated by luxury bags might be higher than those of daily necessities. Yao
et al. [45] proposed finding high-utility item sets (HUIs) by considering the number of
items and the profit per unit of items. In FIM, if an item set tABu is frequent, then any
subset of this item set, such as tAu or tBu is frequent; however, in HUIM, if an item
set tABu is an HUI, its subset tAu or tBu is not necessarily an HUI. Thus, HUIM does
not satisfy the downward closure property. If there are n items, then 2n-1 combinations
are generated, which requires a large search space in order to determine whether this set
of items is a conforming HUI. To solve this difficulty, Liu et al. [26] proposed a new
model called TWU, in which the utility also satisfies the downward closure property,
which greatly narrows the search space. Subsequently, several scholars have researched
and successfully proposed new algorithms and effective pruning strategies [7,34,40,43].

To achieve information extraction, these algorithms require the user to set a threshold,
which determines the final quality of the results. If the value is too high, much of the useful
information will be ignored. If the value is too small, much of the extracted information
will be redundant. Setting a suitable parameter is also time-consuming and inefficient
for the user. To address this challenge, the concept of Top-k [12,37] was proposed, i.e.,
the user can extract the top k most essential pieces of information from the database by
setting a parameter k. Although this approach significantly shortens the decision-making
process, information is only extracted from a single aspect. FIM can help users to find
goods that are frequently purchased, and HUIM can help users to find goods that can
earn high profits; however, it is important to firms to know what goods are frequently
purchased and generate high profits. Therefore, Goyal et al. [15] proposed an algorithm
to find the frequent-utility skyline (SFU), which is a set of points measuring frequency
and utility that are not dominated by each other. Considering that the quantity of items
purchased by users is also a concern in real life, Wu et al. [42] subsequently designed
the skyline quantity-utility pattern (SQUP) model to include the factor of quantity and
proposed two algorithms based on UQL structure: SQU-Miner and SKYQUP. However,
because these two algorithms generate numerous candidate sets, they create a vast search
space.

With the widespread adoption of the IoT, intelligent decision support systems (IDSSs)
have evolved into powerful tools for extracting useful information from large amounts of
data. This paper proposes a smart supermarket model to demonstrate the application of
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the proposed algorithm (see Fig. 1). Touchable smart electronic screens, gravity sensors,
and image sensors are all included in the proposed smart shopping cart. The electronic
screens summarize the list of products purchased and calculate the total number of items
purchased. These electronic screens send information back to the supermarket’s data cen-
ter, and the supermarket can use the proposed algorithm to find non-dominated points and
extract valuable patterns. Based on these, the supermarket can design effective marketing
strategies.

The main contributions of this paper are as follows:

Algorithm

Non- 
dominated 

points

1 Quantity 
2 Profits

Intelligent Shopping Cart

1 Quantity 
2 Profits

Fig. 1. Skyline model framework in smart supermarket

1. This paper presents two efficient UQL structure-based algorithms for mining SQUPs
(FSKYQUP-Miner and FSKYQUP), both of which are depth-first search-based algo-
rithms that do not require user-defined thresholds.

2. The maximum utility of the quantity is stored in a QMUA array, and based on this
array, an efficient pruning strategy is proposed to prune undesired candidates and
their extended sets.

3. The minimum utility of the SQUPs (MUSQ) is found in order to eliminate undesired
individual items and all their extended sets in the initial stage of the algorithm using
the TWU property. This dramatically narrows the search space of the algorithm.

4. Extensive experiments were conducted on real-world and synthetic datasets, the re-
sults of which demonstrate the efficacy of the proposed algorithm compared to exist-
ing approaches.

The remainder of this thesis is organized as follows. In Sect. 2, we review the current
research on HUIM and skyline queries. Sect. 3 presents relevant formulas and definitions
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while Sect. 4 details the proposed algorithm, including the proposed pruning strategy and
the pseudo-code of the algorithm. Sect. 5 presents the experimental comparison results,
and a summary and directions for future research are presented in Sect. 6.

2. Related Work

In this section, we briefly review research on high-utility itemset mining and skyline
queries.

2.1. High-utility itemset mining

FIM algorithms in general include level-wise and pattern-growth algorithms. Apriori [5]
was the first algorithm proposed for the former, and it satisfies the DC property. However,
it does generate massive candidate sets and necessitates several database scans to compute
these candidate sets. To address this issue, a new FP-Growth algorithm based on pattern
growth [17] is proposed, which is based on the compact data structure FP-Tree. It only
scans the database once and does not generate any candidate sets for recursively mining
FIs from the database. While other algorithms for investigating FIs have been proposed in
recent years, all are single-minded and can only compute the frequency of item sets while
ignoring critical metrics such as quantity, weight, and utility.

