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Abstract. Although age determination by radiographs of the hand and wrist 

before the age of 18 is an area where there is a lot of radiological knowledge and 

many studies are carried out, studies on age determination for adults are limited. 

Studies on adult age determination through sternum multidetector computed 

tomography (MDCT) images using artificial intelligence algorithms are much 

fewer. The reason for the very few studies on adult age determination is that most 

of the changes observed in the human skeleton with age are outside the limits of 

what can be perceived by the human eye. In this context, with the dual-channel 

Convolutional Neural Network (CNN) we developed, we were able to predict the 

age groups defined as 20-35, 35-50, 51-65, and over 65 with 73% accuracy over 

sternum MDCT images.  Our study shows that fusion modeling with dual-channel 

convolutional neural networks and using more than one image from the same 

patient is more successful. Fusion models will make adult age determination, 

which is often a problem in forensic medicine, more accurate. 

Keywords: Sternum age; deep fusion CNN, CNN age estimation, dual channel 

fusion CNN, sternum with CNN. 

1. Introduction 

Classical age estimation methods usually involve procedures that are detected through 

images such as the face or finger-wrist bone. The basic principle is to detect the 

features/findings that occur with aging through images and to estimate age from these 

features/findings. General machine learning algorithms can be used to estimate age [1]. 

The accuracy of age estimation over images expressed by machine learning depends on 

manually designed features and learning algorithms used. A crucial point to note at this 

point is the fact that a person's biological and skeletal maturity is related to bone age 

rather than chronological age [2]. Bone age can be used to determine chronological age 

when information is not available in underdeveloped countries where the age 

determination of children is not registered [3]. In addition, bone age is used as an 

auxiliary element in the diagnosis of various diseases [4,5]. Despite the known 

importance of bone age, studies are mostly limited to the age of 18. The changes 
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observed in the skeletal system after the age of 18 are insufficient to make a clear age 

determination. It is not possible to accurately estimate the digit of a person's 

chronological age. Age determination in adults can be made with a wide range ranging 

from ten to twenty years. More precise data is needed in forensic cases where the 

determination of medical age estimation is extremely important. From this point of 

view, age determination through the sternum gains importance. However, the fact that 

there are very few differences in the sternum in individuals who have completed their 

adulthood, and the inability to make a precise estimation even from the point of view of 

the radiologist, have caused these studies to be avoided. Therefore, studies have been 

carried out mostly on height and gender estimation over the sternum [6]. 

Recently, with the rapid development of Convolutional Neural Networks (CNN), 

CNNs have been successful in classification problems consisting of close data and have 

brought the engineering and medical fields together at joint working points. . There are 

almost no studies on how to construct a highly accurate age estimation model from 

sternum MDCT images with deep learning methods. With the Dual Channel Fusion 

CNN (DCF-CNN) model we propose, we carry out the study by transferring coronal 

and sagittal MDCT images of the sternum to our network via two channels. 

The summary of this study and its contribution to science is given below: 

1. We offer the opportunity to examine deep learning methods by dividing an original, 

unused, sternum dataset into groups 20-35, 36-50, 51-65, and over 65 years old. 

2. Classic fusion CNN models can have 2,3,4 channels, but they can work by giving the 

same image as input over and over. Here, we propose a new fusion dual channel 

model approach by giving coronal and sagittal MDCT images of the same patient as 

two inputs. 

3. Based on the success of the proposed model even in cases where the sternum image 

differences are very small, we can say that high accuracy values can be achieved by 

incorporating images with multiple different inputs into the system separately in 

future studies. This inference is extremely important for difficult deep learning 

problems. 

4. Considering that age estimation studies with the sternum are almost non-existent with 

deep learning, we should state that we have brought a new perspective with sternum 

images and directed future studies. 

5. We performed the simultaneous extraction and merging of different input images of a 

system. We demonstrated the use of multiple deep learning models and 

hyperparameters during this process. As a result, we propose a wide application area 

by saving deep learning studies from monotonous models. 

The study is organized as follows: Sect. 2 summarizes the Literatur survey on the 

subject. The methodology of the study is given in Sect. 3. The search results are shown 

in Sect. 4. and Sect. 5 summarizes the conclusion and future works of the study. 

