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Abstract. Accurate landslide detection plays an important role in land planning,
disaster prediction and disaster relief.At present, field investigation and exploration
based on professional personnel is the most widely used landslide mapping and
detection technology, but this method consumes a lot of manpower and material re-
sources and is inefficient.With the development of artificial intelligence, landslide
identification and target detection based on deep learning have attracted more and
more attention due to their remarkable advantages over traditional technologies. It
is a technical problem to identify landslides from satellite remote sensing images.
Although there are some methods at present, there is still room for improvement
in the target detection algorithm of landslides against the background of the diver-
sity and complexity of landslides. In this paper, target detection algorithm models
such as Faster R-CNN apply to landslide recognition and detection tasks, and var-
ious commonly used recognition and detection algorithm network structures are
used as the basic models for landslide recognition. Efficient residual channel soft
thresholding attention mechanism algorithm (ERCA) is proposed, which intends to
reduce the background noise of images in complex environments by means of deep
learning adaptive soft thresholding to improve the feature learning capability of
deep learning target detection algorithms. ERCA is added to the backbone network
of the target detection algorithm for basic feature extraction to enhance the feature
extraction and expression capability of the network. During the experiment ERCA
combined with ResNet50, ResNet101 and other backbone networks, the objective
indicators of detection results such as AP50 (Average Precision at IOU=0.50), AP75
(Average Precision at IOU=0.75) and AP (Average Precision) were improved, and
the AP values were all improved to about 4%, and the final detection results us-
ing ResNet101 combined with ERCA as the backbone network reached 76.4% AP
value. ERCA and other advanced channel attention networks such as ECA (Efficient
Channel Attention for Deep Convolutional Neural Networks) and SENet (Squeeze-
and-Excitation Networks) are fused into the backbone network of the target detec-
tion algorithm and experimented on the landslide identification detection task, and
the detection results are that the objective detection indexes AP50, AP75, AP, etc.
are higher for ERCA compared with other channel attention, and the subjective de-
tection image detection effect and feature map visualization display are also better.3

⋆ Corresponding author
3 We released our code at: https://github.com/fluoritess/
Efficient-residual-channel-attention-mechanism-network-and-Faster-R-CNN.
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1. Introduction

Landslide is a common geological natural disaster, causing serious damage to the natural
environment, personal safety and property of all countries. Landslides may be caused
by many factors, including earthquake [1, 2], heavy rainfall [3,4], human factors[5], etc.
Field investigation of potential landslide areas by professionals is a common and reliable
method, but this is time-consuming, expensive and inefficient [6], especially for large-
area landslide detection. Due to the above reasons, more and more scholars have started
to explore semi-automated or automated landslide detection methods based on remote
sensing images in the last decade or so [38].

Remotely sensed images are images acquired from ground observations by aerial air-
craft or artificial satellites. Based on the acquisition method, remote sensing images can be
classified into the categories of SAR images, infrared images, multispectral images, and
visible images [30]. Due to synthetic aperture radar (SAR) images based on microwave
coherence imaging have a single color and lack texture detail information; multispectral
images have poor resolution and image information is difficult to understand; infrared
images are more suitable for identifying heat-emitting targets, visible images become the
most commonly used remote sensing image category in landslide detection, and visible
images have intuitive content, high resolution, and contain a large amount of information,
with rich spatial information, clear geometric structure and texture information, and can
truly reflect the ground geographic conditions [31-34]. Therefore, the improved model
as well as the chosen dataset in this paper are for remote sensing images in the visible
light category. Because most of the landslides are small in scale, large in number and the
surrounding environment of the landslide is complex, detecting landslides from remote
sensing images is a very challenging problem [7].

