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Abstract. Mobile agents, which learn to optimize a task in real time, can adapt to
dynamic environments and find the optimum locations with the navigation mech-
anism that includes a motion model. In this study, it is aimed to effectively cover
points of interest (PoI) in a dynamic environment by modeling a group of unmanned
aerial vehicles (UAVs) on the basis of a learning multi-agent system. Agents create
an abstract rectangular plane containing the area to be covered, and then decom-
pose the area into grids. An agent learns to locate on a center of grid that are closest
to it, which has the largest number of PoIs to plan its path. This planning helps to
achieve a high fairness index by reducing the number of common PoIs covered.
The proposed method has been tested in a simulation environment and the results
are presented by comparing with similar studies. The results show that the proposed
method outperforms existing similar studies and is suitable for area coverage appli-
cations.

Keywords: unmanned aerial vehicle, multi-agent system, reinforcement learning,
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1. Introduction

1.1. Background, Definition, and Motivation

Point of interest coverage (PoI) is a problem that has a huge scope, where a group of
agents is tasked with exploring and mapping [16] an unknown environment while also
monitoring [9] as many PoI as possible. The aim of the PoI coverage is to ensure that
a group of agents visit and monitor predefined locations, known as PoIs. These agents,
which could be robots, drones, or even people, should move across a dynamic environ-
ment in order to cover a set of PoI. Topics such as how much of the PoI is monitored, how
fast the process is managed, and how high the fault tolerance is, determine the quality of
coverage. In applications where non-mobile agents are used, the agent remains stable after
initial setup. This makes it difficult to adapt to changes in the environment and reduces the
fault tolerance of the coverage process. It is needed the mobile agent to be designed with
complex control modules if a single mobile agent is used. However, the same capability
can be achieved with the cooperation of a group of simple mobile agents.
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A group of mobile agents can be designed as a multi-agent system (MAS) that handle
coverage problem in a coordinated, interactive, dependent, or independent manner [5].
These systems have defined a collection of agents that produce a common goal-oriented
behavior called “collective intelligence” [30]. Methods developed with collective intelli-
gence which are based on centralized algorithms can be computationally expensive and
inflexible in dynamic environments. There has been growing curiosity about using dis-
tributed multi-agent reinforcement learning (MARL) to deal with the PoI coverage prob-
lem [32]. In MARL, each agent learns to make decisions independently, based on its local
observations and interactions with the environment. This helps to create more scalable
and adaptable solutions since the agents learn to coordinate and collaborate without the
need for a centralized controller.

One key challenge in using MARL for PoI coverage is the dynamic nature of the
environment [3]. MARL algorithms can be developed to be responsive, meaning that they
can adjust their behavior based on the current state of the environment. The requirement
for effective coordination among the agents presents another challenge when employing
MARL for PoI coverage. For the agents to be able to coordinate their actions in a way
that is both effective and efficient, it is necessary to design sophisticated communication
and coordination algorithms. Although there are some challenges, MARL can enable to
design of effective approaches for solving the PoI coverage problem. By using methods
based on MARL, a group of agents can learn to work together and coordinate in order to
cover the maximum number of PoIs in an area, even when the environment is changing
and unpredictable.

