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Abstract. With the proposed Federated Learning (FL) paradigm based on the idea
of “data available but invisible”, participating nodes which create or hold data can
perform local model training in a distributed manner, then a global model can be
trained only by continuously aggregating model parameters or intermediate results
from different nodes, thereby achieving a balance between data privacy protection
and data sharing. However, there are some challenges when deploying a FL model.
First, there may be hierarchical associations between participating nodes, so that
the datasets held by each node are no longer independent of each other. Secondly,
due to the possible abnormal delay of data transmission, it can seriously influence
the aggregation of model parameters. In response to the above challenges, this paper
proposes a newly designed FL framework for the participating nodes with hierarchi-
cal associations. In this framework, we design an adaptive model parameter aggre-
gation algorithm, which can dynamically decide the aggregation strategy according
to the state of network connection between nodes in different layers. Additionally,
we conduct a theoretical analysis of the convergence of the proposed FL frame-
work based on a non-convex objective function. Finally, the experimental results
show that the proposed framework can be well applied to applications in different
network connections, and can achieve faster model convergence efficiency while
ensuring the accuracy of the model prediction.

Keywords: Parameter Aggregation, Federated Learning, Internet of Things, Privacy
Computing.

1. Introduction

Traditional machine learning models usually need to collect data generated in distributed
locations into a central storage point (e.g., a cloud data center) for model training. How-
ever, with the increase in the number of mobile terminals and Internet of Things (IoT)
sensors, the data generated is not only more diverse in data types and formats, but also the
scale of data is also proliferating. While larger-scale data can help train better machine
learning models, transferring large amounts of data consumes more network resources
[1]. In addition, there is a non-negligible risk of information leakage in the process of
data collection, transmission and storage [2]. Furthermore, data holders are increasingly
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reluctant to transfer data to other uncontrolled locations for the purpose of privacy protec-
tion. These issues pose challenges for building machine learning models in an environ-
ment where data is increasingly fragmented and isolated. In recent years, service nodes
deployed close to users have been greatly improved in terms of computing power, stor-
age resources, and network transmission capabilities, which have laid the foundation for
building distributed machine learning models based on these distributed nodes [3, 4]. In
particular, Federated Learning (FL) [5] proposed based on the concept of “data does not
move while model moves”, enables collaborative learning among multiple participating
nodes without the data leaving the place they are generated, which is called as FedAvg.
One global model is trained only by continuously aggregating model parameter or in-
termediate results, thereby achieving a balance between data privacy protection and data
sharing. This new type of machine learning paradigm has recently received continuous
attention from academic community.

A typical FL model can be regarded as a two-layers FL framework[6] composed of a
parameter server (PS) with sufficient computing power (e.g., a server deployed in cloud
data center) and multiple clients with acceptable computing capability (e.g., edge service
nodes) . The operation process of a typical FL model is demonstrated in Fig.1. The client
independently performs local model training based on local dataset, and global model is
optimized through the exchange of model parameters under the encryption mechanism.
Then, the global model is transferred to the clients for facilitating local training next time.
The whole process continues until the model converges, or reaches the maximum number
of iterations. Since PS obtains model gradients or model parameters rather than raw data
from clients, the purpose of protecting the privacy can be achieved [6, 7]. However, in
the practical scenarios, there is often a more complex hierarchical relationship between
the data holders, and the parameters exchange between clients and PS may be fulfilled
by IoT network with unstable transmission quality. When faced with such kind of sce-
nario, the existing work lacks some considerations on two issues: 1) The data generated
by multiple clients may have explicit or implicit correlations. This means that the data
features generated by nodes at the lower layers of the hierarchical relationship will affect
data distribution at higher layers, which no longer makes the dataset on each participating
node completely independent. 2) Model quality and model convergence may be affected
by the quality of network transmission. Specifically, when the network transmission is
abnormal, the model parameters cannot be transferred between PS and the clients in time.
If PS uses the synchronous aggregation method [8], the training time will be prolonged.
In contrast, if the PS adopts a purely asynchronous aggregation method [9], although the
training time can be reduced, the convergence of the model is unsatisfactory.

To address the above issues, a hierarchical federated learning (HFL) framework is
proposed in this paper. In this framework, multiple nodes participating in collaborative
learning are logically divided into multiple layers. There is an association relationship
between the data generated by the nodes at the lower layer and the data generated by the
nodes at the upper layer. In addition, the nodes in the middle layer (named Intermedi-
ate Aggregation Node, IAN) will not only aggregate the model parameters passed by its
lower-layer nodes, but also perform local training based on the data generated by itself.
We continually propose an adaptive parameter aggregation strategy. Based on this strat-
egy, the IAN can adaptively adjust the aggregation method according to the quality of
IoT-based data transmission to improve the model convergence performance and reduce
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Fig. 1. The operation procedures for a typical FL model

the training time. Furthermore, we conduct a theoretical analysis of the convergence for
the proposed HFL model with non-convex objective function, demonstrating that the con-
vergence of the proposed HFL framework depends on aggregation frequencies and the
total number of training rounds. Finally, using the HFL model, we achieve water demand
forecasting in sub-regional and hierarchical water supply scenarios involving multiple
water supply companies. The main contributions of this paper are summarized as follows.