At present, there are two main methods for landslide detection in remote sensing im-
ages: one is the traditional machine learning-based landslide detection method for remote
sensing images [35], which firstly uses two methods, pixel-based method or object-based
method [8], to obtain the suspected landslide area in remote sensing images, In the pixel-
based landslide detection method, a single pixel in the remote sensing image is the most
basic processing unit [10], which determines whether a certain area in the image is a
landslide. The object-based landslide detection method calculates the texture and spec-
tral similarity between the pixels in the remote sensing image, clusters a single pixel into
multiple candidate objects, and then sets a threshold to classify each candidate object for
landslide classification. Then the acquired suspected landslide areas were classified, and
the early rule-based classification systems were established mainly relying on the profes-
sional judgment of relevant experts on data features [39]. With the rapid development of
technology, machine learning has been widely applied to landslide and other geological
hazards research, and many machine learning-based landslide classification algorithms
have been proposed one after another, such as Stumpf and Kerle [11] implemented object-
based landslide detection with random forest (RF), Van Den Eeckhaut et al.[12], which
used an object-based method and support vector machine (SVM) to identify landslides
in forested areas with LiDAR and its derivatives, etc. The traditional machine learning-
based landslide detection method for remote sensing images can explore large landslide
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areas in complex contexts and has the advantages of lower cost and faster than field sur-
vey methods, but the accuracy of this method relies heavily on the selection of parameters
for the classification of candidate landslide images, i.e., the background knowledge of the
landslide domain [36].

Another one is a remote sensing image landslide detection method based on convo-
lutional neural network [9].With the rapid development of deep learning, convolutional
neural networks (CNN) can effectively extract key features from image training samples
by the two advantages of local perception and parameter sharing, which has become one
of the most important feature extraction methods [13,14,15] for image processing tasks
such as image classification, target recognition, etc. A convolutional neural network-based
landslide detection method for remote sensing images can automatically extract important
features of landslide remote sensing images through a multilayer convolution operation
[37], thus avoiding the manual feature design and related parameter setting process that
requires landslide expertise to perform, and making the landslide detection task more
straightforward and simple. Wang [40] used an integrated geographic database to com-
pare the recognition accuracy of five machine learning methods, namely, convolutional
neural network, random forest, logistic regression, reinforcement learning, and support
vector machine, in identifying landslides in natural terrain, and among the five meth-
ods, convolutional neural network had the highest recognition accuracy, while pointing
out that recognition techniques based on machine learning and deep learning have excel-
lent It is also pointed out that the recognition techniques based on machine learning and
deep learning have excellent robustness and great potential for problem solving in land-
slide recognition research. Recently, many scholars have proposed several remote sensing
image landslide detection methods based on deep learning for convolutional neural net-
works. Ding [16] proposed to use the traditional convolutional neural network to extract
image features to find suspicious areas where landslides occurred, and then confirm these
suspicious areas through change detection methods based on image texture features. Be-
cause the traditional convolutional neural network has poor characterization ability for
the detection object with multiple scales [10], and landslides usually appear at different
scales, with the landslide length from several meters to several kilometers [17]. Therefore,
Lei [18] et al. proposed a fully convolutional neural network based on pyramid pooling,
which can extract feature semantics in remote sensing images more efficiently, and per-
forms better in multi-scale landslide detection.

This paper proposes an Efficient Residual Channel Attention Mechanism Network
(ERCA). ERCA intends to improve the feature learning ability of the deep learning target
detection algorithm by reducing the background noise of images in complex environments
through a deep learning adaptive soft thresholding approach to improve the accuracy of
landslide identification detection algorithms in scenarios with complex land cover and
uncertainty of light and dark intensity of remote sensing images. ERCA is highly portable
and can be easily added to mainstream networks such as ResNet,VGG. The ERCA is
integrated into the Faster R-CNN model to improve the model’s ability to extract landslide
features in remote sensing images. Compared with other current algorithms, the improved
algorithm has higher AP values. The algorithm in this paper applies to landslide images
taken by remote sensing satellites of common resolution, and the landslide images used
in the experiments in this paper are taken by TripleSat satellites.
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2. Landslide detection and identification method

In view of the complex surrounding environment and the many types of landslides, this
paper presents an Efficient Residual Channel Attention Mechanism Network (ERCA) in
order to improve the effect of landslide target detection, and integrates ERCA into The
Faster R-CNN model to propose a more significant landslide characterization from the
background to improve the detection effect.

