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Abstract. This paper addresses the problem of multimedia recommendation that
additionally utilizes multimedia data, such as visual and textual modalities of items
along with the user-item interaction information. Existing multimedia recommender
systems assume that all the non-interacted items of a user have the same degree of
negativity, thus regarding them as candidates for negative samples when training
the model. However, this paper claims that a user’s non-interacted items do not
have the same degree of negativity. We classify these non-interacted items of a user
into two kinds of items with different characteristics: unknown and uninteresting
items. Then, we propose a novel negative sampling technique that only considers
the uninteresting items (i.e., rather than the unknown items) as candidates for neg-
ative samples. In addition, we show that using the multiple Bayesian personalized
ranking (BPR) losses with both unknown and uninteresting items (i.e., all the non-
interacted items) in existing multimedia recommendation methods is very effective
in improving recommendation accuracy. By conducting extensive experiments with
three real-world datasets, we show the superiority of our ideas. Our ideas can be
easily and orthogonally applied to any multimedia recommender systems.
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1. Introduction

Due to the abrupt increase in the number and variety of items around us, the problem
of information overload is becoming a big issue in many applicantions. Recommender
systems are a vital technique to solve this problem and thus are widely used in various
domains, such as movie recommendations and music recommendations. Collaborative
filtering (CF) is one of the most widely used approaches in recommender systems; in-
tuitively, for a target user, it finds the items commonly preferred by the users with the
tastes similar to hers (i.e., neighbors) based on her interaction information (e.g., purchase
history and click logs) [6,9, 11-16,19,21,22, 25,28, 31-34,39]. Despite the simplicity
and robustness of CF in recommendation, the sparse nature of the interaction information
brings CF the limitation of not being able to accurately capture the users’ preferences on
items [3].

* The first two authors have equally contributed to this work.
T Corresponding author.



934 Jiyeon Kim, Taeri Kim, and Sang-Wook Kim

To alleviate this limitation of CF, various methods have been proposed [4,8, 11, 18,
19,21,23,36,37,43,44]. They can be classified into two categories: i) additional utiliza-
tion of non-interacted items and ii) additional utilization of external data. The methods in
category i) first divide a user’s non-interacted items into her unknown items and uninter-
esting items [11, 18, 19, 21] where the unknown items are the items that the user did not
interact with because she did not know their existence and the uninteresting items are the
items that the user did not interact with even though she knew their existence but did not
want to interact with the item. Then, the methods mitigate the data sparsity problem by
selecting her uninteresting items amongst non-interacted items and imputing low values
for the uninteresting items selected [11, 18, 19,21]. The methods in category ii) use ad-
ditional multimedia data (e.g., visual data such as the item’s image and textual data such
as the item’s specifications) along with the user-item interaction information. The recom-
mender systems of this category are referred to as multimedia recommender systems [4,
8,23,36,37,43,44].

Most multimedia recommender systems use deep learning models such as convolu-
tional neural networks (CNNs) [1, 17,26,42] and recurrent neural networks (RNNs) [7,
10, 38] to extract multimodal features from the items’ multimedia data. They utilize these
multimodal features to represent the item embeddings; they conduct a dot product be-
tween an item embedding and a user embedding to predict the user’s preference on the
item. They use the Bayesian personalized ranking (BPR) loss [30], a representative pair-
wise loss to learn the ranking difference between a user’s positive and negative items, to
train their models. In model training, positive items are sampled from the user’s interacted
items and the negative items are randomly sampled from the user’s non-interacted items.
In other words, they simply use all the non-interacted items as the candidates for negative
items based on the assumption that all the non-interacted items for a user have the same
degree of negativity.