• We propose a HFL model that integrates adaptive parameter aggregation algorithm.
Under different network transmission delay, this framework can help multiple nodes
that have hierarchical relationships and participate in joint learning to achieve better
model training performance.

• We conduct an in-depth analysis of the model convergence and examine key param-
eters that have important impact on convergence.

• We establish the proposed HFL model to realize the prediction of urban water de-
mand. Furthermore, through comparing with similar work, we finally verify the ef-
fectiveness and efficiency of the model.

The rest of the paper is organized as follows. Related work is discussed in Section 2.
Section 3 proposes the HFL framework and presents an adaptive aggregation strategy. In
Section 4, we conduct an in-depth convergence analysis of the proposed HFL framework.
Section 5 describes the case of realizing urban water demand prediction based on the HFL,
and the experimental results of the model are presented. Finally, the paper is concluded in
section 6.

2. Related Work

In this section, we will discuss the representative HFL frameworks and the existing efforts
on performance improvement of HFL.

Some HFL models have recently been proposed for the so-called “Terminal-Edge-
Cloud” network service architecture. Reference [10] builds a layered FL model by rely-
ing on terminals, edge nodes and cloud servers as participants in joint learning. By taking
advantage of the respective advantages of edge nodes and cloud server, the rational use of
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computing and communication resources can be realized. Z. Wang et al.[11] treat cloud
servers and edge nodes as global aggregator and cluster aggregator, then an asynchronous
aggregation method and a synchronous aggregation method are adopted to achieve pa-
rameter aggregation, respectively. This work only performs a convergence analysis based
on a convex objective function. In addition, W. Lim et al.[12] design a resource allocation
mechanism and an incentive mechanism for a hierarchical FL architecture. The above-
mentioned HFL frameworks do not consider the correlation between the data generated
by multiple nodes participating in joint learning when designing the model. Although
the above mentioned works proposed multiple hierarchical structure based FL models to
balance the local iterations and runtime, it has not taken into account the potential rela-
tionship between the data held by the participating nodes.

Different from the centralization-based machine learning model, the training datasets
of different scales held by participating nodes, the non-independent and identically dis-
tributed (non-IID) characteristics between different datasets, and the unstable network
transmission quality are all potential factors that may affect the performance of FL mod-
els. To address these challenges, McMahan et al. [5] proposed the FedAvg algorithm,
which enables participants to perform gradient descent independently, and finally the ag-
gregation node averages the staged gradient values of clients to achieve model aggrega-
tion. Furthermore, Li Tian et al. [13] proposed an algorithm called FedProx, which can
be effectively applied to highly heterogeneous environments and obtained satisfactory
convergence. In [14], the synchronous aggregation mechanism is adopted to realize the
parameter interaction between PS and clients, but it is difficult to applied to the scenarios
with unstable network environment. In addition, for IoT networks with unstable network
links, Chen et al. [15] proposed a lightweight node selection strategy based on an asyn-
chronous FL model, which can improve the model training efficiency. H. Zhu et al. [16]
considered availability and fairness in the client nodes scheduling process, and designed
an asynchronous aggregation algorithm to improve the convergence of the model. C. Chen
et al. [17] proposed an adaptive parameters transmission algorithm. The model parame-
ters that are temporarily stable will not participate in the network transmission process,
thereby reducing network bandwidth consumption. J. Liu et al. [18] combined Deep Re-
inforcement Learning (DRL) to propose an adaptive algorithm that adjusts the number of
nodes participating in joint learning, and intelligently adjusts the local updates delivered
to the PS according to the network state during each round of aggregation. J. Jin et al.
[19] applied an adaptive optimization algorithm to FL to accelerate model convergence.
These existing works are trying to improve the performance of HFL from the selection
of nodes involved in the aggregation, the improvement of model training efficiency, the
transmission of training parameters, and the design of the local update mechanism, etc.
However, as far as we know, they have not considered adaptive parameters aggregation in
the case of complex associations between multiple participating nodes in the collaborative
learning.

3. A Hierarchical Federated Learning Framework

In this section, we first introduce the proposed HFL framework in detail, and then propose
an adaptive parameter aggregation algorithm for HFL.
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Fig. 2. The architecture of the proposed HFL

3.1. The description of the proposed HFL Model

As shown in Fig.2, we propose a newly designed HFL framework. In this framework,
nodes are logically divided into multiple layers, and nodes between two adjacent lay-
ers can be interconnected through IoT-based network to realize data transmission. These
participating nodes, from the role of performing FL, consist of Central Parameter Server
(CPS), Regional Parameter Server (RPS) and clients. Since the RPS is located in the mid-
dle layer (or layers) of the proposed framework, it can connect CPS and clients at the same
time. Therefore, a RPS actually plays the role of an IAN. Since then, we will use RPS to
replace IAN to make further description. Specifically, the CPS is usually one cloud server
with powerful computing capability. The CPS trains the global model and can interact
with multiple RPSs. One RPS is typically one edge server with IoT connectivity that not
only generates or collects data, but also trains regional model. At the same time, the RPS
can aggregate the parameter updates of other RPSs or clients. A client is usually acted as
an IoT terminal or a light-wight edge service node with acceptable computing capabilities.
A client mainly performs local model training and interacts with RPSs with model param-
eters. These three types of participating nodes cooperate with each other to aggregate the
model parameters and complete the FL model training. In addition, the framework also
includes an Aggregation Manager (AM), which can periodically check the quality of the
current IoT network. AM is the basis for the adaptive aggregation strategy with CPS and
RPS. In a practical scenario, AM may be monitoring nodes managed by telecom operators
responsible for operating the IoT network.