1.2. Literature Review

Area coverage-based studies have been carried out by deployment strategies in order to
solve problems such as maximum PoI coverage and maximum area surveillance. Mozaf-
fari et al. [21] have investigated how effectively multiple unmanned aerial vehicles (UAVs)
could be deployed to serve as wireless base stations and cover ground users. In this con-
text, the authors proposed a 3-dimensional (3-D) deployment strategy based on circle
packing theory to maximize area coverage while increasing the lifetime of the network. In
[33], an algorithm based on the Artificial Bee Colony (ABC) algorithm has been applied
for increasing area coverage and quality of connectivity between sensor nodes. Experi-
mental results were compared with random distribution and Genetic Algorithm. Accord-
ing to the results, the proposed algorithm has a longer lifetime of communication and a
higher coverage rate than the others. Gupta et al. [10] studied sensor node placement us-
ing a genetic algorithm-based approach that all target points k-coverage and sensor nodes
m-connected. Kalantari et al. [14] tried to find the number of UAV base stations needed to
cover an area by considering the system requirements and constraints of the environment.
The researchers proposed a heuristic algorithm based on Particle Swarm Optimization to
locate base stations in a 3-D plane [25]. Njoya et al. [22] proposed a hybrid method that
aims to spread sensor nodes effectively considering connectivity between sensor nodes
to cover the target area. Jagtap and Gomathi [12] have studied the Euclidean Spanning
Tree Model (ECST) and ECST-adaptive velocity added (VABC) (ECST-AVABC) meth-
ods for solving the mobile sensor deployment problem, which includes target coverage
and network connectivity. Additionally, the researchers designed an AVABC optimization
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method by acquiring the least amount of movement of mobile sensors through the net-
work. In [26], a novel method for increasing the WSN’s coverage and longevity while
preserving network connectivity was presented. The proposed method GCVD, which is
based on the Voronoi diagram (VD) and the geometric center (GC), allows mobile sen-
sors to only move within a predefined distance. This movement strategy helps maximize
area coverage with minimal energy consumption while guaranteeing the connectivity of
nodes. In [15], a deployment strategy using IoT devices association policy has been inves-
tigated for fixed-wing UAVs while gathering data from IoT devices. It was assumed that
each UAV follows a circular path over devices associated with it. The problem of device
association was designed as a Multi-Knapsack Problem that takes into account the ser-
vice capacities of UAVs as well as the load requests of devices. Ganganath et al. [7] have
studied two different methods based on anti-flocking for dynamic coverage with mobile
sensor networks in environments with and without obstacles.

The studies that designed with collaborative behavior strategies have been studied,
where it was recommended an online coverage algorithm. In [31], the area coverage prob-
lem was handled using a target assignment with path planning approach, which has online
execution process. Liu et al. [18] proposed a learning method called DRL-EC3 in order to
perform the UAV positioning and orienting process with less energy consumption. This
method was designed based on the deep deterministic policy gradient (DDPG) [17] algo-
rithm that single actor-critic network was used in the training phase. An improved version
of the DRL-EC3 model was presented to increase fault tolerance for dynamic changes in
the environment [19]. In this improved model, each UAV had its own actor-critic network
that helps find out convenient actions to maximize area coverage with minimum energy
consumption. In the target area, it was also aimed to establish a network between the
UAVs performing distributed manner. Nemer et. al. [23] designed an actor-critic method
on the bases of a state-based potential game (SBG-AC) that guides UAVs in moving from
the initial position to the final position to obtain maximum PoI coverage with minimum
energy consumption. The method has a similar motion model with the improved DRL-
EC3 both methods use the distributed version of DDPG. Cabreira et al. [2] proposed a
coverage path planning algorithm based on the grid-based approach presented in [29]. The
original cost function was replaced with an energy-cost function to minimize energy con-
sumption while mapping an area with UAVs. Aydemir and Cetin [1] proposed a method to
maximize the covered area in a dynamic environment using multi-UAVs. Agents modeled
with deep reinforcement learning techniques produced a model-free policy using a central
module in the learning phase, but the central module was not used during the execution
phase. The proposed method built as distributed system aims to place the active agents at
the most appropriate points in the target area by creating a graph.

In agent-based methods, mobile agents focus on improving the coverage process by
spreading over the area. The main difference between them is how the motion model
is designed. In systems managed by a central controller, the process is managed from
a single point, and errors that may occur in the centralized controller directly affect the
entire system. Heuristic methods can optimize the dynamic range coverage process, but
agents do not include the actions of other agents in the optimization process. With this
approach, it may take a long time to converge to the optimal result. In methods using
anti-flocking, agents evaluate the instantaneous situation rather than the entire coverage
process. For this reason, the most appropriate result of the instant situation is obtained.
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1.3. Contribution of the Paper

In the dynamic range coverage process, UAVs equipped with sensors can be used to
achieve low cost with high flexibility [31]. In this paper, a multi-agent deep RL-based
method in which each UAV is represented as an agent is proposed to cover the maximum
number of PoI in the target area. RL is a reward-driven machine learning approach that
an agent learns in an interactive environment through its experiences. An RL agent inter-
acts with the environment and receives positive or negative reward points for each action.
Classical RL methods are individual learning processes in that an agent learns to change
its behavior to maximize the reward PoInts it receives. In multi-agent RL (MARL), the
actions of all agents are evaluated for the common goal of the group. Collective behavior
refers to a system that provides maximum coverage when evaluated for the agent group.
When this behavior is evaluated for an agent, it represents a subsystem that finds an ap-
propriate location for itself with limited communication capabilities.