However, we claim that this assumption does not hold in the real-world data; i.e.,
non-interacted items could have different degrees of negativity. Then, we propose the
methods that utilize the two categories of a user’s non-interacted items for accurate mul-
timedia recommendation. Note that the proposed methods can be easily applied (i.e.,
orthogonally applicable) to existing multimedia recommender systems. To this end, we
first classify a user’s non-interacted items into two categories of unknown and uninter-
esting items for her based on the degrees of her negativity, obtained by using the user’s
interacted items. Then, we propose a novel negative sampling technique that uses only
the uninteresting items (rather than unknown items) as candidates for negative samples.
Furthermore, we propose to use multiple BPR losses which utilize both unknown and
uninteresting items (i.e., all non-interacted items), in multimedia recommender systems.
To demonstrate the effectiveness of our proposed methods, we employ three well-known
multimedia recommender systems (spec. VBPR [8], MMGCN [37], and LATTICE [43])
and three real-world Amazon datasets.! To show the superiority of our negative sampling
method, we compare the following three methods: i) using those randomly sampled from
non-interacted items as negative samples (i.e., original negative sampling); ii) using un-
known items as negative samples; iii) using uninteresting items as negative samples (i.e.,
our negative sampling). Our experimental result shows that our proposed method (i.e.,
method iii)) provides the best recommendation accuracy. The result also confirms that

! http://jmcauley.ucsd.edu/data/amazon/links.html
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using multiple BPR losses is more effective in multimedia recommender systems: specif-
ically, applying the multiple BPR losses leads to a gain of up to 20.13% and 4.12%, in
terms of Recall @20, compared to the state-of-the-art multimedia recommender systems,
MMGCN [37] and LATTICE [43], respectively.

The main contributions of our work are summarized as follows:

— We point out the problem of the assumption employed in existing multimedia recom-
mender systems.
o All the non-interacted items for a user have the same degree of negativity.
— We propose two methods that improve the recommendation accuracy by exploiting
the different degrees of negativity in non-interacted items.
e We propose a novel sampling technique that uses only the uninteresting items as
negative samples.
o We use multiple BPR losses to learn the rank differences between positive, un-
known, and uninteresting items.
— We validate our proposed methods by conducting extensive experiments using three
real-world datasets.

The rest of this paper is organized as follows. In Section 2, we briefly review the
related work to multimedia recommender systems. In Section 3, we describe our proposed
methods in detail. In Section 4, we conduct experiments to verify the effectiveness of our
methods. Finally, in Section 5, we summarize and conclude our paper.

2. Related Work

In this section, we briefly introduce the research on multimedia recommender systems.
Early multimedia recommender systems utilized only one modality amongst the items’
multimedia data (e.g., visual, textual, and acoustic modality) along with the user-item
interaction information [2,5, 8, 12,24, 35,40,41]. VBPR [8], the most popular model
among them, captures the features of the visual modality of items and builds an addi-
tional embedding that reflects each user’s preference for the visual modality of items.
Then, it uses the well-known BPR loss in training VBPR. However, the early multimedia
recommender systems have a limitation that they use only one of various modalities of
items to represent the items’ characteristics.

To alleviate this limitation, recent multimedia recommender systems have tried to
utilize various modalities of items [4, 14,23, 36,37,43, 44]. Specifically, JRL [44] and
MAML [23] use deep learning models to capture the features of the various modalities
of the item (e.g., visual, textual, and numerical (i.e., rating) modalities for JRL and vi-
sual and textual modalities for MAML). Then, they aggregate the captured features to
enrich the embedding of an item and the user who interacted with the corresponding item.
MMGCN [37] constructs the user-item interaction graphs for visual, textual, and acous-
tic modalities of items, and uses graph convolutional networks (GCNs) to capture the
collaborative signals between the users and the items. Then, MMGCN aggregates the col-
laborative signals captured by each modality and enriches the embeddings of users and
items.