We assume that the area where HFL will be deployed can be logically divided into
S sub-regions, that is, the HFL framework includes S RPSs. There are K clients in each
sub-region. For the distinction in description, the parameter aggregation on the RPS, the
model obtained by RPS aggregation, the local training on the RPS and the correspond-
ing training model are called regional aggregation, regional model, regional training and
regional updated model, respectively. Additionally, the aggregation on the CPS and the
model aggregated are called global aggregation and global model, respectively. The local
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Table 1. Summary of main notations
Notation Description

K,K The set of clients associated with a RPS, the number of clients associated with a RPS
S, S The set of all RPSs, the number of RPSs
Dk, Dk Local dataset of client k, the size of Dk

Ds, Ds Local dataset of RPS s, the size of Ds

D, D The whole dataset, the size of D
Γ r The size of

⋃
k∈αcK

Dk on round r
B Global aggregation interval
K1 The whole number of training rounds for a client (K1 = Bκ1κ2)
H The number of performing iterations per round
K2 Thw whole number of training rounds for a RPS (K2 = Bκ3)
r Index of local training rounds
t Index of regional training rounds
αc A certain fraction of K
αs A certain fraction of S
f Global loss function on dataset

⋃
s∈αsS

Ds

Fs Edge loss function on dataset Ds

fs Edge loss function on dataset
⋃

k∈αcK
Dk

fk client loss function on dataset Dk

Q The true transmission delay to evaluate the network quality
T The accepted transmission delay

training on the client and the corresponding model are called local training and local up-
dated model, respectively. The global model w0 with traditional FL is usually initialized
in a random manner and broadcast by central server to others. However, in the HFL, the
initial global model w0 is learned from the common features of each node’s dataset by
CPS, and w0 is broadcast to RPSs and clients. RPSs and clients start the training of local
models based on the local dataset and initial weights. The training of the local model is
performed in a parallel and distributed manner. The way of local update is performed as
follows

H iterations


wk

r,1 = w0 − η∇fk1 (w0)

wk
r,2 = wk

r,1 − η∇fk2
(
wk

r,1

)
· · ·

⇒ wk
r,H = w0 − η

H∑
i=1

∇fki
(
wk

r,i

)
,

(1)

where wk
r,H is the local update obtained by node k in the round r after H local iterations,

and η is the learning rate. In particular, when r = H = 0, wk
r,H = w0. Then, integrating

the iterative results of H times, the final equation in Eq.(1) can be obtained. The opti-
mization method adopted in Eq.(1) is SGD, and Adam optimizer can also be applied [20].
After the local updates from clients are obtained by RPSs , FedAvg is used to obtain the
regional model ws

r , and the aggregation method can be represented as follows
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ws
r =

αcK∑
k=1

Dk

Γ r
s

wk
r,H , (2)

where αc(αc ∈
{

1
K ,

2
K , . . . , 1

}
) represents the proportion of clients selected to partici-

pate in the aggregation, the dataset on client k is represented by Dk, the size of Dk is Dk

(Dk
∆
= |Dk|, where |·| denotes the cardinality). The size of the whole dataset in sub-region

s with αcK clients is Γ r
s =

∣∣⋃
k∈αcK

Dk

∣∣.
After clients and RPS have completed κ1κ2 rounds of local training and κ2 times of

regional aggregations respectively, then RPS performs iterative training based on its own
dataset and generates a regional update ws. The iterative process is the same as Eq.(1).
Unlike clients, the number of iteration in one RPS is needed to execute κ3 rounds to end.
After each round of iterative execution, the RPS uploads ws to the upper-layer RPS or
CPS for aggregating a wider range of regional model or global model. In the proposed
HFL model, the evolution of local weight wk

r,i of client k can be represented as follow

wk
r,i =


wk

r,i−1 − η∇fki
(
wk

r,i−1

)
, if i ≥ 1 , r | κ1 ̸= 0∑k

k∈αcK
Dk(wk

r,H−1−η∇fk
H(w

k
r,H−1))

Γs
, if r | κ1 = 0∑

s∈αsS Ds(ws
t,H−1−η∇fs

H(w
s
t,H−1))

D , if r | κ1κ2 = r | κ3 = 0

(3)

The update process of the weightws of the RPS in the sub-region s is similar to Eq.(3).
According to the description of Fig.2, the parameter aggregation and training process of
the proposed HFL is shown in Algorithm 1. Especially, the loss function at CPS is

min
w∈R

f(w) =

αsS∑
s=1

Ds

Dt
Fs(w), (4)

where Fs (w) = 1/Ds ·
∑Ds

p Fs (ws, ζp),Ds
∆
= |Ds| andDt =

∣∣⋃
s∈αsS

Ds

∣∣. Especially,
Fs(ws, ζp) is the loss function of the p-th data sample. Furthermore, as shown in Eq.(5),
there is a weight ws

r that minimizes the regional loss function.