2.1. Faster R-CNN network structure

The detection process of the Faster R-CNN algorithm is shown in Figure 1. The process
is as follows: 1) perform the feature extraction on the original image through the basic
convolutional backbone network (ResNet50[21], VGG16[22], etc.); 2) use the Feature
Map extracted in step 1 to generate multiple candidate regions through the RPN network;
3) output a fixed-size feature map through the ROI pooling layer based on the Feature
Map extracted in step 1 and the candidate region generated in step 2; 4) classify the
categories based on the feature map output in step 3, and perform the frame regression to
obtain the precise position of the detection frame. The RPN network is one of the biggest

Fig. 1. Faster R-CNN Structure

innovations of the Faster R-CNN algorithm. The previous candidate region extraction
methods are usually very time-consuming, such as the SS (Selective Search) algorithm
adopted by R-CNN and Fast R-CNN [23] and the Sliding Window algorithm used in
traditional target detection. RPN is implemented by a fully convolutional network, which
is essentially a classless object detector based on a sliding window. Since RPN can share
the convolutional features of the entire image with the detection network, it can output a
series of candidate region suggestion frames for input images of any scale at almost no
cost.

The structure of the RPN network is shown in Figure 2. First, use the sliding window
to generate m anchor points for the center position of each window on the shared feature
map as the initial detection frame, and then perform object classification and border re-
gression on the generated anchor points. Since object classification is a two-classification
problem, that is, to determine whether the anchor point is the detection target or the back-
ground, the object classification obtains 2m target scores. Similarly, because the bounding
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Fig. 2. RPN structure

box regression needs to modify the four coordinate values (x, y, w, h), the bounding box
regression obtains 4m predicted coordinate values.

It can be seen from the above that the RPN network is a multi-task network, and its
overall loss function is composed of two parts. The equation is as follows:

L (pi, ti) =
1

Ncls

∑
i

Lcis (pi, p
∗
i ) + λ

1

Nreg

∑
i

p∗iLreg (ti, t
∗
i ) (1)

The left side of the plus sign (+) in Eq. (1) is the loss value of the classification task,
where pi represents the probability that the current anchor is the target; P ∗

i represents the
target label value, as in Eq. (2), that is, if the current anchor is a positive sample, its value
is 1, otherwise it is 0.

P ∗
i (x) =

{
0 x ∈ Negativesamples
1 x ∈ Positivesamples

(2)

The loss value function used in the classification task is cross entropy, as shown in Eq.
(3).

Lcls (pi, p
∗
i ) = − log [p∗i pi + (1− p∗i ) (1− pi)] (3)

The right side of the plus sign (+) in Eq. (1) is the loss value of the bounding box
regression task, where ti = {tx, ty, tw, th} represents the four predicted coordinate values
of the rectangular bounding box; t∗i represents the four marker coordinate values in the
positive sample; the loss function of the bounding box regression task is only considered
when p∗i is 1, if p∗i is 0, the bounding box regression loss value is also 0, as shown in Eq.
(4), in which R is the Smooth L1 function as in Eq. (5).

Lreq (ti, t
∗
i ) = R (ti − t∗i ) (4)

R(x) =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
(5)

2.2. Efficient residual channel attention mechanism network (ERCA)

This paper is inspired by the literature [24,25,26] to propose the efficient residual channel
attention mechanism network (ERCA) which structure is shown in Figure 3. The ERCA
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is implemented through the three structures of 1D convolution, soft threshold and residual
network.

Fig. 3. ERCA Structure

1D convolution Given the normalized feature map of the data, global average pooling
(GAP) is performed before 1D convolution [27]. Global average pooling adds up all the
pixel values of each channel in the feature map to obtain a value, which is used to repre-
sent the feature map of this channel. The feature map for n channels is pooled by global
averaging to obtain n values then X ∈ RH×W×C becomes C values. ERCA captures
cross-channel attention interaction by considering each channel and its k neighbors. It is
realised as a one-dimensional convolution with a k-size convolution kernel captures the
attention of neighbors to participate in a channel, in which k represents the coverage of lo-
cal cross-channel interaction. In order to avoid manual parameter adjustment, the method
of reference [24] in this article realizes the automatic learning of k.

k =

∣∣∣∣ log2(C)

γ
+

b

γ

∣∣∣∣
odd

(6)

In Eq. (6), C is the number of channels, γ, b the constants which are set γ = 1, b = 2, and
||oddthe nearest odd. After the global average pooling and 1D convolution, the activation
function σ(sigmoid) is used to activate the final output V = [v1, · · · , vi, · · · , vc] , in which
vi is a constant.