Since the advent of MMGCN, various GCN-based multimedia recommender systems
have emerged such as GRCN [36] and LATTICE [43]. They commonly use not only
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GCNs but also the attention mechanism to distinguish the degrees of influence of users
on different modalities of items. GRCN [36] is based on MMGCN and considers the
degrees of influence on different modalities at an individual user level. On the other hand,
LATTICE [43] captures the latent item-item structure for each modality using visual and
textual modalities of items and then applies GCN to obtain enriched item embeddings.
Then, it considers the degrees of influence on different modalities at all user levels (i.e.,
globally for all users).

The aforementioned methods utilize the BPR loss, which selects positive items among
the interacted items and negative items among the non-interacted items and widens the
rank discrepancy between positive and negative items, in order to learn their models [8,
36,37,43,44]. However, since there are many items in recommendation domain data, it
is difficult for users to know the existence of all items. Therefore, a user’s non-interacted
items can be categorized into unknown and uninteresting items as follows:

— Unknown item: item that a user did not interact with because she did not know its
existence.

— Uninteresting item: item that a user did not interact with because she did not want
to interact with it, even though she knew its existence.

In other words, if the BPR loss is simply employed in a learning process as in existing
multimedia recommender systems, some non-interacted items that the user may prefer can
be considered as her negative items. Therefore, we argue that, in order to correctly train
the model by using the BPR loss, negative items should be sampled not from her non-
interacted items, but from her uninteresting items. In addition, we argue that we should
train the model so that they will be able to learn all the rank discrepancies among positive,
unknown, and uninteresting items.

3. Proposed Methods

In this section, we propose two methods that can be orthogonally applied to existing
multimedia recommender systems, exploiting the notions of unknown and uninteresting
items for accurate multimedia recommendation. Specifically, in Section 3.1, we describe
our novel negative sampling method that uses only uninteresting items as negative sam-
ples. Then, in Section 3.2, we describe how to use multiple BPR losses, for interesting,
unknown, and uninteresting items in model training.

3.1. Negative Sampling Method

The overall procedure of our negative sampling is shown in Figure 1. As mentioned, a
user’s non-interacted items are categorized into unknown items and uninteresting items.
Our negative sampling method samples only the uninteresting items of a user as negative
samples for BPR training.

For this, we first compute the pre-use preferences of each user on her non-interacted
items by analyzing users’ interaction information. A user’s pre-use preference is the pref-
erence that the user has when deciding whether to interact with an item or not [11, 18,
19,21]. Thus, we can say that, for the user’s interacted items, she holds a high pre-use
preference. On the other hand, for those items that she has not interacted, her pre-use
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Fig. 1. Overview of our negative sampling method. The blue-colored items indicate the user’s inter-
acted items (i.e., positive items), and the red-colored items indicate the user’s uninteresting items
(i.e., negative items) among her non-interacted items

preferences would be lower than those of the interacted items. Among non-interacted
items, the user’s pre-use preferences on unknown items are unknown, however, those on
uninteresting items should be low since she was not interested in them.

In order to obtain pre-use preference scores for non-interacted items of a user, in
this paper, we employ WRMF [27], a widely adopted model in one-class setting, follow-
ing [11, 18, 21].% Specifically, given the pre-use preference matrix P € R of usersx# of items
(pu,i = 1, if user u has interacted with item %), WRMF predicts users’ pre-use pref-
erences for all non-interacted items. To this end, we first initialize users’ pre-use pref-
erences for non-interacted items as 0 in P and assign weights to quantify the relative
contribution of each user-item interaction [27]. Then, WRMF repeats the process of de-
composing the pre-use preference matrix P into two low-rank matrices U € R*ofusersxd
and V € R#efitmsxd where d indicates the dimensionality of each latent feature vector
and multiplying these two decomposed matrices to recover the original pre-use preference
matrix P. The loss function of WRMF is as follows:

LU, V) =Y wui(pui = UV O _IUF+ D IVilF), M)

u,t u

where p,, ; denotes user u’s pre-use preference of item ¢; w,, ; denotes the weight for p,, ;
and U, and V; represent the latent feature vectors of user v and item ¢, respectively; ||-|| »
denotes the Frobenius norm and A denotes the regularization parameter.