ws
r = argmin fs = argmin

αcK∑
k=1

Dk

Γ r
s

fk. (5)

3.2. An adaptive parameter aggregation method for HFL

In this part, an adaptive parameter aggregation algorithm is proposed, which dynami-
cally integrates synchronous and asynchronous aggregation method into the proposed
HFL framework, so as to enable different nodes in the HFL framework (i.e., between
CPS and RPSs, between RPS and RPS, and between RPS and clients) can perform adap-
tive parameter aggregation according to current connection state of the wireless IoT net-
work. The monitoring of the connection status is performed by the AM. The AM informs
the corresponding nodes of the connection status information of the IoT network to dy-
namically adjust the aggregation strategy adopted between the corresponding nodes (i.e.,
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Algorithm 1 The parameter aggregation and training process of HFL
Input: the initial global model w0, the number of clients that belong to one RPS:K, the number of

RPS:S, the learning rate :η, other parameters are related to training rounds:B,κ1,κ2.
Output: the final global model w.

1: for each round r = 1, 2, 3, ..., Bκ1κ2 do
2: for each client k = 1, 2, ...,K in parallel do
3: wk

r = wk
r−1 − η∇fk /* Processing at the clients*/.

4: end for
5: if r|κ1 = 0 then
6: Send wk

r back to related RPS by client k.
7: for each RPS s = 1, 2, ..., S in parallel do
8: Aggregate the local models by order in which clients arrive according to Eq.(2) for

getting ws
r /*Processing at the RPS*/.

9: Send ws
r to related clients again.

10: end for
11: end if
12: if r|κ1κ2 = 0 then
13: for each RPS s = 1, 2, ..., S in parallel do
14: Aggregate the local models by order in which clients arrive to get w0

s .
15: for j = 1, 2, ..., κ do
16: wj

s ← wj−1
s − η∇fs.

17: end for
18: Send wj

s back to CPS by RPS.
19: end for
20: Aggregate the regional models by order in which RPS arrive to get w /*Processing at

the CPS*/.
21: Send w to all edge devices(RPS,client) as the new w0 for the next round.
22: end if
23: end for

between CPS and RPS, between RPS and RPS, and between RPS and clients). We use
Fig.3 to represent the complete training process performed by different types of nodes
in HFL. First, a specific client will complete κ1 rounds of local training, and then send
the local model parameters to the corresponding RPS, so that the RPS can complete the
aggregation of the regional model. When the above process is performed κ2 times, the
RPS will use the aggregated regional model parameters and its own private data as in-
put, and then continue to complete κ3 rounds of regional training. The obtained regional
model parameters are then uploaded to the CPS through the IoT network to complete the
training of the global model. Until the end of the global model training, the total num-
ber of iterations of the process is B, in which the total number of local training rounds
in each client is K1(K1 = Bκ1κ2), and the total number of regional training rounds in
each RPS is K2 (K2 = Bκ3). Furthermore, the threshold T is defined to represent the
minimum acceptable transmission delay during the model training. Before RPS and CPS
perform parameter aggregation, they will obtain the information of transmission delay
between nodes located in two adjacent layers periodically detected by AM. The delay is
represented by the parameter Q. When Q > T , it means that the current communication
quality is unsatisfactory. Therefore, an asynchronous aggregation mechanism is adopted
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to reduce the overall training time of the model. On the contrary, a synchronous aggrega-
tion strategy is adopted to ensure the convergence stability of the global model.
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Fig. 3. The training process of the proposed HFL Framework

If we take a three-layer HFL model as an example, the adaptive synchronous and asyn-
chronous aggregation decision will produce four aggregation combinations, i.e.,
“synchronous-synchronous”, “asynchronous-asynchronous”, “synchronous-
asynchronous”, “asynchronous-synchronous”. For the synchronous aggregation mecha-
nism, when αc = 1 or αs = 1, it means that it is necessary to wait for all nodes at
the corresponding level to complete training and upload to the CPS (or the RPS) before
triggering parameter aggregation. In contrast, if the asynchronous aggregation strategy is
adopted, when the number of nodes that complete model training and upload the model
reaches the specified threshold, the server (CPS or RPS) can be triggered to perform pa-
rameter aggregation, but the server only broadcasts the model aggregated to the nodes
contributing to current model aggregation for next training. It is worth noting that asyn-
chronous aggregation strategy must take into account: the server receives the local model
parameters of node in the rc-th round, while the node receives the model aggregated from
the server in the rs-th round, and they are often inconsistent [21], i.e., λ = rs − rc ̸= 0.
Therefore, this paper defines a parameter vkr to measure the staleness of node k in the r-th
round, where vkr = ρλ, (0 < ρ < 1) and ρ is a constant. In particular, if there is no stal-
eness for model update, that is, it is equivalent to a synchronous aggregation mechanism
at this time. Therefore, for the asynchronous aggregation strategy, each model parame-
ter wk

r,H owned by node k received by the server will be processed according to Eq.(6)
to reduce the impact of nodes with poor staleness on the aggregation model, and then
participate in the aggregation process.