Soft threshold A soft threshold is inserted as a non-linear transformation layer in the
deep learning network to eliminate unimportant features:

ηi (xi, λi) = sgn (xi) (|xi| − λi)+ (7)

In Eq. (7), λi represents a non-negative threshold. (|xi| − λi)+ equals |xi| − λi if
(|xi| − λi) > 0 , while it equals 0 if (|xi| − λi) < 0. The soft threshold λi in the paper
adopts the similar method in reference[25], which presents λi = vi · averagei,j,c|xi,j,c|
.λi is the threshold of the feature map of c, where i, j, c are the width, height and current
channel, respectively.
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Residual Network The final output X̃ ∈ RH×W×C is obtained after the re-assigned
feature map is added to the original one through the residual network, as shown in Eq.
(8).

X̃ = η(X, λ) + X = [η1 + x1, . . . , ηi + xi, . . . , ηc + xc] (8)

ERCA Module for Deep CNN Networks Figure 3 shows the basic structure of the
efficient residual channel attention mechanism network (ERCA). Without dimensionality
reduction, the convolutional features are aggregated through the global average pooling
operation, and then the cross-channel attention is captured through 1D convolution. The
sigmoid function is used to activate the learning channel attention, a soft threshold is
inserted as a nonlinear transformation layer to eliminate unimportant features, and finally
the residual structure is used for summation. The research adopts the embedding method,
replacing the SENet structure with ERCA as embedding ERCA in the CNN network is
similar to SENet.

Parameter Analysis The process of the SENet model can be simply described as follows:
given a feature map X ∈ RH×W×C , the first step is global average pooling (GAP), the
weights in SENet are defined as W1 and W2 as in Eq. (9), and the model is adaptively
adjusted by a fully connected neural network, and the final output of the model is U ∈
RH×W×C . The process is as in Eqs. (10-12), where the GAP operation is defined as
FGAP () and σ is the activation function.

W1 =

w1,1 · · · w1,c

...
. . .

...
wc,1 · · · wc,c

 ,W2 =

w1,1 · · · w1,c

...
. . .

...
wc,1 · · · wc,c

 (9)

Avg = FGAP (X) (10)

T = ReLU (Avg∗W1) (11)

U = X∗σ (T ∗W2) (12)

Inspired by the SENet model, the ECA model works with a similar network structure.
However, unlike SENet, the ECA model uses 1D convolution to train and acquire the
channel-related features, which greatly reduces the parameters of the model. We define
the weights of the ECA model as W3 , and the final output is U ∈ RH×W×C after adaptive
adjustment by 1D convolution, as in Eq. (14).

W3 =


w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 · · · · · · 0 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wc,c−k+1 · · · wc,c

 (13)

U = X∗σ (Avg∗ W3) (14)

Define the weight of the ERCA model in this paper as W4 , and ERCA first performs
the GAP operation consistent with SENet and ECA models, and the output after 1D con-
volutional adaptive adjustment is used as part of the soft threshold, and the final output is
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U ∈ RH×W×C , as in Eqs. (16-17).

W4 =


w1,1 · · · w1,k 0 0 · · · · · · 0
0 w2,2 · · · w2,k+1 · · · · · · 0 0
...

...
...

...
. . .

...
...

...
0 · · · 0 0 · · · wc,c−k+1 · · · wc,c

 (15)

λ = σ (Avg ∗W4) ∗ FGAP (|X|) (16)

U = X + η(X,λ) (17)

It is not difficult to find that the model weights W4 of our algorithm and the weights
W3 of the ECA model are sparser than the weights W1 and W2 of the SENet model. We
define the number of channels as C , then the parameters of SENet model weights are C2

, in contrast, our ERCA model is consistent with ECA model with only k parameters.

ERCA Utilizes Both Maximum Pooling Outputs and Average Pooling In this section,
the single average pooling operation in ERCA in the previous section is replaced using the
maximum pooling output and average pooling output of the shared network. The ERCA
above is defined as the standard type and the ERCA using both maximum pooling output
and average pooling is defined as ERCAMA. Its specific structure is shown in Figure
4. It is worth noting that although ERCAMA uses maximum pooling output and average

Fig. 4. ERCA Structure

pooling parallel output, the pooling results are convolved using the same set of parameters,
so the parametric quantities of ERCAMA and ERCA are the same.