With its focus on utility, HUIM has been widely studied as an important tool for data
mining. HUIM computes the revenue generated by a commodity or combination of com-
modities and compares it to a minimum revenue parameter specified by the user; if it is
greater than this parameter, this item is placed in an HUI. Because HUIM lacks DC like
the Apriori algorithm, Liu et al. [26] proposed upper bound TWU in order to find more
comprehensive HUIs. The TWU-based model, however, necessitates multiple database
scans and a vast search space. Subsequently, Lin et al. [22] proposed a new structure
called a high-utility pattern (HUP) tree based on the FP-Tree to improve the quality of
mining performance. However, precisely because the algorithm is based on the FP-Tree,
a large portion of memory is needed to store the generated intermediate nodes. Therefore,
Tseng et al. proposed a new UP-Tree structure to maintain similarity with the FP-Tree
structure and proposed two algorithms, UP-Growth [38] and UP-Growth+ [36], to effi-
ciently mine HUIs by reducing the number of database scans. These tree-structure algo-
rithms nevertheless generate a large number of candidate item sets. Liu et al. [25] created
a new utility list (UL) structure based on the TWU model and proposed the HUI-Miner
algorithm. This structure does not require multiple scans of the database and does not
generate a large number of candidate sets. The list concatenation operation makes mining
HUIs simple, efficient, and complete. Further HUIM extensions have subsequently been
proposed [13,24], including the top-k algorithm [12,39], which mines the top k eligible
item sets in the database to overcome the necessity of setting a threshold value. Modifica-
tions have also been proposed [20,41,49] to reduce the algorithm runtime by improving
pruning strategies and designing better data structures.

2.2. The previous hybrid approach

The works reviewed above focus on a single factor, which is inconvenient for decision-
making. Yeh et al. [46] thus combined utility and frequency in the FUP model; however,
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in this approach, a threshold must still be set by the user. Podpecan et al. [31] proposed a
novel algorithm to increase mining efficiency that also requires user-defined parameters.
Goyal et al. [15] then proposed SKYMINE, which does not require the user to set any pa-
rameters. This algorithm is based on the well-known UP-Tree structure and returns a set
of points for decision-making that is not dominated by any other points. However, due to
the limitations of its data structure, the algorithm generates numerous candidate sets and is
thus inefficient. Pan et al. [28] proposed an efficient utility list structure-based SFU-Miner
algorithm to reduce the number of candidate sets. Lin et al. [23] proposed two algorithms
based on the UL structure, called SKYFUP-D and SKYFUP-B algorithms, which are two
typical algorithms based on DFS and BFS search. Although the application of list struc-
ture has dramatically improved mining efficiency, researchers continue to search for more
effective pruning strategies. Song et al. [33] proposed SFUI-UF, which deletes undesired
item sets from the database in the initial stages of the algorithm and thus considerably
shortens runtime. Song et al. [32] also proposed cross-entropy-based mining algorithm
SFU-CE to improve mining efficiency. These algorithms all consider the utility and fre-
quency of items but neglect the fact that in practice, the quantity of items purchased is still
the primary concern of users. Wu et al. [42] were the first to suggest considering utility
and quantity, proposing the SQUP model and two new algorithms to mine SQUPs.

2.3. The skyline concept

Mining SFUPs from a database is, in general, a multi-objective optimization case that
considers frequency and utility and returns a set of points as a solution. That is, subsets
ta1, a2, ..., amu (holding information valuable to the user) are found within a large set of
databases D. These subsets are not dominated by other points in at least one dimension.
If, for example, there exists a point bn which is better than an in all dimensions, then an
is dominated by bn and will eventually return to bn as the decision point instead of an.
This skyline result is highly relevant to real-world scenarios. For instance, parents may
consider house price and distance from schools when choosing a suitable residence. Gen-
erally, house prices close to schools will be higher than those far from schools; therefore,
parents look for distances and prices that are relatively suitable. In Fig. 2, the x-coordinate
represents the distance to the school, with larger values representing longer distances; the
y-coordinate represents house prices, with larger values representing higher prices; and
the buildings in the figure represent houses available for rent. The houses tg, c, lu in the
figure are the skyline points because these points are not dominated by other points in the
dimensions of distance and price; therefore, these houses represent the best choices.

Kung et al. [21] introduced the skyline concept in 2005, using a “partitioning” strat-
egy to find skyline points. Borzsonyi et al. [8] were the first to combine skylines and
databases, proposing an algorithm based on block nested loops, which gained wide atten-
tion. Chomicki et al. [10] improved this block nested loop algorithm using a specific tuple
order in the window to improve the performance. Tan et al. [35] proposed two algorithms,
Bitmap and Index, which output skyline points step by step, unlike the usual algorithms
that need to traverse the dataset at least once to return the first point. Kossmann et al. [19]
proposed an NN algorithm based on nearest-neighbor search and used a form of “parti-
tioning” to compute skyline queries. Papadias et al. [29] proposed the branch-and-bound
skyline (BBS) algorithm, which is also based on nearest-neighbor search and has the
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characteristics of I/O so that it can be applied to various asymptotic operations. These
explorations of skyline computation have been widely discussed [1,9].