2. Literature Survey 

Monum et al. reported that conventional radiographic assessment of ossification of the 

sternum and rib tips did not yield effective results for age estimation of cadavers. This 

study examined Computed Tomography (CT) images to determine age at death in the 

Japanese population. In the study performed on 320 chest plate images, the accuracy of 
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the model was tested on 26 male and 24 female subjects, and the accuracy in age-decad 

estimation was found to be 57.69% and 70.83%, respectively [7]. 

In the study by Singh and Pathak, 8 nonmetric features were examined on 343 

sternum images collected from autopsy cases. They observed that the mesosternal 

foramen is present, especially in men and elderly subjects, and the frequency of lateral 

projection in the manubrium sterni decreases with aging. It has been suggested that the 

fusion of sternal elements (manubrium sterni, corpus sterni, and xiphoid process) shows 

a variable pattern and is therefore not a reliable criterion. Scores of nonmetric features 

were obtained to the correct gender category in 73.8% and the correct age decades in 

70.0% in the logistic regression analysis [8].  

Bacci et al. performed an anthropological study on the sternum to estimate the age at 

death. In this study they mentioned that the sternum is an overlooked element in terms 

of adult age estimation. Also, fusion phases of 461 sternums from a black South African 

population were observed to match the individual's actual age with different phases of 

synostosis of the manubriosternal and sternoxiphoidal connections. The results show 

that both young (25 years old) and elderly individuals can have the complete fusion of 

the sternum, while some sternums remain unfused throughout adult life. Overall, 

logistic regression results showed 62.5% (male = 63.9%; female = 61.8%) accuracy 

(62.5%) for age determination [9]. 

Mohammed Ali et al. carried out a study on age and gender estimation in the 

Egyptian population using MDCT images of the sternum. The validity of the logistic 

regression equation for gender estimation was calculated as accuracy (88.3%), 

specificity (90.5%) and sensitivity (85.7%). They stated that the manubriosternal and 

sternoxiphoidal joint fusions were highly variable according to age, and the general 

logistic regression results showed a low accuracy rate [10]. 

Silajiya et al. carried out a study for age estimation on sternum X-Ray images. The 

authors examined 109 sternum bones and evaluated the fusion of the manubrium sterni 

and xiphisternum with the sternum body by X-Ray. According to this study, the age of 

fusion of the xiphisterum and the sternum body in men is 42, and the age of fusion of 

the xiphisterum and sternum body in women is 44. In the male population, 

manubriosternal fusion begins at age 50 and is completed after age 59. It has been 

reported that cases with partial manubriosternal fusion in women increase after the age 

of 54, and complete union after the age of 64. However, these ages are not exact and 

belong to a small series studied [11]. 

Zhang et al. For age estimation based on sternum MDCT images, it examined images 

of 512 documented individuals (254 females and 258 males) aged 20 to 85 years. In this 

study, the amount of cartilage costal calcification was taken as a basis for age 

determination and the Gradient Boosting Regression (GBR), Support Vector Machine 

(SVM) and Decision Tree Regression (DTR) machine learning models were tested. 

Outcomes were estimated at 88% for men and 77% for women [12].  

When the literature is evaluated as a whole, it is seen that the studies that are more 

successful in age estimation are those based on the amount of calcification in the 

cartilaginous component of the ribs. Studies based on the fusion of the manubrium 

sterni and processus xiphoideus with the corpus sterni were able to estimate age with 

less accuracy. 
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3. Methodology 

3.1. Dataset and Image Preprocessing 

The data set used in this study was meticulously prepared by Radiologist Doctor 

Mustafa Kaya and his team, with the approval of the ethics committee of Gazi 

University. MDCT images of the study were obtained from patients who underwent 

thoracic MDCT for any reason between 01/01/2021 and 30/06/2022 in the Department 

of Radiology, Faculty of Medicine, Gazi University. MDCT examinations were 

performed with a third generation 192 section, dual tube MDCT scanner (Somatom 

Force, Siemens Healthcare, Erlangen, Germany) using the following parameters.  Tube 

output 120 kV, pitch 0.9, detector collimation 0.6 mm, reconstruction section thickness 

1 mm. The HU value of the sternum medullary, the width of the joint space between the 

corpus sterni and the manubrium sterni, and the amount of calcification of the anterior 

cartiloginous components of the ribs 1-7 were evaluated. Patients over 20 years of age 

who had not undergone mediastinotomy were included in the study. Investigations with 

movement/respiratory artifacts, artifacts caused by metallic stabilization bodies 

belonging to previous operations, and artifacts of port or cardiac pacemakers were 

excluded from the evaluation. In the study, MDCT images of a total of 300 patients, 75 

in each class, including four different age groups, 20-35, 36-50, 51-65, and over 65, 

were used. Information about data distribution is shown in Figure1. 