In the proposed method, the learning-execution process of the agent group is based on
the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [20] algorithm, which
is one of the central learning-decentralized execution methods. In the MADDPG algo-
rithm, each agent is trained by the DDPG algorithm, where the actor has access to only
local observations. The proposed method, which is a modified version of MADDPG, takes
into account the state and actions in a collective intelligence manner using an actor-critic
network. This approach helps the MAS cover area by avoiding collisions and orienting
the agents to the most suitable locations as soon as possible. In addition, it enables the
achievement of maximum PoI coverage in regularly-irregularly shaped areas with con-
nected agents. It is assumed that the agents are homogeneous and have a circular cov-
erage. Agents create an abstract rectangular plane using the xmin,ymin,xmax and ymax

values of the target area to be covered and then divide this area into grids. Then, they form
path planning for positioning into the nearby grid which has the largest number of PoI.
Path planning helps to achieve high fairness index by reducing the number of commonly
covered PoIs. While minimizing the energy consumption is handled with path planning,
the grid decomposition assists irregularly shaped areas to be covered.

1.4. Organization of the Paper

The remainder of the paper is organized as follows. In Section 2, a MAS model for dy-
namic area coverage problems is presented by giving detailed information about the pro-
posed method. In Section 3, experimental studies and simulation results are reported. In
Section 4, the results are analyzed, and a road-map is drawn for further work.

2. Material-Method

Each agent in the group is modeled as a UAV agent that has the same motion model as a
real UAV. It is aimed to meet the following objectives by collaborating with agents:

– Building a distributed system equipped with learning capabilities.
– Covering the maximum number of PoIs.
– Minimizing energy consumption caused by agent movements.
– Maintaining the connection between agents.
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– Moving without exceeding the borders of the target area.
– Optimizing agent movements and avoiding collisions between agents.
– Ensuring task continuity in dynamic environments.

With learning capabilities, agents can adapt to changes and achieve collective success.
With the design in accordance with the distributed system architecture, it can be ensured
that the system can make decisions independently from the central control. Thus, the
proposed method designed with the MARL approach helps the agents produce collective
success independent of central control.

2.1. Reinforcement Learning

In RL, an agent interacts with the environment and optimizes its behavior using the reward
received. As seen in Fig. 1, the agent takes an action to change its state, and then receives
a reward from the environment that indicates the quality of the action. One of the key
advantages of reinforcement learning is that it enables the agent to learn from experience,
without being explicitly programmed with a set of rules or procedures.

Fig. 1. RL agents

RL is modeled as Markov Decision Process (MDP), which are defined as fully ob-
servable environments. The assumption of full observability of MDPs allows the agent to
access the current state of the system at each step [8]. Partially-observable Markov De-
cision Process (POMDP) is a type of MDP that connects unobservable system states to
observations probabilistically and is used to model dynamic systems. Depending on the
system state and the agent’s future actions, the agent may take actions that affect the sys-
tem in order to maximize expected future rewards. The goal is to find the most appropriate
policy that guides the agent’s actions. Unlike MDPs, an agent in POMDPs cannot directly
observe the entire system state but makes circumstantial observations.

Multi-agent RL involves multiple agents learning to interact with each other and the
environment. It focuses on examining the behavior of multiple learning agents coexist-
ing in a shared environment. MARLs exist in which collaborative agents are modeled as
nodes that leverage information shared through a communication network. A node means
that agents can instantly communicate, exchange information with each other. Therefore,
agents know their local and neighbor information. Information sharing helps to obtain
more and more stable information about the environment in which the agents are located.



1066 Fatih Aydemir and Aydin Cetin

This multi-agent behavior approach is called connected agents. The proposed method in
this paper is used connected agents approach to find more appropriate locations using
reachable agents’ observations.

Fig. 2. Deep RL agent

According to [4], deep learning is a machine learning approach that learns multiple
representation levels corresponding to different levels of abstraction. In a simple case, it
contains two groups of neurons, one receiving the input signal and the other sending the
output signal. When the input layer receives an input, it transmits the processed version
of the input to the next layer. In a deep network, there are many layers between input and
output, consisting of multiple linear and multiple processing layers [28].

As seen in Fig. 2 Deep RL (DRL) improves RL by using deep neural networks as
the underlying model to represent the policy, value function or model of the environment.
This approach allows the agent to handle more complex, high-dimensional observation
spaces and make decisions based on more sophisticated representations of the state of
the environment. In other words, DRL combines the power of deep learning with the
problem-solving framework of reinforcement learning to create more advanced agents.