2.3. The Final Structure of the Model

Due to the vast and complex self-made landforms, regional differences, and diverse topog-
raphy and climate in China, the method of investigating potential landslide areas through
professionals is time-consuming, expensive, and inefficient. Meanwhile, with the land-
slides diverse and complex, it is very important to use artificial intelligence to quickly
and accurately extract landslide information from satellite image data. The final detection
network model of this research is shown in Figure 5, which mainly includes three parts:
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Fig. 5. final model

(1) Feature extraction: Feature Map is obtained by extracting image features through the
backbone network integrated into ERCA. Among them, the commonly used backbone
networks are ResNet, VGG, etc. ResNet34, ResNet50 and ResNet101 are adopted as the
backbone network in the experiments of this research. (2) RPN detection: The recom-
mended target candidate area is obtained through the RPN detection network processing.
(3) Object detection and classification: The target classification result is obtained by ex-
tracting and processing the Feature Map of the candidate area. Compared with the original
Faster R-CNN, the improved algorithm in this paper realizes the channel attention mech-
anism by adding few parameters, and improves the target detection effect in complex
environments.

3. Experimental Process and Analysis

3.1. Experimental Environment and Data Enhancement

This paper adopts python3.7 as the development language, pytorch as the deep learning
framework, and Pycharm as the development tool. Graphics card GeForce RTX 2080 Ti
is employed with 11G video memory. In order to verify the effectiveness of the algo-
rithm in this paper, we use landslide image in Bijie City[6]. In this experiment, more than
200 high-quality landslide images containing large, medium and small landslides were
selected from the landslide images and labeled using the Labelimg tool to form a training
dataset in PASCAL VOC format4 . Considering the phenomenon of model overfitting due
to deeper network layers and smaller data volume in deep learning and in order to im-
prove the accuracy of the landslide identification detection algorithm under the scenario
of complexity of land cover and uncertainty of light and dark intensity of remote sensing
images, we expand the dataset by code with data enhancement of the labeled images. The
original data volume was expanded by 10 times, i.e. more than 2000 landslide images,
by transforming the images left and right, flipping up and down, optical transformation,
Gaussian blur, affine transformation and bounding box transformation. The expanded data
set is divided into the training set and the test set in an 8:2 manner, and the training set and
the verification set are divided in a 9:1 manner in the training set. Adam is adopted in the
optimization algorithm. The first 20 epochs are normal training after freezing training,

4 http://host.robots.ox.ac.uk/pascal/VOC/
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with the freezing initial learning rate of 0.0002 and the normal training initial learning
rate of 0.00002. After starting training, the learning rate attenuation strategy is adopted,
with the attenuation coefficient of 0.94.

3.2. Comparison of Objective Indicators of Detection Effect

The objective comparison indicators selected in this paper is AP (Average Precision) val-
ues, which is defined as follows:

P = TP/(TP + FP ) (18)

R = TP/(TP + FN) (19)

AP =

∫ 1

0

P (R)dR (20)

Among them, TP is the number of positive images with correct predictions, FP is the
number of positive images with incorrect predictions, FN is the number of negative images
with incorrect predictions, P is the precision rate, and R is the recall rate. APs for different
IOU thresholds and APs of different sizes for detecting target objects are specifically
defined in the Figure 6.

Fig. 6. The above 6 metrics are used for charaterzing for the performance of obejct detecor

Ablation Experiment of Faster R-CNN In this chapter, the different components of
the model in this article based on the improvement of the original Faster R-CNN are
disassembled for ablation experiments. The Faster R-CNN with ResNet34, ResNet50,
and ResNet101 as the backbone network is used as the Baseline and compared with
the Faster R-CNN with the backbone network of ResNet34+ERCA, ResNet50+ERCA,
and ResNet101+ERCA. The objective comparison indexes of the experimental results are
shown in Table 1.