Traditional algorithms FIM and HUIM consider only one factor, while skyline al-
gorithms return non-dominated points based on multiple factors. This paper proposes a
list-based FSKYQUP-Miner and FSKYQUP algorithm to mine SQUPs using the util-
ity quantity list structure for the join operation. The preparatory knowledge and problem
statement of skyline quantity utility pattern mining (SQUPM) are presented in the follow-
ing section.
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Fig. 2. Example of skyline points

3. Preliminary Knowledge and Problem Statement

3.1. Preliminaries

Assuming that D = tT1, T2, ..., Tnu is a transaction database with n transactions, I =
ti1, i2, ..., imu is a set of m distinct items in the database. In D, each transaction Tq P D
is a subset of I containing a number of items and their purchased quantities qpij , Tqq,
along with a unique identifier called TID. Additionally, a profit table called ptable =
tpr1, pr2, ..., prmu, where prj is the per-unit profit (profit) generated by each item ij
(i.e., good). An itemset X = ti1, i2, ..., iku is a set of k distinct items, where k is the length
of the k-itemset. If X � Tq , then the set of items X is said to occur in transaction Tq .
In this paper, our running example is shown in Table 1, which is a database consists of 7
transactions, and in Table 2 the profit corresponding to each item in the running example
is given.
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Table 1. Original transaction database DB in the running instance

TID Item and its quantity Transaction utility
T1 B:2,D:2,E:3 23
T2 A:2,B:3 8
T3 B:2,C:3,D:4,E:1 33
T4 B:2,D:2 14
T5 A:1,D:2,E:2 17
T6 C:3,E:2 12
T7 A:2,B:1,C:1,D:1,E:2 17

Table 2. Unit profit table of the item in the running example

Item Profit
A 1
B 2
C 2
D 5
E 3

Definition 1. In the transaction Tq , the quantity of the itemset X to be purchased is de-
noted as qpX,Tqq, a mathematical definition of which is as follows:

qpX,Tqq � mintqpY q|Y � X ^X P Tq ^ Y P Tqu. (1)

It is obtained from T2 in Table 1 that q(A) = 2, q(B) = 3, so the quantity of the itemset
(AB) is the smallest one, which is 2.

Definition 2. The utility of an item ij in a transaction Tq is called as upij , Tqq, a mathe-
matical definition of which is as follows:

upij , Tqq � qpij , Tqq � prpijq. (2)

It is obtained from T2 in Table 1 that the utility of the item tAu can be computed as
upA, T2q � qpA, T2q � prpAq � 2� 1 � 2, the utility of the item tBu can be computed
as upB, T2q � qpB, T2q � prpBq � 3� 2 � 6.

Definition 3. The utility of an itemset X in a transaction Tq is called as upX,Tqq, a
mathematical definition of which is as follows:

upX,Tqq �
¸

ij�X^X�Tq

upij , Tqq. (3)

It is obtained from T2 in Table 1 that the utility of the itemset tABu can be computed
as upAB, T2q = upA, T2q + upB, T2q = 2 + 6 = 8.

Definition 4. The utility of itemset X in a transaction database D is called as upXq, a
mathematical definition of which is as follows:

upXq �
¸

X�Tq^TqPD

upX,Tqq. (4)
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It is obtained from Table 1 that the utility of itemset tBu in database D can be com-
puted as upBq � upB, T1q � upB, T2q � upB, T3q � upB, T4q � upB, T7q � 4 � 6 �
4 � 4 � 2 � 20, upBDq � upBD,T1q � upBD,T3q � upBD,T4q � upBD,T7q �
14� 24� 14� 7 � 59.

Definition 5. The utility of a transaction in a transaction database D is called as tupTqq,
a mathematical definition of which is as follows:

tupTqq �
¸

ij�Tq

upij , Tqq. (5)

It is obtained from Table 1 that there are 3 items in T1, which are B, D and E, so
tupT1q � upB, T1q � upD,T1q � upE, T1q � 4� 10� 9 � 23. The transaction utility of
other transactions in the running example is shown on the right side of Table 1, tupT2q =
8, tupT3q � 33, tupT4q = 14, tupT5q = 17, tupT6q = 12, tupT7q = 17.

Definition 6. The transaction-weighted utility of an itemset X in a transaction database
D is called as twu(X), a mathematical definition of which is as follows:

twupXq �
¸

X�Tq^TqPD

tupTqq. (6)

It is obtained from Table 1 that item tAu appears in T2, T5, T7, so the twu of the
itemset tAu is called as twupAq � tupT2q � tupT5q � tupT7q = 42.

For the sake of taking both quantity and utility into account, the concept of skyline
quantity-utility pattern mining (SQUPM) is listed below:

Definition 7. For itemset X and itemset Y, if qpXq ¥ qpY q and upXq ¡ upY q or qpXq ¡
qpY q and upXq ¥ upY q, then the itemset X governs Y and it is represented as X ¡ Y .

It is obtained from Table 1 that qpAq = 5, qpBq = 10, and upAq = 5, upBq = 20. It can
be said that the item tBu ¡ tAu because upBq ¡ upAq and qpBq ¡ qpAq.

Definition 8. When considering two-dimensional factor quantity and utility, an itemset is
said to be SQUPM if it behaves as if it is not governs by other itemsets in the database.

3.2. Problem statement

Via the above definition, the problem of mining SQUPM can be formally defined as find-
ing all sets of ungoverned points, namely SQUPs, from a quantitative database D.

For the running example in Table 1, the utility and quantity of tEDu are computed as
69 and 6, the utility and quantity of tBDu are computed as 59 and 7, and the utility and
quantity of tDu are computed as 55 and 11. Since any one of these three points cannot
dominate the others, the sets tEDu, tBDu, and tDu are eventually returned as skyline
points.
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4. Proposed Algorithms to Mine SQUPs

This paper proposes two depth-first search-based algorithms, FSKYQUP-Miner and
FSKYQUP. This section consists of five subsections. In the first subsection, the utility-
quantity-list structure is introduced, which is the basis of the algorithm proposed in this
section. The proposed new structure is introduced in the second subsection. The third
subsection introduces the pruning strategy used in the proposed algorithm. The fourth
subsection describes the proposed algorithm in detail. The pseudo-code used will also be
shown in this section, and the last part will be a step-by-step detailed mining process with
the running example in Table 1.