Multi-agent deep RL (MADRL) is a multi-agent system that consists of agents which
compete or cooperate to solve complex tasks. Each agent has direct access to local obser-
vations only. These observations can be many things, a view of the environment, locations
relative to landmarks, and even relative locations of other agents. Agents in MADRL are
designed distributed manner, and during the learning phase, are guided by a central mod-
ule or critic. While each agent has only local information and local policies, agents have
a critic which reviews their information and advises them on how to update their policies.
This approach is called centralized learning. During execution, the removal of the central
module limits the state and action space effects. The central module is intended to provide
sufficient information for the most appropriate local policy at execution time.
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2.2. Multi-agent Deep Deterministic Policy Gradient

DDPG [27] is an actor-critic method that adapts the core achievement of deep Q-learning
[6] to continuous action. The MADDPG algorithm has been proposed as an extension of
the actor-critic policy gradient methods, in which agents can only access local information
and share their policies with other agents. The main idea of the policy gradient (PG)
approach is to set a policy parameter to maximize a given target by taking steps in the
direction of the given gradient. Using a critic within the system is a common solution to
handle the dynamic state of the environment. Therefore, this central critic can be used as
a reliable guide to increase the flexibility of agents with local observations. In MADDPG,
each agent has two networks: an actor-network and a critic network. The actor-network
calculates the action to take based on the situation in which the agent is located, while the
critic network evaluates the consequences of the action to improve the performance of the
network of actors. Experience replay buffer used for critic network update helps to break
correlations in training data and make training more stable. In the training phase, each
agent is trained by a DDPG algorithm, where the actor has access to local observations.
The centralized critic, on the other hand, combines all states and actions as input and uses
the local reward function to obtain the corresponding Q-value. In the execution phase,
the critic network is removed, and agents only use the actor-network. This means that the
execution is decentralized. In fact, MADDPG can be thought of as a multi-agent version
of DDPG. The main goal is to decentralize the execution. Q-learning and DDPG perform
poorly in multi-agent environments as they do not use the knowledge of other agents in
the group. The MADDPG approach overcomes this challenge by using the observations
and actions of all agents.

2.3. Proposed Method

The main purpose of this paper is to construct a method in which a group of UAVs tasked
with dynamic area coverage is modeled with a multi-agent deep reinforcement learning
(MADRL) approach. In the MADRL approach, UAVs are modeled as mobile agents op-
erating in a dynamic environment and interacting with each other for a common goal. In
this way, an intelligent system can be achieved by generating strategies that provide high
fairness index with low energy consumption while maximizing coverage.

To simplify agent-based coverage and energy consumption, the target area is divided
into grids and the center of each grid is called the grid center (GC). Each agent is intended
to be deployed to a GC in a reasonable amount of time.

Assumption 1. It is assumed that all agents in the team have the same properties and move
in a 2-D plane. Each agent is represented by Ai where Ai ∈ A|i = 1, ..., N .

Assumption 2. It is assumed that each agent knows its location. The proposed method
uses a geospatial approach to reach the target area, discover other agents in the target area
and interact with the agents in the communication range, (xA

i (t), y
A
i (t)). Agents have

information on how many agents are on the team. However, it does not have the location
information of the agents that are not within communication distance. The positions of all
agents in the environment at time t are indicated by:

AN = {(xA
1 (t), y

A
1 (t)), x

A
2 (t), y

A
2 (t)), ..., x

A
m(t), yAm(t))} (1)
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Assumption 3. Each agent is assumed to have a circular shape (diameter: ∅A) and a cir-
cular detection zone. The distance between Ai and Aj is expressed as dij = |AiAj |. For
agents Ai and Aj , the following equation must be satisfied:∣∣(xA

i (t), y
A
i (t)), (x

A
j (t), y

A
j (t))

∣∣ ≤ dij (2)

Each agent has limitations such as communication/detection range. At each learning
step, agents divide the target area into grids. When the communication distance is shorter
than the grid separation distance, the connection between agents will be broken. However,
any agent action to restore communication may cause other agents’ positions to change.
As a result, each action taken to find a suitable solution increases energy consumption.

In this section, the details of the proposed method are presented in order to achieve
maximum coverage with minimum energy consumption under the frame of a high fair
index of connected agents (which can exchange information) in the target area.