It can be drawn from Table 1 that the APM ,APL,AP75 and final AP values of the
Faster R-CNN using ResNet34+ERCA, ResNet50+ERCA and ResNet101++ERCA as
the backbone network have been improved to different degrees compared to the Faster



Landslide Detection Based on Efficient Residual... 903

Table 1. Ablation experiment

Model AP(%) AP50 AP75 APS APM APL Params
ResNet34 0.656 0.976 0.827 0.614 0.641 0.678 82.47M

ResNet34+ERCA 0.684 0.988 0.847 0.619 0.667 0.709 82.48M
ResNet34+ERCAMA 0.697 0.988 0.868 0.630 0.693 0.715 82.48M

ResNet50 0.716 0.988 0.881 0.647 0.680 0.764 108.12M
ResNet50+ERCA 0.728 0.988 0.925 0.655 0.703 0.766 108.13M

ResNet50+ERCAMA 0.750 0.988 0.928 0.712 0.729 0.783 108.13M
ResNet101 0.725 0.988 0.903 0.645 0.708 0.758 180.83M

ResNet101+ERCA 0.740 0.988 0.933 0.733 0.724 0.767 180.84M
ResNet101+ERCAMA 0.764 0.985 0.940 0.763 0.749 0.788 180.84M

R-CNN using the original ResNet34, ResNet50 and ResNet101 as the backbone network,
and there is only a small increase in the model parameters. The algorithm incorporated
into ERCA proved to be improved compared to Baseline, and the ERCA in this paper can
improve the original network.

Comparison of Different Channel Attention Models In order to verify the effective-
ness of the efficient residual channel attention mechanism network (ERCA) proposed in
this paper, three different channel attention mechanisms SENet, ECA, ERCA,ERCAMA
are used in the backbone network combined with ResNet34, ResNet50, ResNet101 as
the backbone network for comparison in this section. ECA uses the Github source code
https://github.com/BangguWu/ECANet disclosed by the original author, and SENet uses
https://github.com/moskomule/senet.pytorch, the warehouse with the highest number of
stars in the pytorch version on Github. The objective comparison indexes of the experi-
mental results are shown in Table 2.

Table 2. Ablation experiment

Model AP(%) AP50 AP75 APS APM APL Params
ResNet34+ECA 0.663 0.987 0.817 0.542 0.645 0.697 82.48M

ResNet34+SENet 0.661 0.987 0.807 0.651 0.641 0.683 85.67M
ResNet34+ERCA 0.684 0.988 0.847 0.619 0.667 0.709 82.48M

ResNet34+ERCAMA 0.697 0.988 0.868 0.630 0.693 0.715 82.48M
ResNet50+ECA 0.719 0.987 0.879 0.613 0.684 0.765 108.13M

ResNet50+SENet 0.723 0.988 0.913 0.709 0.692 0.765 159.24M
ResNet50+ERCA 0.728 0.988 0.925 0.655 0.703 0.766 108.13M

ResNet50+ERCAMA 0.750 0.988 0.928 0.712 0.729 0.783 108.13M
ResNet101+ECA 0.731 0.988 0.900 0.660 0.717 0.755 180.84M

ResNet101+SENet 0.730 0.988 0.905 0.695 0.710 0.760 277.25M
ResNet101+ERCA 0.740 0.988 0.933 0.733 0.724 0.767 180.84M

ResNet101+ERCAMA 0.764 0.985 0.940 0.763 0.749 0.788 180.84M

It can be seen from Table 2 that the algorithm ERCA in this paper is basically the
same as compared to the ECA model parameters, which are greatly reduced compared
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to SENet. The performance results of the three different attention mechanism networks
on Faster R-CNN with ResNet34 and ResNet50 as the backbone networks show that the
ERCA model outperforms the ECA model with the same parameters in all metrics, and
the APS of ERCA is slightly lower than SENet, but the rest of the metrics are higher or
the same than SENet, indicating that ERCA has stronger robustness compared to SENet
in detecting objects containing different sizes. The three attention mechanism networks
have equal AP50 on the Faster R-CNN with ResNet101 as the backbone network, and the
remaining metrics ERCA model outperforms the ECA model and SE model. The efficient
residual channel attention mechanism in this paper is experimentally proven to have good
results.