Lastly, we obtain the predicted pre-use preference matrix P using the learned vectors
U and V as follows:

P=UVT. 2

Then, we use (1 — ﬁu,) as the final weight for non-interacted item ¢ to be sampled as a
negative sample. By doing this, we allow the negative samples to be selected only from
the uninteresting items, rather than from all non-interacted items. This is because the pre-
use preference p,,; of an uninteresting item will be low, thus making the weight (i.e.,
(1 — Py i) high. Finally, we use the negative samples selected from the uninteresting
items in the BPR loss of the existing multimedia recommender systems.

2 Note that, if there is a better model available other than WRME, it could improve more the recommendation
accuracies with our proposed method.



938 Jiyeon Kim, Taeri Kim, and Sang-Wook Kim

O

~~ — User embedding Preference —— BPR loss

Item'’s Feature embedding Interacted Non-interacted

. CNN 3 n

image w.r.t. visual modality - %[ e T, [0'8 - ’ - | oo as e [ ag ‘
ltem’s | Io\NJ»  Feature embedding STIEEETE Pi‘:z::‘s’e b U'i“ke':q’:‘m U"i'::::::ﬁng
text w.r.t. textual modality | —o

@ 3)

Fig. 2. Overview of the method using the multiple BPR losses. The blue-colored items indicate
the user’s interacted items, the gray-colored items indicate the user’s unknown items among her
non-interacted items, and the red-colored items indicate the user’s uninteresting items among her
non-interacted items. (1)-(3) indicates the rank discrepancies the method using the multiple BPR
losses considers

3.2. Multiple BPR losses

Note that the BPR loss employed in existing multimedia recommender systems is only
used to correctly learn the rank discrepancy between the predicted preferences of positive
and negative items. However, the entire items can be divided into positive, unknown, and
uninteresting items; so we can better learn the rank of non-interacted items if we fully
exploit the rank discrepancy among all pairs of the above three types. Toward this end,
we propose to use multiple BPR losses® in existing multimedia recommender systems,
which enables to learn the rank discrepancies amongst the predicted preferences of the
above three types of items (i.e., not only uninteresting items but also unknown items can
be used).

Our method using the multiple BPR losses is shown in Figure 2. With the items cat-
egorized into three types (i.e., positive, unknown, and uninteresting items), we train the
model by using the following three rank discrepancies: (1) between positive and unknown
items, (2) between positive and uninteresting items, and (3) between unknown and unin-
teresting items. We use the three weights (i.e., a for (1), 8 for (2), and ~y for (3)) to control
the importance of the three rank discrepancies. The multiple BPR losses are formulated
as follows:

L=— Z O-(O(('Fpos - 7Qunk)) +O'(/8(72pos - ’Funznt)) +a(7(funk - 'Funznt)) +R(9)7 (3)

u

where 7pos, Punk, and ynins denote the predicted preferences of positive, unknown, and
uninteresting items, respectively; o(-) indicates the sigmoid function and R(#) does the
regularization term for model parameters 6.

To utilize our multiple BPR losses in multimedia recommender systems, we need a
user’s predicted pre-use preference scores of non-interacted items, as stated in Section 3.1.
Then, with those scores, we regard the bottom 1% of non-interacted items as uninteresting
items, and the rest of them as unknown items. Lastly, we apply the multiple BPR losses
in Eq. (3) to multimedia recommender systems.

The proposed methods in Sections 3.1 and 3.2, are easily and orthogonally applicable
to existing multimedia recommender systems, helping to provide more accurate multime-
dia recommendations.