wr
k,H = vkrw

r
k,H +

(
1− vkr

)
wr∗

s , 0 < vkr < 1, (6)

where wr∗

s = 1
Γ r∗

∑αcK
k Dk ·wr∗

k,H is the regional model after the r∗-th round for aggre-
gation. The modification for wr

k,H will be completed based on wr∗

s to participate in the
model aggregation at (r∗+1)-th round. If the transmission delay of IoT connection is se-
rious, vkr will decrease significantly with the increase of λ, resulting in Eq.(6), the weight
wr

k,H of the model participating in the aggregation tends to be close to the aggregation
result wr∗

s of the previous round, so as to maintain the stability of the global model.
The process between CPS and RPS is similar to the above process. Theoretically, the
proposed adaptive parameter aggregation algorithm can be extended to one HFL frame-
work with L-layer (L > 3) correlation, and correspondingly 2L kinds of synchronous
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and asynchronous parameter aggregation schemes can be formed. The proposed adaptive
aggregation method is shown in Algorithm 2.

Algorithm 2 The adaptive parameter aggregation method
Input: parameter received time tr , parameter sent time ts
Output: one aggregation strategy, the number of client for aggregation αcK in RPS, the number

of RPS for aggregation αsS in CPS, the model parameters corrected wr
k,H .

1: The AM calculates the actual transmission delay Q according to tr and ts periodically.
2: if Q is larger than T then
3: Telling RPS or CPS to use asynchronous solution.
4: αcK = K − 1 in RPS or αsS = S − 1 in CPS.
5: The RPS or the CPS calculates the update delay λ and records it.
6: The RPS corrects related model parameters by Eq.(6) to reduce the impact of staleness, so

do CPS.
7: else
8: Telling RPS or CPS to use synchronous solution.
9: αcK = K in RPS or αsS = S in CPS.

10: end if

4. The Analysis of Convergence

For ease of convergence analysis, we denote the number of local training rounds and
regional training rounds as r(1 ≤ r ≤ Bκ1κ2) and t(1 ≤ t ≤ Bκ3), respectively. We as-
sume that an unbiased estimate of ∇fk(w) is gj(w, ζrk), i.e., ∇fk(w) = Eζr

k∼Dk
gj (w; ζ

r
k).

Also, we assume the loss function is non-convex and smooth. Then we introduce the fol-
lowing assumptions.

Assumption 1:(Lipschitz Gradient). The function fk, fs, Fs, f are L-smooth, i.e.,
∥∇fk(w)−∇fk (w′)∥ ≤ L ∥w − w′∥, ∥∇fs(w)−∇fs (w′)∥ ≤ L ∥w − w′∥,
∥∇Fs(w)−∇Fs (w

′)∥ ≤ L ∥w − w′∥, ∥∇f(w)−∇f (w′)∥ ≤ L ∥w − w′∥.

Assumption 2:(Bounded Variance). The divergences satisfy:
∥∇Fs(w)−∇f(w)∥2 ≤ ϵ2s, ∥∇fk(w)−∇fs(w)∥2 ≤ ϵ2k, ∥gk(w, j)−∇fk(w)∥2 ≤
σ2,∀s, k, j, w.

The above assumptions are widely used in non-convex optimization theory [20]. Par-
ticularly, the parameter ϵ2s and ϵ2k can quantify the similarity of objective functions. Note
ϵ2s = 0 or ϵ2k = 0 corresponds to the IID setting.

Theorem 1: Given the learning rate η ≤ 1
L , 1 − 3η2L2 ≥ 0 and the optimal global

model and regional model are respectively w∗, w∗
s . When the synchronous aggregation

method is adopted, the upper bound of the average regional gradient deviation is given as
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follows

1

Bκ1κ2

Bκ1κ2∑
r=1

E
∥∥∇fs (wr−1

s

)∥∥2 ≤ 2

Bκ1κ2η

(
Efs

(
w0

s

)
− fs (w

∗
s)
)
+ ησ2LK2

+
KL2η2

Bκ1κ2 (1− 3η2L2) ∥Γ r∥2
∑
k∈VK

∥Dk∥2 (Φ1 + Φ2)

where Φ1 = 2Bκ1κ2+4σ2

(
1 +K

∑
k∈VK

∥Dk∥2
)
, Φ2 = 3 ∗ 2Bκ1K2+3ϵ2k

(7)

Proof. Due to the proposition of Lipschitz smooth, the expectation of fs can be ex-
pressed as

Efs (wr
s) = Efs

[
wr−1

s − η∇fs
(
wr−1

s

)]
= Efs

[
wr−1

s − η
1

Γ r

∑
k∈VK

Dk∇fk
(
wr−1

k

)]

≤ Efs
(
wr−1

s

)
−ηE

〈
∇fs

(
wr−1

s

)
,
1

Γ r

∑
k∈VK

Dk∇fk
(
wr−1

k

)〉
︸ ︷︷ ︸

A1

+
η2L

2
E

∥∥∥∥∥ 1

Γ r

∑
k∈VK

Dk∇gk
(
wr−1

k

)∥∥∥∥∥
2

︸ ︷︷ ︸
A2

(8)

We further express the bound of A1 as follows:

− ηE

〈
∇fs

(
wr−1

s

)
,
1

Γ r

∑
k∈VK

Dk∇fk
(
wr−1

k

)〉
=
η

2
E

∥∥∥∥∥∇fs (wr−1
s

)
− 1

Γ r

∑
k∈VK

Dk∇fk
(
wr−1

k

)∥∥∥∥∥
2

− η

2
E
∥∥∇fs (wr−1

s

)∥∥2 − η

2
E

∥∥∥∥∥ 1

Γ r

∑
k∈VK

Dk∇fk
(
wr−1

k

)∥∥∥∥∥
2

(9)

Then the bound of A2 can be represented as
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(10)

By replacing A1 and A2 in (8) with (9) and (10) respectively, then we can get
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Since η ≤ 1
L is assumed, then (a) is obtained. Additionally, the following inequality can

be derived based on Assumption 1.
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(12)
According to SGD and FedAvg, the bound of A4 can be further represented as
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The above inequality (b) can be obtained from the mean value inequality.
After expanding (13), we obtain
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We continue to drive the bound of A5 as follows
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We now further bound the term A5 by mean inequality, we get
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Similarly, the upper bound of A6 can be derived as follows
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With the results of (14), (16) and (17), we can obtain (18),
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By averaging the results of Bκ1κ2 trainings, we can get
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Through (11), (12), (18) and (19), we can obtain Theorem 1, which completes the
proof.
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where η ≤ 1
L , 1− 3η2L2 ≥ 0.

Following Theorem 1, the similar result can be obtained for the upper bound of the
average global gradient deviation and the upper bound of the average regional gradient
deviation when synchronous FL is used.

Furthermore, if asynchronous aggregation method is adopted, Theorem 2 can be ob-
tained under the premise of the above assumptions.

Theorem 2: Given the learning rate η ≤ 1
L , 1− 6η2L2 ≥ 0. The upper bound of the

average regional gradient deviation is given as follows,
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(21)

Proof. Since some proof procedure can be found in Theorem 1, we only show the
differences from Theorem 1: Firstly, we assume that in the rth round, the server receives
the model from the set MK,r which is denoted as the clients sending local model to the
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server. We have
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s) ≤ Es

(
wr−1

s

)
+
η2L

2

αcKσ
2
∑

k∈MK ,

∥∥∥∥Dk

Γ r

∥∥∥∥2


+
η

2

E

∥∥∥∥∥∥∇fs (wr−1
s

)
−

∑
k∈MK,r

1

Γ r
Dk∇fk

(
wr−1

k

)∥∥∥∥∥∥
2

︸ ︷︷ ︸
A7

−E
∥∥fs (wr−1

s

)∥∥2


(22)

Through the use of smoothness, the upper bound of A7 can be expressed as follows
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Similar to the method adopted in (14) and (16), we can further obtain
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Similarly, we can get
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Finally, based on (22)-(25), the conclusion of Theorem 2 can be obtained.

5. Performance Evaluation

In this section, we experimentally evaluate the effectiveness and performance of the pro-
posed HFL framework. We firstly describe experimental settings and evaluation metric.
Then, we conduct two experiments to illustrate the influence of key parameters on model
convergence and demonstrate the efficiency of the proposed model, respectively.
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Table 2. The statistics of datasets in the experiment

Area Nodes Min O(divergence) Max I(divergence) Min I(divergence)

RPS 1 6 0.12412 0.02429 0.01558

RPS 2 4 0.26799 0.07153 0.01426

RPS 3 7 0.16471 0.07686 0.03633

RPS 4 4 0.20628 0.09204 0.03170

RPS 5 5 0.22823 0.09762 0.02344

5.1. Experimental Setup

The HFL framework proposed in this paper is formulated on the basis of analyzing the
hierarchical relationship between water supply regions and the historical water supply
datasets in Chongqing, China. The datasets used for experiments include the data of daily
water supply in different water supply regions from July 2019 to July 2021. We firstly
performed noise reduction and smoothing on the data, which is to reduce the impact of
noisy data on subsequent model training to a certain extent. Also,the datasets used for
training not only includes water supply data at different time points in different water
supply areas, but also includes holiday information and environmental data in each wa-
ter supply area, such as: air temperature, air humidity, rainfall, wind speed and direction,
which are taken into account. At the same time, due to the fact that the IoT-based data col-
lection terminals in various regions may lose packets or be interfered by communication
during the actual network transmission process, there is a small amount of data missing
in the 2-year datasets. According to the relationship between the water supply regions
and the HFL structure shown in Fig.2, the entire water supply area includes one CPS for
training and aggregating global model, and then the whole region is divided into 5 sub-
regions, each sub-region includes one RPS and multiple clients, RPS is responsible for
model aggregation in the sub-region, and client is responsible for its local model training.
It is worth noting that, we refer to the method adopted in [22, 23] to further divide the
original data set into multiple sub-datsets, and increase the scale of participating nodes
while ensuring that the original distribution of the data is not changed. The deployment
of CPS, RPSs and clients is shown in Fig.4. Furthermore, we use the divergence to mea-
sure the similarity between different regions. If the larger the divergence, the smaller the
similarity. The data distribution for each region is combined in pairs, and then the corre-
sponding divergence values are then calculated. The statistics datasets and the results on
divergence between them are summarized in Table 2. Specifically, Nodes represents the
number of clients included in the area covered by an RPS. In addition, Min O represents
the minimum divergence between the RPS and the clients outside the RPS area. Max I
represents the maximum divergence between the clients and RPS in the same RPS area,
and Min I indicates the minimum divergence in a specific RPS area. It can be seen from
Table 2 that the data similarity in the same region is high, while the data similarity is low
outside the area. Finally, according to the ratio of 4:1, each dataset is divided into training
dataset and test dataset. In addition, in order to intuitively measure the accuracy of the
model, we introduce a commonly used indicator explained variance score(EVC). When
the indicator is close to 1, it means that the fitting effect of the model will be better, other-
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wise the opposite. The experiments are deployed on a deep learning workstation equipped
with NVIDIA GeForce RTX 3090 GPU, and the HFL model proposed is built based on
TensorFlow [24].