Comparison with other Target Detection Algorithms In order to quantitatively ana-
lyze the detection performance of the Faster-RCNN algorithm after adding ERCA, three
classical target detection networks, Faster-RCNN, YOLOv3[28] and YOLOv4[29], are
selected for experimental comparison with the algorithm in this paper. From Table 3, we
can see that the Faster R-CNN with ECRA is better than YOLOV3 and YOLOV4 except
for the AP50 index, which is slightly lower than YOLOV4.

Table 3. Ablation experiment

Model AP(%) AP50 AP75 APS APM APL
Faster R-CNN 0.725 0.988 0.903 0.645 0.708 0.758

YOLOV3 0.653 0.978 0.811 0.659 0.645 0.666
YOLOV4 0.667 0.990 0.856 0.620 0.660 0.678

Faster R-CNN+ERCA 0.740 0.988 0.933 0.733 0.724 0.767
FasterR-CNN +ERCAMA 0.764 0.985 0.940 0.763 0.749 0.788

3.3. Display of the Subjective Effect Detection

Table 4 shows the subjective detection results of ResNet50+SENet, ResNet50+ECA,
ResNet50+ERCA and ResNet50+ERCAMA as the backbone of Faster R-CNN. For the
image of a single landslide as Picture 1, the detection results of the three algorithms are
basically the same. For images of multiple landslides with complex backgrounds as in
Picture 2, all three algorithms show different degrees of misses and misjudgments, among
which ResNet50+SENet and ResNet50+ECA show both misses and misjudgments, while
ResNet50+ERCA and ResNet50+ERCAMA only shows misses. For images with multi-
ple landslides and a single background as in Picture 3, the detection results of the three
algorithms are basically the same with no misses or misjudgments.

3.4. Feature Map Visualization

Table 5 shows the results of the detection using the feature map visualization to verify
the validity of the detection results, where the warmer color indicates the higher attention
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Table 4. Three model results diagram.

Model Picture 1 Picture 2 Picture 3

ResNet50+SENet

ResNet50+ECA

ResNet50+ERCA

ResNet50+ERCAMA

Table 5. Feature map visualization

Original ResNet101 ResNet101 ResNet101 ResNet101 ResNet101
image +ECA +SENet +ERCA +ERCAMA
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of the deep learning network. From the results in Table 5, it can be seen that the high-
lighted areas can cover part of the landslide area when no attention is added. And the
highlighted areas increase significantly after adding the channel attention mechanisms
ECA and SENet respectively, but they also cover many areas that are not landslides,
which enhances the landslide features and also enhances part of the redundant features.
After adding ERCA and ERCAMA attention mechanisms on the backbone network, the
highlighted areas can cover the landslide areas more accurately and comprehensively.

3.5. Application Effect Display

The display site in Yingxiu Town, Wenchuan, in the Sichuan Province, Southwest of
China, is selected to present its application. The 18-layer satellite image slices of Yingxiu
town were downloaded by bigemap software, and then batch tested based on the program.
Some of the test results are as follows.

Fig. 7. Landslide

Fig. 8. Landslide

Figures 7 and 8 show better detection results, but there Figueres 9 are still some prob-
lems worthy of improvement in actual detection. For example, Figure 8 mistakenly identi-
fies snow mountains as landslides, Figure 10 mistakenly identifies open spaces of human
buildings as landslides.
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Fig. 9. Snow Mountain

Fig. 10. Open space

In the follow-up practice, more landslide data will be marked, and various terrains and
buildings that are easily judged as landslides will be distinguished.

4. Conclusion

This paper uses deep learning Faster R-CNN network for landslide detection research,
for the diversity and complexity of landslides this paper proposes an efficient residual
channel attention mechanism network (ERCA), ERCA has high portability and can be
incorporated into Resnet34, Resnet50, Resnet101 and other networks. It is incorporated
with Resnet34, Resnet50, Resnet101, etc. as the backbone network of Faster R-CNN,
and the objective index and subjective detection of the algorithm proposed in this paper
have achieved good results in landslide image detection experiments, and the experiments
prove that the algorithm proposed in this paper has some practicality. The landslide de-
tection model in this paper mainly focuses on different landslide detection in different
complex environments. In future work we will use the model in this paper as a sub-model
combined with other environmental data such as rainfall, geological conditions, earth-
quake levels, etc. to build a more comprehensive landslide detection model.
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