3 A similar idea proposed in non-multimedia recommendation [20].
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# of users-# of items — # of interactions
# of users-# of items x 100 (%)

Table 1. Statistics of datasets. The sparsity calculated by

Dataset # of users # of items # of interactions Sparsity
Amazon Baby 19,445 7,050 160,792 99.88%
Amazon Men Clothing 4,955 5,028 32,363 99.87%
Amazon Office 4,874 2,406 52,957 99.55%

4. Evaluation

In this section, we evaluate our proposed methods via experiments; the experiments are
designed aiming to answer the following key evaluation questions:

— EQ1: Do the notions of unknown and uninteresting items help improve the recom-
mendation accuracy of multimedia recommender systems?

— EQ2: Is the idea of selecting the uninteresting items as negative samples most effec-
tive for improving the recommendation accuracy?

— EQ3: How sensitive is the recommendation accuracy of the multiple BPR losses to
different hyperparameter values?

4.1. Experimental Settings

Datasets and competitors For evaluation, we adopt three real-world Amazon datasets
widely used in multimedia recommender systems research [4, 8, 23,43, 44]: Amazon Baby,
Amazon Men Clothing, and Amazon Office*. As done in [37], we kept only the users
and items with more than five interactions. Table 1 reports their detailed statistics. These
datasets contain visual and textual modality information of items as well as the user-item
interaction. Then, we extracted 4,096-dimensional visual feature embeddings using the
deep CNN [17] and 1,024-dimensional textual feature embeddings using sentence trans-
formers [29], following [43].

To evaluate the effectiveness of our proposed methods, we use the following three
baselines:

— VBPR [8]: A multimedia recommender system based on matrix factorization (MF)
trained with a BPR loss.

— MMGCN [37]: A multimedia recommender system based on graph convolutional
networks (GCNs) using non-linear propagation trained with a BPR loss.

— LATTICE [43]: A multimedia recommender system based on graph convolutional
networks (GCNs) using linear propagation trained with a BPR loss.

Evaluation protocol and metrics We repeated all our experiments five times. For each
experiment, we randomly split interactions per user into 8:1:1, each for train, validation,

4 All the datasets are publicly available at http://jmcauley.ucsd.edu/data/amazon/links.html.
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and test set in the same way as in [37, 43]. We assess the accuracy of top-/N recommenda-
tion by using the following three widely used metrics: Precision (Prec, in short), Recall,
and normalized discounted cumulative gain (NDCG). Prec and Recall are traditional ac-
curacy metrics. They are used to validate whether the ground-truth items is in top-NV
recommendation list and computed as follows:

_|Rely N N
Prec@QN = ~ “4)
RecallQN = M 5)
Rel,

where Rel, indicates the relevant observed items of user v and N, indicates the top-/NV
items of user u.
NDCQG is a rank-sensitive metric which considers the position of the ground-truth item
in the top-N recommendation list and is computed as follows:
DCGQN

Additionally, DCGQN in Eq. (6) is computed as follows:

Ye — ]

N
DCGQN = kzl g (7

— o(k+1)’

where y;, indicates the binary variable for the k-th item iy in N, and, if i, € Rel, yi is
set as 1, otherwise, yy, is set as 0. And, I DCG@N in Eq. (6) stands for ideal DCG at N
where, for every item i in IV, yi, is set as 1. We set NV to 10 and 20 for all aforementioned
metrics.

Hyperparameter Settings For a fair comparison, we fine-tuned the hyperparameters
of competitors and our proposed methods via grid search using the validation set. More
specifically, we set the learning rate in the range {0.0001, 0.0005, 0.001, 0.005, 0.01}
and the regularization weight in the range {0, 0.00001, 0.0001, 0.001, 0.01}. Also, for
MMGCN [37] and LATTICE [43], we set the number of GCN-layers in the range {1, 2,
3, 4}; for LATTICE [43], we set the dropout ratio in the range {0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6,0.7,0.8}.