Grid Decomposition. Within the system, each UAV is represented by an agent. In a
2-D environment, agents learn to locate grid centers in the target area. The target area
may not be a regular shape. An abstract area is created for the regular or irregular target
area. The abstract area is the smallest regular rectangular area containing the target area.
Agents are directed to abstract grid centers that are divided into grids. Agents try to find
the fastest and most convenient solution by going to the grid closest to them and contain-
ing the maximum number of PoIs. It is also aimed to provide communication between
agents in the target area. The smallest regular quadrilateral area containing the target
area, with T being the target area and kT the vertices of the target area are expressed
as

{
(xT

i , y
T
i ), ..., (x

T
n , y

T
n )∀xT , yT ∈ kT

}
for (xT

min, y
T
max), (x

T
max, y

T
max), (x

T
max, y

T
min),

and (xT
min, y

T
min), respectively. GCs are donated by j ∈ {1, ..., N}, while the set of GCs

is given by GCj ⊆ T . The set of all PoIs within the target area is defined as:

PoIT = {PoI1, ..., PoIn} (3)

The grid decomposition algorithm is given in Algorithm 1.

Algorithm 1 Grid decomposition
1: Initialize: LI(i, k)← (GC index,number of PoI)– empty list for grids
2: Set: distance for grid decomposition m,m ≤ Am|Am communication distance of an agent
3: Start: xtemp = xmin + (m/2), ytemp = ymin + (m/2), PoIT ← PoIs in the target area
4: for from ytemp to ymax do
5: j = 0
6: for from xtemp to xmax do
7: GCj = (xtemp, ytemp)
8: xtemp = xtemp +m
9: PoItemp = GCj .buffer(m/2) ∩ PoIT

10: LI .insert(j, PoItemp.size())
11: j ++

12: xtemp = xtemp + (m/2)
13: ytemp = ytemp +m

return L1
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First, as seen in Alg. 1, the coordinates of the smallest regular rectangular area con-
taining the target area are found. Then, using the specified decomposition distance (usu-
ally the agent’s communication/sensing distance), GCs are found where the agent will be
located. As seen in Fig. 3, the number of PoIs in GCs is calculated.

Fig. 3. Grid center and PoI pairs

The goal here is not to create a grid and put agents at its center, but to place agents at
the calculated PoInts and to create a coverage area equal to the communication distance
of the agents. The circular coverage areas are intersected with PoIs. Finally, it is thrown
into a list containing the GC index and the number of PoIs it contains.

Reward Strategy. Minimizing travel distance has many benefits, such as saving time,
energy, and equipment usage time. Inspired by [24], a reward structure has been designed
to perform target assignments and minimize travel distance. As seen in Alg. 2, the reward
is determined by the distance of each agent from each GC. At each step, the distances
of the agents to the GCs are calculated, but maximizing the reward received would be
an unsuccessful strategy here. Maximizing the reward achieved will distract agents from
the target area and prevent areas from being covered. For this reason, the smallest of the
distance values obtained is selected. Then, this distance value is multiplied by -1 to get a
negative value. In this way, the reward of the agents for distributing the areas separated
into the grids converges from negative to 0. In this way, reward-driven learning, which is
the basis of RL, is realized.

Algorithm 2 Reward function 1
1: Start: r1 = 0
2: for from GC0 to GCN do
3: d← calculate the distance between agents and GCs
4: r1 = r1 + (−min(d))

return r1
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Agents moving toward GCs are penalized if they collide with each other. Therefore,
agents must learn to cover target areas while avoiding collisions. The distance between
the agents is calculated at each step so that a collision can be determined. Considering
that the agents are modeled as a circle if the distance is smaller than the sum of the radius
of the agents, it means that the collision has occurred.

Algorithm 3 Reward function 2
1: Start: r2 = 1, ∅A
2: for from agent = 0 to EN do
3: if dAiAj < ∅A then
4: r2 = γr ∗ r2

return r2

In the collision calculation method, whose pseudo-code is given in Alg. 3, γr repre-
sents the discount factor for collision avoidance. Collisions for Ai are represented by pi
where w(ij) is used to stand for the calculation whether there is a collision between Ai

and Aj .

pi =
∏
j

w(ij),j ∈ {1, ..., N}allAj ∈ EC
i (4)

w(ij) =

{
1, (∅i + ∅j)/2 ≤ dij
γr, (∅i + ∅j)/2 >dij

(5)

It is calculated to find the percentage of PoIs that needs to be covered.

rc =
∑n

i
ci∀i, n{Ai, ..., An} ∈ AR (6)

r3 =
(
1− rc

PoIN

)
∗100∀i, n{PoIi, ..., PoIn} ∈ PoIT (7)