4.1. Utility-quantity-list structure

In database D, calculate the TWU of each item and sort the TWU in ascending order using
the � represent. Create a utility-quantity-list (UQL) [42] structure for each item, which
is a quadruplet containing (tid, quantity, utility, remaining utility). Where tid represents
the transaction ID containing this item, quantity (abbreviated as quan) is to calculate the
quantity of purchases of this item in the tid, utility (abbreviated as iutil) is to calculate the
utility of this item in this tid, and remaining utility (abbreviated as rutil) is to calculate the
sum of the utilities of the items appearing in this item in a tid after sorting by �.

Definition 9. The mathematical definition of rutil is as follows:

rutilpXq �
¸

ij�Tq{X

iutilpij , Tqq. (7)

Assume in Table 1 that � indicates that the items are sorted in ascending order based
on the transaction-weighted utility of each item; then the sorted items are A�C�B�E�
D, and in transaction T1, the items that appear after item B after the sorting are item E and
item D. As a result, in the transaction, rutil � iutilpE, T1q�iutilpD,T1q � 9�10 � 19.

4.2. Quantity maximum utility of the array (QMUA)

In this section, two efficient array structures for storing the maximum utility of quantities
are proposed to record and update the maximum utility of itemsets, which largely reduces
the search space for mining SQUPs.

Definition 10. pQuantity Maximum Utility of the Arrayq Define qmax to be the maximum
quantity of all 1-itemsets in the database D.

If the quantity q(X) of an itemset X p1 ¤ qpXq ¤ qmaxq is equal to the original
parameter i, then the QMUA structure will be defined as follows:

QMUA1piq � maxtupXq | qpXq � iu. (8)

If the quantity of itemset X , qpXq p1 ¤ qpXq ¤ qmaxq, is greater than or equal to
the original parameter i, then the QMUA structure will be defined as follows:

QMUA2piq � maxtupXq | qpXq ¥ iu. (9)
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Among them, unlike utilmax, the size of utilmax is set to | D | and the size of QMUA is
set to qmax� 1. QMUA1 and QMUA2 update in different ways; QMUA1 only updates the
utility of the set of items whose quantity is equal to i, whereas QMUA2 updates the utility
of all sets of items whose quantity is greater than or equal to i.

Definition 11. Computing the quantity of an itemset X in the database D as q(X) = q. An
itemset X is called a potential SQUP (PSQUP) if none of the other itemsets with quantity
q has a utility greater than u(X).

Theorem 1. If an itemset X is not a PSQUP, then it cannot be an SQUP. That is, SQUP
� PSQUP.

Proof. For @X R PSQUPs, there D an itemset Y that makes q(Y) = q(X) ^ u(Y) ¡ u(X).
According to Definition 7, it is known that Y dominates X . So @X R SQUPs.

This maximum utility array structure of quantity is used in the algorithms proposed in
this paper to update the maximum utility of storing an equal quantity of itemsets using
the QMUA structure, which can greatly reduce the space needed to search during the
mining of SQUPs. In addition, the update method QMUA1 corresponds to the FSKYQUP-
Miner algorithm proposed in this paper, and the update method QMUA2 corresponds to
the FSKYQUP algorithm. For simplicity, the two update methods of QMUA are directly
distinguished by the algorithm names in the following text.

4.3. Pruning strategies

In this portion, a pruning strategy for the initial phase of two algorithms and two pruning
strategies in the mining phase will be presented.

Definition 12. (minimum utility of SQUPs) In the original database D, the minimum util-
ity of SQUPs is defined as the maximum utility of the largest quantity of the 1-itemset, a
mathematical definition of which is as follows:

MUSQ � maxtupXq|qpXq � qmaxu. (10)

Where X is a 1-itemset in database D, and qmax is the maximum quantity of all 1-itemsets
computed. Taking the running example, the quantity of item D in database D is qpDq = 2
+ 4 + 2 + 2 + 1 = 11, so qmax = 11, and since upDq = 55, MUSQ = 55.

Theorem 2. An itemset X is a 1-itemset in the database. If the TWU of X is less than
MUSQ, then this itemset X and all its extensions are not SQUPs.

Proof. Assume Y is another 1-itemset in the database, and with qpY q = qmax, upY q �
MUSQ.
6 upXq ¤ TWUpXq  MUSQ � upY q ^ qpXq ¤ qmax � qpY q.
Y dominates X .
6 X R SQUPs.
Assume that eX is an arbitrary extended set of items containing itemset X .
6 upeXq ¤ TWUpXq  MUSQ � upY q ^ qpeXq ¤ qpXq ¤ qmax � qpY q.
6 eX is dominated by Y .
6 Any extension set of X is not SQUPs.
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Therefore, according to Theorem 2, the set of items with a TWU smaller than MUSQ can
be directly pruned at the beginning of the algorithm, which greatly reduces the number
of candidate sets. Furthermore, it is essential for the efficiency of the algorithm that the
value of MUSQ be assigned to the QMUA array as the initial value.