4.2. Experimental Results

EQ1: Do the notions of unknown and uninteresting items help improve the recom-
mendation accuracy of multimedia recommender systems? To show the effectiveness
of our proposed methods, we compared the three (original) competitors (i.e., VBPR [8],
MMGCN [37], LATTICE [43]) and their six variations equipped with our methods, on
three datasets. Table 2 reports all the accuracy results in top-10/20 recommendation. Here,
"neg’ refers to our method employing our negative sampling idea and *mbpr’ refers to our
method employing multiple BPR losses. The best and the second-best recommendation
accuracies on each dataset and the (original) competitor are shown in bold and underlined,
respectively.
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Table 2. Recommendation accuracies (%) of three state-of-the-art multimedia recommender systems and six
variants, where each of our proposed methods (i.e., a novel negative sampling method, neg, and multiple BPR
losses, mbpr) orthogonally applied at each original method, respectively. ’gain’ denotes the gains in accuracy of
variants over the corresponding original method

Amazon Baby

Prec@10 gain Recall@10 gain NDCG@10 gain Prec@20 gain Recall@20 gain NDCG@20 gain

LATTICE 0.537 - 5.112 - 2.846 - 0.420 - 7975 - 3.601 -
LATTICE-neg 0.543 1.12 5.170 1.13 2.897 1.79 0426 143 8.098 1.54 3.669 1.89
LATTICE-mbpr  0.554  3.17 5.281 3.31 2.892 1.62 0433 3.10 8.231 3.21 3.670 1.92

MMGCN 0.384 - 3.638 - 1.906 - 0.321 - 6.071 - 2.548 -
MMGCN-neg  0.384  0.00 3.653 0.41 1.931 1.31 0316 -1.56 6.007 -1.05 2.551 0.12
MMGCN-mbpr  0.456 18.75 4334  19.13 2329  22.19 0364 1340 6917 1394  3.011 18.17

VBPR 0.222 - 2.102 - 1.083 - 0.177 - 3.336 - 1.469 -
VBPR-neg 0.226  1.80 2.139 1.76 1.165 757 0.180 1.69 3.393 1.71 1.501 2.18
VBPR-mbpr 0318 4324 2993 4239 1.649 5226 0.251 41.81 4723 4158 2112 4377

Amazon Men Clothing

Prec@10 gain Recall@10 gain NDCG@10 gain Prec@20 gain Recall@20 gain NDCG@20 gain

LATTICE 0.415 - 4.136 - 2.194 - 0.309 - 6.160 - 2.705 -
LATTICE-neg 0417 0.37 4.157 0.52 2.224 1.38 0317 259 6.332 2.79 2.765 222
LATTICE-mbpr 0.418  0.67 4.168 0.76 2.224 1.38 0321  4.04 6.414 4.12 2.794 3.29

MMGCN 0.270 - 2.694 - 1.328 - 0.223 - 4.447 - 1.769 -
MMGCN-neg  0.272 0.74 2.712 0.67 1.337 0.68 0.234 493 4.659 477 1.826 3.22
MMGCN-mbpr  0.329 21.85 3.283 2186 1.665 2538 0.268 20.18 5342 20.13 2183 2340

VBPR 0.304 - 3.028 - 1.590 - 0.245 - 4.894 - 2.061 -

VBPR-neg 0.307  0.99 3.050 0.73 1.569 -1.32 0246 041 4885 -0.18 2.024 -1.80
VBPR-mbpr 0.380 25.00 3.791 2520 1917 2057 0300 2245 5980 22.19  2.469 19.80

Amazon Office

Prec@10 gain Recall@10 gain NDCG@10 gain Prec@20 gain Recall@20 gain NDCG@20 gain

LATTICE 1.109 - 9.213 - 5.776 - 0.839 - 13.719 - -
LATTICE-neg  1.108 -0.13 9215 0.02 5.783 012 0.842 036 13739 0.15 7.158 0.29
LATTICE-mbpr 1.134 225 9.451 2.58 5.854 1.35 0.859 238 14.061 249 7.253 1.63