 

Fig. 1. Sternum dataset distribution graph. 

The hypotheses for age determination are given in the following three titles. 

1. As the age increases, the joint distance between the corpus sterni and the manubrium 

sterni narrows. 

2. As the age increases, the medullary Hounsfield Unit (HU) density of the sternum 

decreases. 

3. As the age increases, the amount of calcification of the cartilage costae, which forms 

the costosternal joints, increases. 

To evaluate these hypotheses, the following measurements were made. 

1. The joint distance between the corpus sterni and the manubrium sterni was measured 

from the 2D sagittal sternum MDCT image. 
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2. To rule out the effect of possible degenerative effects on the manubriosternal joint, 

medullary HU values were measured with a 5 mm diameter ROI (Region of interest) 

from the manubrium stern approximately 1 cm superior to the manubriosternal joint 

and from the corpus stern approximately 1 cm superior to the xiphoid process 

proximal line. 

3. Multipanar reconstruction (MPR) was performed in the coronal plane, and Maximum 

Intensity Projection (MIP) images of 15 mm thickness were obtained from the 

coronal section including the second costosternal joint. It was aimed to evaluate the 

amount of calcification in the cartilage component of the bilateral ribs 1-7 on the 

defined MIP images. The measurements are explained in detail in Tables 1, 2, and 3. 

Table 1. Values of manubriosternal joint space by age groups 

Age range Manubriosternal-joint  

spacing median value (mm) 

Manubriosternal-joint  

spacing mean ± SD (mm) 

20-35 2.4 2.1 ± 1.3 

36-50 2.1 2.0 ± 1.1 

51-65 2.0 2.0 ± 1.3 

65<... 1.5 1.5 ± 1.3 

Table 2. Manubrium sterni HU values 

Age range ManubriumHU 

(mean±SD) 

ManubriumH

U(median) 

ManubriumHU 

percentile< %5 

ManubriumHU 

percentile>%95 

20-35 214 ± 75 218 73 333 

36-50 161 ± 58 169 29 243 

51-65 129 ± 66 129 5 239 

65<... 99 ± 74 108 -27 227 

Table 3. Korpus sterni HU values 

Age 

range 

KorpusHU 

(mean ±SD) 

KorpusHU 

(median) 

KorpusHU 

percentile <%5 

ManubriumHU 

percentile >%95 

20-35 128 ± 69 124 29 244 

36-50 76 ± 57 82 -18 175 

51-65 59 ± 69 54 -46 174 

65<... 27 ± 62 33 -27 124 

 

Existing images were edited with the help of the Pillow library within the Python 

Imaging Library by making Crop, Contrast, Brightness, and Filter improvements, 

respectively. Due to the high similarity between patient classes, additional image 

processing, and data augmentation techniques were not particularly preferred. The data 

obtained from the image processing results are shown in Figure 2. 
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Fig. 2. Sternal age group images after image processing. Top row: Red ring: Configuration 

changes in the manubrium stern with age, green ellipse: Increasing calcification of the 

costosternal joints with age, Blue ring: Configuration changes observed in the xiphoid process. 

Bottom row: Manubriosternal narrowing and increase in subchondral sclerosis with age. 

3.2. Classic CNN Classification 

Classification with CNN is the most widely used architecture in difficult classification 

problems such as histopathological typing of tumors, in the differentiation of benign or 

malignant masses on radiological images [13-15]. Medical Imaging studies often attract 

attention as studies with limited data. To overcome the difficulties in such studies, a 

pre-trained network with a different dataset can be used by adapting it to the 

classification task.  These networks, developed , produce promising results in various 

medical imaging studies but the results are always open to discussion. In this case, the 

best way to follow would be to design CNN models that can recognize the network 

model well even under difficult classification conditions. Figure 3 shows a basic CNN 

architecture. 

 

Fig. 3. Basic CNN architecture 
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The basic network structure starts with the image, where the image is filtered to 

include maps in the convolution layer. It is then condensed with pool layers. 

Subsequently, higher-level features are extracted in fully connected layers with a 

corresponding weight. These achievable features are processed to classify according to 

output categories corresponding to the original input. [16,17]. 

3.3. Proposed DCF-CNN architecture 

With Fusion CNN architectures, it is aimed to learn architecture better by giving the 

same scene as an input again and again. The ultimate goal here can also be considered 

as capturing more features with fewer modalities [18,19].  