Theorem 3. An itemset X is not a SQUP if the sum of the iutil of the itemset X is less than
the QMUA value corresponding to q(X).

Proof. Suppose there exists an itemset Y with qpY q ¥ qpXq, upY q � QMUApqpXqq
7 X.sumiutil   QMUApqpXqq = upY q ñ upXq   upY q
since qpXq ¤ qpY q
6 Y dominates X ñ X R SQUPs.

According to the Theorem 3, it is possible to prune those terms whose sum of utilities of
the itemset is less than QMUA, and these items are not SQUPs.

Theorem 4. Any extension eX of X is not a SQUPs if the sum of iutil and rutil of the
extension eX of the itemset X is less than the QMUA value corresponding to q(X).

Proof. Assume that eX is an arbitrary extended set of items containing itemset X .
6 For @ transaction T , it is possible to obtain:
eX � T ñ peX �Xq � peX{Xq ñ peX{Xq � pT {Xq
6 upeX, T q � upX,T q � upeX �X,T q
= upX,T q � upeX{X,T q
= upX,T q �

°
ijPeX{X

upij , T q

¤ upX,T q �
°

ijPT {X

upij , T q

=upX,T q � rutilpX,T q
7 qpXq ¥ qpeXq
6 eX.tids ¤ X.tids
6 upeXq �

°
tid�eX.tids

upeX, T q

¤
°

tidPeX.tids

upX,T q � rutilpX,T q

¤
°

tidPX.tids

upX,T q � rutilpX,T q   QMUApqpXqq.

6 D an itemset Y that makes qpY q ¥ qpXq ¥ qpeXq, upY q � QMUApqpXqq ¥ upeXq
6 Y dominates eX ñ eX R SQUPs.

According to the sum of iutil and rutil of the itemset in Theorem 4, it can be de-
termined whether the extension of the itemset is PSQUPs or not. If the sum is less than
QMUA, then the extension of this item is not SQUPs and the extension of this item can be
cut to reduce the search space.

4.4. The proposed algorithm

This paper proposes two UQL structure-based algorithms, FSKYQUP-Miner and FSKYQUP,
to find SQUPs quickly and efficiently. Both algorithms are based on depth-first search, and
the itemsets are ordered among themselves. In addition, the difference between the two
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algorithms is the different update methods, i.e., Algorithm 3 and Algorithm 4. The two
algorithms and their related pseudo-code will be shown in the following.

Algorithm 1 is the pseudo-code of the proposed algorithms. Firstly, the database is
scanned for the first time and the TWU of single items, the maximum quantity qmax and
MUSQ are calculated (line 1 of the algorithm). According to Theorem 2, if the TWU of
the item is less than MUSQ, then this item ij is deleted from the database and the database
is pruned in the initial stage of this algorithm (lines 2–4 of the algorithm). Lines 5–6 sort
the items in ascending order of TWU and reorganize the database. This loop creates a
UQL structure for each item in the reorganized database (lines 7–11). Then the QMUA is
initialized to MUSQ, the maximum utility for the largest quantity of itemsets (lines 12–14
of the algorithm). It is worth noting that although the FSKYQUP-Miner algorithm and
the FSKYQUP algorithm are updated in different ways, the initialization is the same. The
Search function is then called to find all SQUPs (shown in detail in Algorithm 2). A set
of SQUPs has finally been returned.

Algorithm 1 FSKYQUP-Miner/FSKYQUP algorithm
Require:

Original database D; profit table.
Ensure:

A set of SQUPs.
1: Scan the database D and calculate the TWU of the item ij , qmax,MUSQ;
2: if TWUpijq  MUSQ then
3: Delete ij from original database D;
4: end if
5: Sorting items ij by TWU in ascending order;
6: Reorganization database;
7: for each Tq P re-D do
8: for each ij P Tq do
9: Create ij .UQLs;

10: end for
11: end for
12: for i = 1 to qmax do
13: QMUA(i) = MUSQ;
14: end for
15: set SQUPs = null;
16: Search (null, UQLs, QMUA, SQUPs);
17: return SQUPs;

Algorithm 2 mines SQUPs based on depth-first search. For each itemset X belonging
to the UQL (where UQL refers to the UQL corresponding to each extension of the prefix),
if the sum of the utilities of the itemset X is greater than or equal to the QMUA of q(X),
the itemset X may be SQUPs according to Theorem 3, and the Judge function is called
to determine whether it is the final SQUP (lines 3–5). The subsequent lines 6–9 are to
determine whether the extensions of the itemset X are psqups, and if the sum of iutil
and rutil of X is greater than or equal to the QMUA of q(X), its extension eX is psqup.
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According to Theorem 4, the extended UQL is established. Line 10 of the algorithm is a
recursive call process until lines 7-8 no longer yield candidates.

Algorithm 2 Search
Require:

PUQL, UQL of the current prefix; UQLs, the UQL corresponding to each extension of the
prefix; QMUA; SQUPs.