MMGCN 0.616 - 5.077 - 2.963 - 0.532 - 8.726 - 4.223 -
MMGCN-neg  0.637 3.41 5.143 1.30 3.007 1.48  0.545 244 8.814 1.01 4.106 =277
MMGCN-mbpr  0.833 3523 6.765 3325 4.075 3753 0.674 26.69 10923 25.18 5333 2628

VBPR 0.699 - 5.717 - 3.524 - 0.558 - 9.072 - 4.544 -
VBPR-neg 0.694 -0.72 5655 -1.08 3430  -2.67 0.558 0.00 9.088 0.18 4.465 -1.74
VBPR-mbpr 0.792 1330 6366 1135  3.932 11.58 0.623 11.65 9.874 8.84 5.029 10.67

In Table 2, we can see that the variations with the multiple BPR losses show the supe-
riority over the original ones and those with our negative sampling, in all datasets and all
models. Specifically, in the case of LATTICE [43], as it is the most recent and best per-
forming method, its variation applied with our negative sampling outperforms the original
method by up to 2.79% (see Amazon Men Clothing) and the variation applied with the
multiple BPR losses outperforms the original method by up to 4.12% (see Amazon Men
Clothing), both in terms of Recall @20. In the case of MMGCN [37], the variation applied
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Fig. 3. Recommendation accuracies of a best state-of-the-art multimedia recommender system (i.e.,
LATTICE [43]) and two variants equipped with two different cases of negative sampling methods,
respectively. ’Random’ indicates the method of using randomly chosen non-interacted items as
negative samples (i.e., the original negative sampling method), Unknown’ indicates the method
of using unknown items as negative samples, and ’'Uninteresting’ indicates the method of using
uninteresting items as negative samples (i.e., our proposed negative sampling method)

with our negative sampling outperforms the original method by up to 4.93% in terms of
Prec@20 (see Amazon Men Clothing) and the variation applied with our multiple BPR
losses outperforms the original method by up to 37.53% in terms of NDCG@10 (see
Amazon Office). Lastly, in the case of VBPR [8], the variation applied with our negative
sampling outperforms the original method by up to 7.53% in terms of NDCG@10 (see
Amazon Baby) and the variation applied with the multiple BPR losses outperforms the
original method by up to 52.26% in terms of NDCG @10 (see Amazon Baby).

Based on the results above, we have confirmed that i) employing the notions of un-
known and uninteresting items (instead of the non-interacted items) in training the model
is effective in terms of recommendation accuracy and ii) employing multiple BPR losses
over interesting, unknown, and uninteresting items is more effective than a single BPR
loss over interesting and non-interacted items in terms of recommendation accuracy in
training the model.

EQ2: Is the idea of selecting the uninteresting items as negative samples most ef-
fective for improving the recommendation accuracy? To verify the effectiveness of
our negative sampling method, we compare the recommendation accuracy of the follow-
ing three cases: sampling negative items randomly i) from the non-interacted items (i.e.,
original method), ii) from unknown items, and iii) from uninteresting items (i.e., our pro-
posed method). Figure 3 shows the recommendation accuracy of the three negative sam-
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Fig. 4. The effect of 1 on recommendation accuracies

pling methods on the Amazon Office dataset with LATTICE [43].5 Here, ’Non-interacted’
refers to case i), "Unknown’ refers to case ii), and *Uninteresting’ refers to case iii).

In Figure 3, we see that our method (i.e., only using uninteresting items) outperforms
the original negative sampling method. The method of using unknown items as nega-
tive samples shows very poor recommendation accuracy. This indicates that, as unknown
items could be the items that the users’ preferences are high, they should not be used in the
training process as negative samples. When randomly sampling the users’ non-interacted
items as negative samples, unknown items might be included as negative samples, thus
likely to confuse the model in training. Therefore, this result validates that selecting neg-
ative samples from uninteresting items helps improve the accuracy in multimedia recom-
mendation.