Coding the basic information for the architectural structure allows a learning level 

without a large amount of data, so the use of a small-scale dataset provides successful 

results in terms of performance [20].  

The fusion model design shown in the figure below is inspired by the Hybrid V-Net 

model and fusion deep neural network architectures [21]. The proposed Fusion based 

CNN architecture is shown in Figure 4. 

 

Fig. 4. Proposed DCF-CNN architecture 

This work presents a DCF-CNN architecture to generate many local structures with 

various filter sizes. The input image size for the proposed DCF-CNN architecture is  

150 × 150 × 3. The main entrance is divided into two roads. These include the CNN 

Model1 and CNN Model2 architectures. Login information is given parallel to these 

paths. The proposed architectures include convolutional filter size layers of 5 × 5 and  

3 × 3, respectively. More local features are obtained with these filters of different sizes. 

In both Model paths, maximum pooling and Batch Normalization (BN) operations are 

performed after the convolution operations. One of the obvious differences between the 

models was the preferred activation functions. Leaky ReLU activation was used as it 

gave better results for CNN Model1. Thus, we can say that we can achieve more 
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optimization of the network by eliminating the negativities arising from large gradients. 

The Leaky ReLU activation Function is shown in Equation 1. Although the coefficient 

“a” expressed here is a small value, it was preferred as 0.01 for our model [22]. 

                                  
            

                       
                             (1) 

 

For CNN Model2, the ReLU activation function is preferred and is shown in 

Equation 2. It should be noted that values less than zero are neglected and it is aimed to 

optimize accordingly [23]. 

                                                                                              (2) 

 

Another difference between the two architectures is the optimization method. Just as 

Adam is essentially an RMSprop with momentum, so Nadam is Adam with Nesterov 

momentum. Adam is an extension of gradient descent that adds the first and second 

moments of the gradient and automatically adapts a learning rate for each optimized 

parameter. Nadam, on the other hand, is a momentum extension where the update is 

performed using the gradient of the predicted update in the parameter instead of the 

actual current variable value. This has the effect of slowing down the search when 

optimizing is found rather than overdone in some cases [24,25]. For this reason, Adam 

for the first model and the Nadam optimizer for the second model was preferred because 

they gave better results. To better understand the implementation phase of the proposed 

models, the layer structures, activation functions, and dropout blocks are shown in 

Table 4. It should be noted here that two different architectural features were combined 

during classification after the extraction stage and turned into a fully connected single-

layer structure. This structure allows the same input class to capture more features with 

more than one image, rather than combining two images with a single image. 

Table 4. CNN Model1 and CNN Model2 structures 

 CNN Model 1 CNN Model2 

Input Image 150*150*3 150*150*3 

Filters size 256/128/64/32/16 256/128/64/32/16 

Kernel size (5,5)/(5,5)/(3,3)/(3,3)/(3,3) (5,5)/(5,5)/(3,3)/(3,3)/(3,3) 

Pool. Layer Max. Pool (2,2) Max. Pool (2,2) 

Optimizer Adam Optimizer Nadam Optimizer 

Activation Leaky ReLU ReLU 

Concat. Layer                                      256*2 

Fully Con.                                    512/256/4 

Output                                  Softmax, 4 class 

3.4. Performance Evaluation Metrics 

Accuracy, Recall, Precision, and F-measure are the main metrics for measuring the 

performance of classification algorithms. Accuracy describes the overall performance of 

the proposed model and is calculated as shown in  Equation 3 [26]. 

                                                                   
     

           
                    (3) 
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Precision shows how many of the Positive predicted values are Positive and is 

calculated as shown in Equation 4.  

                                                                    
  

     
                                   (4) 

 

A recall is a measure of how many transactions that should have been predicted as 

Positive were predicted as Positive and is calculated as shown in Equation 5. 

                                                                  
  

     
                                       (5) 

 

The F1-Score value shows the harmonic mean of the Precision and Recall values and 

is calculated as shown in Equation 6. 

                                                              
                  

                
                    (6) 

3.5. Dataset Distribution Operations 

Figure 5 shows the block diagram of how the distribution is made. The point to note 

here is that two different images of patients with the same Identification Number (ID) 

are given sequentially as input to the two proposed models. To ensure the distribution, 

the ID information of the data set given to the first model was transferred to the second 

model. 