1: for i = 0 to UQLs.size do
2: X = UQLs.get(i);
3: if X.sumiutil ¥ QMUArqpXqs then
4: Judge (X, QMUA, SQUPs);
5: end if
6: if X.sumiutil �X.sumrutil ¥ QMUArqpXqs then
7: for each Y �X do
8: eXUQLsÐ CreatepPUQL,X, Y q;
9: end for

10: Search (X, eXUQLs, QMUA, SQUPs);
11: end if
12: end for

Algorithm 3 and Algorithm 4 are pseudo-codes based on the FSKYQUP-Miner algo-
rithm and FSKYQUP algorithm, respectively, to determine whether the itemset X is SQUPs.
The difference between the two algorithms lies in the different update methods, which are
explained in detail by Algorithm 3 as an example. If the sumiutil of an itemset X exceeds
QMUA[q(X)], it is necessary to investigate whether this itemset is an SQUP. In the first
line of the algorithm, if Y is the first itemset in the SQUP set whose quantity is greater than
X, i.e., q(Y) is greater than q(X), then the itemset X is an SQUP only when Y is equal to
the empty set or when the utility of the itemset X is greater than the utility of the itemset Y.
Then, insert X into the set of SQUPs. Otherwise, the itemset Y will dominate the itemset X
and X must not be an SQUP. Then, update the value of QMUA (line 4 of the algorithm).
Next, determine whether, after inserting X, the set of SQUPs with a quantity less than X
is an SQUP (lines 5-7 of the algorithm).

4.5. Illustrative example

Using the FSKYQUP-Miner algorithm as an example, the database used in the example
is displayed in Table 1, and the profit table is displayed in Table 2. After the first scan
of database D, it is calculated that q(D) = qmax = 11 and MUSQ = 55. The TWU of
each item in the database is {A: 42, B: 95, C: 62, D: 104, E: 102}. Since TWU(A) = 42  
MUSQ = 55, according to Theorem 2, item A and all its extended itemsets are not SQUPs,
and therefore, item A is removed from the database. The remaining items, after sorting
in ascending order by TWU are C � B � E � D. According to this order, the original
database will be reorganized, and the reorganized database is shown in Table 3.

Moreover, a UQL structure is created for each item as shown in Table 4. After initial-
ization, QMUA[1] to QMUA[11] are assigned a value of 55.
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Algorithm 3 Judge-FSKYQUP-Miner
Require:

X, the PSQUP; QMUA; SQUPs.
1: find the first Y P SQUPs, and qpY q ¡ qpXq;
2: if Y �� null or upXq ¡ upY q then
3: SQUPs ÐX;
4: QMUArqpXqs � X.sumiutil;
5: for each itemset Y P SQUPs do
6: if qpXq � qpY q ^ upXq ¡ upY q or qpXq ¡ qpY q ^ upXq ¥ upY q then
7: delete Y from SQUPs;
8: end if
9: end for

10: end if

Algorithm 4 Judge-FSKYQUP
Require:

X, the PSQUP; QMUA; SQUPs.
1: find the first Y P SQUPs, and qpY q ¡ qpXq;
2: if Y �� null or upXq ¡ upY q then
3: SQUPs ÐX;
4: for n = qpXq down to 1 do
5: if X.sumiutil ¡ QMUArns then
6: QMUArns � X.sumiutil;
7: end if
8: end for
9: for each itemset Y P SQUPs do

10: if qpXq � qpY q ^ upXq ¡ upY q or qpXq ¡ qpY q ^ upXq ¥ upY q then
11: delete Y from SQUPs;
12: end if
13: end for
14: end if

Firstly, starting from C, the UQL of C gives qpCq = 7, iutilpCq = 14   QMUA[7] =
55, so C is not a SQUP, and since iutilpCq + rutilpCq = 60 ¡ QMUA[7], consider the
extensions of C. The items that appear following C after sorting, and are connected to C at
the beginning and end, form the extensions of C, which are CB, CE, and CD. Establish
UQL for these items. Next, explore CB, Since qpCBq = 3, iutilpCBq = 14   QMUA[3],
and iutilpCBq + rutilpCBq = 48, it is obvious that it is less than QMUA[3], so CB
and its extensions are not SQUPs. Since the algorithm is based on depth-first search, CE
is checked next. According to Table 4, qpCEq = 4, iutilpCEq = 29   QMUA[4] = 55,
similarly, iutilpCEq � rutilpCEq = 54   QMUA[4], CE and its extensions are also not
SQUPs. Next check CD, qpCDq = 4, iutilpCDq = 33   QMUA[4], and iutilpCDq �
rutilpCDq = 33   QMUA[4], so CD and its extensions are not SQUPs. Follow the same
steps to check B. Finally, the discovered candidate sets are {BED, BD, ED, D}, and all
skyline quantity utility itemsets found are shown in Table 5. The final updated QMUA of
FSKYQUP-Miner algorithm is {55, 55, 55, 63, 55, 69, 59, 55, 55, 55, 55} while the final
updated QMUA of FSKYQUP algorithm is {69, 69, 69, 69, 69, 69, 59, 55, 55, 55, 55}
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Table 3. Reorganization database in the running instance

TID Item and its quantity
T1 B:2,E:3,D:2
T2 B:3
T3 C:3,B:2,E:1,D:4
T4 B:2,D:2
T5 E:2,D:2
T6 C:3,E:2
T7 C:1,B:1,E:2,D:1

respectively. The QMUA array is obviously updated faster in the FSKYQUP algorithm
than in the FSKYQUP-Miner algorithm. Coincidentally, within the example of this paper,
the search spaces of proposed two algorithms are the same, as shown in Fig. 3.