EQ3: How sensitive is the recommendation accuracy of the multiple BPR losses
to different hyperparameter values? For our multiple BPR losses, we consider two
types of hyperparameters. First, y is to determine the ratio of uninteresting items to non-
interacted items. Second, the weights «, (, and ~ for different BPR losses to indicate
the importance in training. Regarding the hyperparameters, we conducted experiments to
answer the following two sub-questions:

— EQ3-1: How sensitive is the accuracy from employing the multiple BPR losses to the
ratios of uninteresting and unknown items out of non-interacted items?

— EQ3-2: How sensitive is the accuracy from employing the multiple BPR losses to the
weight for each BPR loss?

EQ3-1: Sensitiveness of hyperparameter .. We analyze how the recommendation
accuracy changes with different values of . € {10, 20, 30, 40, 50, 60, 70, 80,90} on the
Amazon Office dataset with LATTICE [43]. Figure 4 shows the recommendation accu-
racy with different values of u. As shown in Figure 4, we observe that the recommendation
accuracy increases until p increases to 40 and then decreases. The result shows that, if x
is set as too small (resp. large), some uninteresting (resp. unknown) items might be mis-
classified as unknown (resp. uninteresting) items, which causes the model to be confused
in the training process. Therefore, the proper setting of y allows the model to be better
learned and provides a more-effective recommendation result. Based on this observation,
we set p as 40% for our proposed multiple BPR losses.

5 For EQ2 and EQ3, the tendencies of recommendation accuracy on other datasets with other competitors are
all similar; so, we only include the results on Amazon Office with LATTICE, the latest and most powerful
method.
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EQ3-2: Sensitiveness of hyperparameters «, 3, and . We analyze the change of
recommendation accuracy with varying the values of «, 3, and v € {0.1,0.2,0.3,0.4, 0.5,
0.6, 0.7, 0.8, 0.9} on the Amazon Office dataset with LATTICE [43]. Figure 5 illustrates
the recommendation accuracy with different values of «, 3, and ~. The recommendation
accuracy becomes highest when @ = 0.4, 5 = 1.0,, and v = 0.6 in terms of Prec@10.
The result shows that bigger the value of /3, higher the recommendation accuracy regard-
less of the values of a and ~. Also, the result shows that the recommendation accuracy
overall shows robustness regardless of the values of o and ~. Therefore, based on this
result, we set « = 0.4, 8 = 1.0, and v = 0.6, in the previous experiments.

The experimental results can be summarized as follows: i) applying concept(s) of
unknown and uninteresting items helps to improve the recommendation accuracy of mul-
timedia recommender systems; ii) selecting the uninteresting items as negative samples is
more effective in improving the recommendation accuracy than selecting random (orig-
inal negative sampling method) or unknown items; iii) utilizing both unknown and un-
interesting items (i.e., all non-interacted items) in multimedia recommender systems sig-
nificantly improves most of their original recommendation accuracies, also this method
(i.e., our method) is easily and orthogonally applicable to any multimedia recommender
systems.

5. Conclusions

In this paper, we have pointed out the limitation of existing multimedia recommender
systems that they do not fully exploit the characteristics of non-interacted items for users.
Then, we proposed two methods to alleviate the limitation, thereby enabling existing sys-
tems to exploit the non-interacted items of users appropriately by classifying the non-
interacted items into unknown and uninteresting items. Specifically, our first idea is to
allow only the items highly likely not to be preferred by a user as negative items during
training the recommender model. Further, our second idea is to use the multiple BPR
losses, which makes possible rank discrepancies among positive, unknown, and unin-
teresting items learned correctly in the training process. Extensive experiments on three
real-world Amazon datasets validate that our proposed methods outperform three state-of-
the-art multimedia recommender systems and that our ideas are all effective in improving
recommendation accuracy.
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