 

Fig. 5. Dataset Separation Process 

4. Results and Discussion 

The results shown in this section show the data obtained as a result of the train, test, and 

validation stages and the distribution of the data set. Fusion Model and CNN Models 

were run separately with 100 epochs. Each model is trained as designed with the same 



224           Fuat Türk et al. 

 

hyperparameters. In Figure 6, accuracy and loss curves for the proposed Fusion CNN 

model after training and test results are shown. Based on these curves, we can easily say 

that the training and test results are consistent. However, the learning process could not 

go higher after a point. 

 

Fig. 6. Train and validation accuracy/loss graph for DCF-CNN 

Table 5 shows the performance metrics after the test results of the values with all 

three models together. When the results were examined, CNN Model1 was run only on 

coronal images for the sternum and achieved 65% accuracy, while CNN Model2 only 

achieved 61% accuracy on sagittal images. The dual-channel Fusion CNN Model we 

recommend, on the other hand, took coronal and sagittal images together as input and 

achieved an accuracy rate of 73%. 

Table 5. CNN models and proposed DCF-CNN of metrics values 

Model Accuracy Precision Recall F1-Score 

CNN 

Model1 
0.65 0,66 0.67 0.66 

CNN 

Model2 
0.61 0.62 0.62 0,61 

DCF-

CNN 

Model 

0.73 0.73 0.74 0.74 

 

When the confusion matrix table in Figure 7 is examined, we can say that there are 

deviations in the results of the estimation values, especially due to the close differences 

between the ages of 36-50 and 51-65. However, the high similarities between the image 

classes and the existence of exceptional cases that can be observed in all age groups 

make age estimation very difficult for radiologists. 
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Fig. 7. Sternum age confusion matrix graph for DCF-CNN 

In Figure 8, examples where the models are mislabeled for both images are given. 

Based on these images, it is seen that there are false labels not only in close classes but 

also in classes with high age differences. Looking at the images, it can be seen how 

difficult the classification task is. It is understood that only very small differences are 

decisive. We thought that the decrease in sternum medullary HU values with age might 

be a correction factor in the estimated age and actual age mismatches, but our results did 

not support this. Measured sternum meduller HU values were consistent with the 

estimated age, not the actual age. This made us think that the osteoporotic process in the 

sternum that develops with age is not a parameter independent of changes in the shape 

of the sternum bone or calcifications in the cartilage costa. The osteoporotic process is 

almost always related to bone shape changes with age, and probably the main cause of 

bone shape changes is the osteoporotic process. In addition, meduller HU measurements 

on the sternum for age groups are valuable and HU values below 5% percentile can be 

used as reference values for the diagnosis of osteoporosis. 

 

Fig. 8. Sternum mislabel images, Class 1: 20-35 age, Class 2: 36-50 age, Class 3: 51-65 age,  

Class 4 : 65<…  (DCF-CNN test result) 
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The most successful study for age determination on sternum MDCT images is the 

study published by Zhang et al. in 2018 [12]. Although manubriosternal joint space and 

sternum medullary HU values were also included in the evaluation for a more precise 

age determination in our study, we could not determine age with precision in this study.  

The reason for this may be that individuals with chronic diseases that will affect age 

determination were not excluded from our dataset. In addition, while Zhang et al used 

the images obtained with the volume rendering technique (VRT) for age determination, 

we preferred 2D MIP images. With a high probability, VRT images are more successful 

in age determination than 2D MIP images. 

5. Conclusions 

Sternum age estimation studies carried out to date include classical biostatistics studies 

based on logistic regression analyzes based on the human eye, or machine learning 

studies that do not suggest a new model. With the DCF-CNN model we proposed, we 

were able to predict with 73% accuracy the original data set, which we divided into four 

diverse groups (with a 15-year interval) on a challenging subject with natural limitations 

such as adult age determination. The fusion modeling, we developed on two separate 

images of the sternum in our study increased our success compared to the predictions 

made with a single image. Based on this situation, we present a new approach model 

that will make a difference, especially in medical images. We can state that the success 

of the system can be increased by using images of the same patient with unique features 

related to each other. Even other than the medical image, two or more images with the 

same features can be passed through multiple channels and the accuracy can be 

increased by combining common features. In this context, we can say that more 

efficient results can be obtained by using different optimization methods, activation 

functions and hyperparameters at the same time. 

As a future perspective, more advanced fusion models can be used on other bones 

used in adult age determination, especially pelvis bones, and studies are needed in this 

direction. 
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