Table 4. The utility-quantity-list structures of 1-items

(a) C

tid quan iutil rutil

3 3 6 27
6 3 6 6
7 1 2 13

(b) B

tid quan iutil rutil

1 2 4 19
2 3 6 0
3 2 4 23
4 2 4 10
7 1 2 11

(c) E

tid quan iutil rutil

1 3 9 10
3 1 3 20
5 2 6 10
6 2 6 0
7 2 6 5

(d) D

tid quan iutil rutil

1 2 10 0
3 4 20 0
4 2 10 0
5 2 10 0
7 1 5 0

Table 5. Excavated SQUPs

SQUPs quantity utility
ED 6 69
BD 7 59
D 11 55

5. Experimental Evaluation

The FSKYQUP algorithm and the FSKYQUP-Miner algorithm proposed in this paper
are compared with the SKYQUP algorithm and the SQU-Miner algorithm [42], two of
the most advanced algorithms for mining SQUPs, in terms of runtime, memory consump-
tion, the number of search itemsets, the resulting candidate sets, and the scalability of the
algorithms. The experiments were conducted on a computer with an Intel (R) Core (TM)
i3-8100 CPU @ 3.60 GHZ and 16 GB of RAM. The algorithms were written in Java
and run on the idea compiler. To evaluate the algorithms’ performance in many aspects,
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Fig. 3. Search space of proposed algorithms

the experiment was conducted on six different datasets, including five real-world datasets
and one synthetic dataset. The following five real-world datasets were downloaded from
SPMF [11]: namely Chess, Mushroom, Retail, Foodmart, and Ecommerce. A synthetic
dataset T25I10D10K was generated using the utility quantity generator, obeying a Gaus-
sian distribution. The parameters, such as the number of items, are shown in Table 6.

Table 6. Features of the datasets

Dataset #Trans #Items Avg.Trans.Len Max.Trans.Len Type
Chess 3196 76 37 37 dense
Mushroom 8124 119 23 23 dense
Retail 88162 16470 10 76 sparse
Foodmart 4141 1559 4.42 14 sparse
Ecommerce 14975 3468 11.64 29 sparse
T25I10D10K 9976 929 24.77 63 dense

Table 6 details the following six characteristics of the six datasets: name of dataset,
total number of transactions, number of items, average length of transactions, maximum
length of transactions, and type of dataset (sparse or dense).
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Runtime The runtimes of the proposed algorithms as well as the state-of-the-art SQU-
Miner algorithm and SKYQUP algorithm for each of the datasets are shown in Fig. 4. The
number of SQUPs mined for each dataset is shown in Table 7.

Table 7. The number of SQUPs

Dataset #SQUPs
Chess 38
Mushroom 5
Retail 2
Foodmart 2
Ecommerce 1
T25I10D10K 1

In Fig. 4, generally speaking, the runtime of the FSKYQUP algorithm is shorter than
that of the SKYQUP algorithm, and the runtime of the FSKYQUP-Miner algorithm is
shorter than that of the SQU-Miner algorithm. In general, the runtimes of the proposed
algorithms are shorter than that of SKYQUP and SQU-Miner. The FSKYQUP is better
than the FSKYQUP-Miner, although the FSKYQUP-Miner is 0.02 seconds faster than the
FSKYQUP on the Foodmart dataset. This is because the updating methods of QMUA[q]
differ. FSKYQUP updates based on the utilities of all item sets whose quantity is greater
than or equal to q. Meanwhile, FSKYQUP-Miner only updates the utilities of item sets
whose quantity is equal to q. Obviously, the FSKYQUP is more efficient at updating
and produces fewer candidate item sets. For the dataset Chess, FSKYQUP is superior
to the other three algorithms. The FSKYQUP-Miner runs for longer than the SKYQUP
algorithm, but for shorter than the SQU-Miner due to the pruning strategy proposed in this
paper. For the dataset Retail, the FSKYQUP and the FSKYQUP-Miner are 40 times faster
than the SKYQUP and the SQU-Miner. This is because the Retail dataset is sparse, and
in general, the items are not as closely related to each other as in a compact dataset. The
QMUA proposed in this paper is initialized based on the value of MUSQ, which means
that the utility of most of the item sets does not reach the value for updating. As fewer
candidates are generated, the runtime is shorter.

Memory We compared the memory usage of the proposed algorithms with that of the
SQU-Miner algorithm and SKYQUP algorithm on each dataset. The experimental results
are plotted in Fig. 5.

Fig. 5 shows that except for Mushroom and Foodmart, the proposed algorithms used
less memory in mining SQUPs. In particular, the FSKYQUP and FSKYQUP-Miner on
the Ecommerce and synthetic dataset T25I10D10K used roughly the same amount of
memory, which is nearly 15 times less than the other two datasets. This is due to the
efficient pruning strategy proposed in this paper, which narrows the search space. On the
Foodmart dataset, the memory usage of the proposed algorithms is more than the existing
algorithms, which is attributable to the creation of a list by the proposed algorithms for
the storage of undesired candidates. The FSKYQUP-Miner uses the least memory on the
Mushroom dataset. For the other two dense-type datasets, the FSKYQUP-Miner saves
slightly more memory than the FSKYQUP.
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Fig. 5. Memory on different datasets

Search space We evaluated the size of the search space of the four algorithms for differ-
ent datasets and plotted the results in Fig. 6.