CPS

client

RPS

CPS

client

RPS

Fig. 4. Deployment of CPS, RPSs and clients in an entire water supply area
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Fig. 5. Convergence under different κ1 and κ2

5.2. The Analysis of Convergence

During the training process of the client and the RPS withK1 andK2 rounds respectively,
the convergence of the global model can be compared (K1 = Bκ1κ2, K2 = Bκ3) by
adjusting the value of κ1 and κ2. When the current number of training rounds r satisfies
r|κ1κ2 = 0, RPS will aggregate local models belonged to the clients in the covered sub-
region and obtain the regional model wr

s, and further train the regional model of the RPS.
The initial model parameter of the RPS is wr

s, that is, ws
0 = wr

s. Finally, the regional
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model of the RPS participates in the global model aggregation at the CPS. It can be seen
that the convergence of the global model is directly affected by the RPS from Algorithm
1, while the client indirectly affects the convergence of the global model by affecting
the initial model weight of the RPS. Additionally, we assume the minimum acceptable
delay T → +∞ at this time. It can be also seen from Theorem1 and Theorem2 that the
smaller the values of κ1 and κ2, the better the convergence of the model, which is not only
applicable to the regional model but also the global model. As shown in Fig.5, the global
model convergence is evaluated under different combinations of κ1 and κ2. It can be seen
that the global model converges best when κ1 = 10 and κ2 = 5, mainly because the
values of these two parameters are the smallest. In contrast, when κ1 = 20 and κ2 = 20,
the model convergence performance is the worst.
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Fig. 6. The prediction accuracy of the model under different values of T

5.3. Performance Under Different Network Delay

In order to observe the impact of the heterogeneity of the devices and the data on model
performance, we first construct the ideal case for network connection. Under the condi-
tions of κ1 = 10 and κ2 = 5, we design four different T to compare the influence of
system heterogeneity on the model convergence. The values of T are 1, 3, 5, and 7, re-
spectively. The number of training rounds for both the RPS and the client is 200, that
is, Bκ1κ2 = Bκ3 = 200. The results on model prediction accuracy with different T
are shown in Fig.6. It can be found that due to the difference in computing capability
of each node participating in the HFL, different convergence trends of the global model
will appear. In particular, when T is set to a small value, it can simulate the situation that
the node cannot tolerate the existing delay being large during the parameter transmission
process. In Fig.6, when T = 1, nodes will select asynchronous aggregation for model
training more time. In addition, since the number of nodes participating in asynchronous
aggregation during a certain round of training is less than the total number of nodes, in
the early stage of model training, the accuracy curve corresponding to T = 1 fluctuates
relatively significantly.
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Table 3. Model prediction accuracy and switching times after 200 rounds of training
under different T

HFL(T=1) HFL(T=3) HFL(T=5) HFL(T=7)

Running Time(sec) 7869.408 11079.721 12547.851 13093.137

EVC 0.909 0.934 0.937 0.936

Async Freq 577 50 8 0

Sync Freq 464 915 973 987

Table 4. Prediction accuracy of RPS under different T

RPS 1 RPS 2 RPS 3 RPS 4 RPS 5

EVC

T = 1 0.827 0.931 0.846 0.887 0.918

T = 3 0.825 0.930 0.842 0.892 0.921

T = 5 0.830 0.934 0.844 0.892 0.923

T = 7 0.831 0.934 0.844 0.890 0.921

Under the above ideal network connection, we record running time, EVC for the global
model, and switching times of synchronous aggregation method (Sync Freq) and asyn-
chronous aggregation method (Async Freq) corresponding to four sets of T . The results
are shown in Table 3. It can be observed that Sync Freq and Async Freq computed by CPS
with T = 1 are relatively close. Indicating that in ideal circumstances, the delay caused
by other influencing factors (such as heterogeneous computing power) averages close to
1. With the increase of T , Sync Freq for CPS will be also increased. Correspondingly, the
time to complete the entire training task will be also increased, because the synchronous
aggregation needs to wait for all participants to complete their local task. In particular,
when T = 7, then Async Freq = 0, it means that arbitrary delay can be tolerated, so
asynchronous aggregation will not be adopted, that is, the HFL is equivalent to the tra-
ditional synchronous FL. Conversely, the HFL is more sensitive to delay when T → 1.
More extremely, the HFL is similar to traditional asynchronous FL when T → 0. Simi-
larly, RPS also has its Sync Freq and Async Freq, as shown in Fig.7, where Ri (Async)
and Ri (Sync) are represented as Async Freq and Sync Freq of RPS i respectively. The
global model after convergence with different T in Fig.6 are applied to the test datasets
of all RPSs respectively, then corresponding prediction accuracy (i,e, EVC) can be calcu-
lated, as shown in Table 4. It can be found that the difference in terms of test accuracy on
the same dataset for different T is almost small.