Fig. 6 shows that FSKYQUP and FSKYQUP-Miner require less search space than
the other two algorithms, which is due to the efficient pruning strategy proposed in this
paper. The FSKYQUP requires the least search space, regardless of whether the dataset
is sparse or dense. It is worth noting that on the Retail dataset, the number of search
nodes of the SQU-Miner, SKYQUP, FSKYQUP-Miner, and FSKYQUP is respectively
26,803,198,632, 981,229,210, 71, and 71. The difference between the SQU-Miner and
the proposed algorithms is eight orders of magnitude. On the Ecommerce dataset, the
FSKYQUP and FSKYQUP-Miner are nearly 290 times worse than the other two algo-
rithms in terms of search space. Similarly, on the T25I10D10K dataset, the FSKYQUP
and FSKYQUP-Miner are nearly 230 times worse than the other two algorithms in terms
of search space. On the datasets Retail, Ecommerce, and T25I10D10K, the FSKYQUP-
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Miner requires the same search space as the FSKYQUP algorithm. These results indicate
that the weaker the correlation between items in the dataset, the smaller the required
search space.
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Fig. 6. Search space on different datasets

Candidate We evaluated the number of candidate item sets generated by the four algo-
rithms for each dataset and plotted the results in Fig. 7.

Fig. 7 shows that the number of candidate sets generated by the proposed algorithms
is smaller than the other two algorithms for all datasets except the Chess and Foodmart
datasets. The FSKYQUP generated the least number of candidate sets for all datasets. For
example, for the Retail dataset, the number of candidates generated by the four algorithms
is respectively 1,472, 254, 7, and 4. The FSKYQUP generates 368 times fewer candidates
than the SQU-Miner. For the reasons described in the first part of this section, the number
of candidate sets for Chess and Foodmart generated by the FSKYQUP-Miner is larger
than that of the SKYQUP but smaller than that of the SQU-Miner algorithm.

Scalability We conducted scalability experiments on the synthetic dataset, where the
transactions of the dataset are set to 100k, 200k, 300k, 400k, and 500k. The performance is
compared on each of these datasets in four aspects: runtime, memory usage, search space
size, and the number of generated candidate sets. The experimental results are shown in
Fig. 8.

The proposed algorithms compare favorably with the state-of-the-art SQU-Miner and
SKYQUP algorithms in terms of runtime, memory usage, the size of the search space,
and the number of candidate sets generated as the dataset increases. Fig. 8(a) compares
the execution times of the four algorithms across the five synthetic data sets. Running
the SQU-Miner algorithm takes a long time, and the runtime becomes longer when there
are more datasets. The proposed algorithms have similar runtimes and good scalability,
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Fig. 7. Candidate on different datasets

as the runtime grows gradually as the dataset increases. Fig. 8(b) displays the memory
usage of the four algorithms for the five synthetic datasets. The largest memory consumer
is SQU-Miner, while FSKYQUP is the smallest. As the dataset increases, the proposed
algorithms have good scalability in terms of memory usage. The search space required
to run the four algorithms on different-sized datasets is depicted in Fig. 8(c). It is clear
from the figure that the SQU-Miner requires a vast search space, the SKYQUP requires
a smaller but still large search space, and the FSKYQUP and FSKYQUP-Miner require
the smallest search spaces. Fig. 8(d) depicts the number of candidate sets generated for
each dataset: the proposed algorithms generate the least candidate sets, followed by the
SKYQUP, while the SQU-Miner generates the most candidate sets. These results indicate
that the proposed algorithms offer good scalability in terms of runtime, memory usage,
search space, and the number of candidate sets.

6. Conclusion

With the advent of the information age, relying solely on the support of FIs and HUIs is
no longer good enough to support decision-making, so people prefer to take into account
both the frequency and utility of the work. In contrast, quantity also plays a crucial role in
the decision-making process. This paper proposes two methods that do not require a user-
defined threshold: FSKYQUP-Miner and FSKYQUP. Both of these approaches are based
on UQL and obtain a set of uncontrolled nodes. We also propose a more effective pruning
method which eliminates undesired candidates in the initial stage of the algorithm, thus
greatly narrowing the search scope. Extensive experiments on real-world and synthetic
datasets verified that the proposed methods scale well in terms of runtime, memory usage,
search space, and the number of candidate sets. These results indicate that the proposed
algorithms are well-suited to supermarket applications. As big data continues to advance,
in the future, it would be fruitful to explore SQUPs with other architectures, such as
the MapReduce or Spark framework. The proposed algorithms would also benefit from
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additional pruning strategies to simplify the structure and thus mine SQUPs even more
effectively.

Acknowledgments. This research is supported by Shandong Provincial Natural Science Foundation
(ZR201911150391).

References

1. Afrati, F.N., Koutris, P., Suciu, D., Ullman, J.D.: Parallel skyline queries. Theory of Computing
Systems 57(4), 1008–1037 (2015)

2. Agrawal, R., Imielinski, T., Swami, A.: Database mining: A performance perspective. IEEE
Transactions on Knowledge and Data Engineering 5(6), 914–925 (1993)
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