However, most of the nodes actually participating in FL are mobile devices with lim-
ited network bandwidth resources, so there will be a certain communication delay in pa-
rameter transmission process, and the delay for uploading parameters is generally larger
than that for downloading parameters [25].
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Fig. 7. Switching times of the aggregation method (async or sync) for RPS(1,2,3,4,5)
under different T

The specific communication delay is measured as follow [26],

T0 =
Θi

bri log
(
1 + oi |Gr

i |
2
/ψ
) (26)

where bri is the allocated bandwidth for node i at round r from the total bandwidth B, i.e.∑
i b

r
i = B, oi is the transmit power of node i, Gr

i is the average channel gain between
node i and its upper server, ψ is the background noise and Θi is the size of local model of
node i. To simplify the calculation, we assume B = 20MHz, ψ = 10−19, oi = 20dBm
and Gr

i = 10[27].
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Fig. 8. Switching times of the aggregation method (Async or Sync) for CPS under
different T

We further set five different T (T = 1, T = 5, T = 10, T = 15, T = 40) to verify
the validity of the HFL. After 200 rounds local training on clients, multiple Async Freq
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Fig. 9. Switching times of the aggregation method (Async or Sync) for RPS(1,2,3,4,5)
under different T

and Sync Freq can be obtained by CPS and RPS respectively, as shown in Fig.8 and
Fig.9. And “C(Async)” and “C(Sync)” respectively represent asynchronous(Async Freq)
or synchronous(Sync Freq) aggregation performed by CPS. When T becomes larger,
Sync Freq will be increased synchronously, but Async Freq will be the opposite. In par-
ticular, if 1 < T < 40, CPS will use both synchronous and asynchronous aggregation
method during the entire training process, that is, the operation for adopting synchronous
or asynchronous aggregation is a dynamic procedure, instead of statically adopting ei-
ther one approach among them. Similarly, with the increase of T , RPS will also undergo
similar synchronous and asynchronous aggregation strategy adjustment during the whole
training process. Particularly, Async Freq is close to 0 at T = 40 in Fig.9, indicating that
the sum of communication and calculation delay is closed to 40, and the overall training
process of the HFL will be affected hardly by the delay.
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The prediction accuracy curves of global model corresponding to the above five T are
shown in Fig.10. When T is increased, it will reduce the impact of communication delay
on the HFL and increase Sync Freq, which makes the model convergence more stable and
faster, such as the accuracy curve with T = 40, but the time for training model will be also
increased. However, the gap of prediction accuracy among them after model convergence
is between 0.7% and 2.4%.

Furthermore, the framework proposed in this paper (denoted by Adaptive-HFL) is also
compared with some representative models (i.e. ECHFL[10], ADFO[20], AHFL[26]) to
demonstrate the its effectiveness. Among them, ECHFL and AHFL are both belong to
hierarchical federated learning models, and ADFO is a federated version of adaptive opti-
mizer. When T = 10, the comparison result about prediction accuracy is shown in Fig.11,
due to the small number of local models of a single server in the hierarchical-based learn-
ing structure, there will be certain fluctuations for training, and the curve corresponding to
ADFO is relatively smoother because ADFO is designed based on “server-client” network
service architecture and adaptive optimization algorithm. However, in general, the hierar-
chical structure can achieve better prediction effect than ADFO after convergence. At the
same time, since the hierarchical correlation and adaptive parameter aggregation scheme
are considered in Adaptive-HFL, and more constraints are considered by AHFL model,
so the higher prediction accuracy can be achieved. In addition, the accuracy of Adaptive-
HFL is about 3.4% higher than that of ADFO. Finally, under the same rounds of training,
the results of time required for the four models are shown in Fig.12. It can be seen that the
time required for Adaptive-HFL has decreased by 12.6%, 8.4%, and 9.8% than ADFO,
AHFL and ECHFL, respectively. Among them, because Adaptive-HFL can adjust the ag-
gregation method between the different layers according to factors such as network com-
munication delay, Adaptive-HFL realizes the model accuracy close to AHFL, but saves
8.4% of the training time required for convergence. This results show that Adaptive-HFL
has a significant advantage in convergence performance compared to other three models.
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Fig. 12. The comparison of time required for model convergence

6. Conclusion

This paper first proposes a hierarchical federated learning framework, which realizes
the joint learning with hierarchical associations between multiple data holders. Mean-
while, we propose a model parameter aggregation algorithm for selecting dynamically
asynchronous aggregation/synchronous aggregation to improve the efficiency for train-
ing global model. This paper not only conducts a theoretical analysis on the convergence
of the proposed model, but also comprehensively evaluates the effectiveness and perfor-
mance of the proposed framework by taking the prediction of water demand in the urban
multi-regional water supply scenario as an experiment. In our future work, we will inves-
tigate the matching problem between the efficiency of model training and node selection
based on the HFL proposed framework.
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