The reward function for orienting agents towards GCs with many PoIs is given in
Alg. 4:

Algorithm 4 Reward function 3
1: Start: r3 = 0
2: for from agent = 0 to EN do
3: Get: reachable agents of Ai

4: Get: PoIs covered by the reachable agents (AR)
5: Sum: rc ← number of the PoIs covered (c), LI(i, k) using Eq. 6:
6: Calculate: r3 ← the percentage of PoIs not covered by all PoIs using Eq. 7

return r3

The proposed method has 3 reward functions to maximize covered area with minimum
energy consumption. However, these reward functions designed for different purposes
affect the coverage quality at different weights. Therefore, coefficient matrix represented
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as [k1, k2, k3] is used to calculate the collaborative reward of the system. K is a matrix
that contains the coefficients of all the reward functions in the system. The collaborative
reward function obtained using reward functions designed for the shortest route, collision
avoidance, and covered PoIs is as follows:

K = [k1, k2, k3] (8)

ri = k1r1 ∗ k2r2 ∗ k3r3 (9)

In the collaborative reward function, the reward points for collision avoidance route
planning are multiplied by the percentage of PoIs not covered. The path planning process
is a negative value; the higher the number of PoIs not covered, the lower the cumulative
score will be. This approach speeds up the learning process by growing the reward range.
Thus, the RL agents in the proposed method try to converge to 0 with the reward-driven
approach using Eq. 8.

Multi-agent System Model. A MAS model is designed to solve the complexity of col-
laboration between agents. The position of agents Ai moving on a 2-D plane at time
t is expressed as (xA

i (t), y
A
i (t)) . The target area T , and the GCs are represented by

j ∈ {1, ..., N} for all GCj ⊆ T . In the MAS model, it is aimed to meet the following
objectives:

– Agents should be distributed across GCs to cover the maximum number of PoIs.
– Each GC should only be covered by one agent.

i.e., ∀i, j|GCi

′
̸= GCj

′
|i, j ∈ {1, ..., GCT }

– Agents positioned on GCs within the target area should be at a distance to communi-
cate with each other.

– Agents should avoid the collision, so two agents cannot be in the same position at that
same time t.
i.e., ∀i, j, (xA

i (t), y
A
i (t)) ̸= (xA

j (t), y
A
j (t))

The agent policy is represented by θ and the policy parameter by µ. In the N-agent
MAS model, the policies for state transitions are expressed as µ = {µ1, µ2, ..., µN , }, and
the parameters as θ = {θ1, θ2, ...θN}. Additionally, the model uses an experience replay
buffer for model-free training. The agent stores information in the form of
(x, x′, a1, ..., aN , r1, ..., rN ), showing the joint status at each step, the next joint status,
the joint action, and the rewards received by each of the agents. Then, it again does a
sampling of its buffer to train the agent. The agent’s critic is updated using the sampled
information. Thus, the loss function using the sampled temporal difference error for the
critic is defined as:

y = ri + γQµ′

i (x′, a′1, ..., a
′
N )|a′

j
=µ′

j
(oj) (10)

L(θi) =
1

S

∑
j

(yj −Qµ
i (x

j , aj1, ..., a
j
N ))

2
(11)
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In the above equation, a′, γ, S, o and Qµ
i represent the next joint action, the discount

factor, the size of the randomly selected sample from the replay buffer, the partial observa-
tions of the environment, and the central action-value function, respectively. The sampled
policy gradient for updating the actor is defined as follows:

∇θiJ ≈ 1

S

∑
j

∇θiµi(o
i
j)∇aiQ

µ
i (x

j , aij , ..., a
j
N )|ai=µi(o

j
i
) (12)

Construction of the proposed method In this paper, a method is proposed that aims to
cover the maximum number of PoIs in regular-irregular shaped areas with MAS. In the
method designed in the context of the actor-critic, it is aimed to achieve high coverage
of the connected agents with low energy consumption. According to the experimental
results, the proposed method was able to successfully complete the coverage task in the
dynamic environment. In the testing phase, the agents created distributed but collective
actions for the common purpose of the group using their own critic and actor networks.
In addition, the results show that policies with high fairness index were produced under
communication restrictions by adapting to the changing number of agents in the dynamic
environment. On the other hand, in the proposed method, the state space depends on lo-
cal observations. Therefore, the growing action-state space is eliminated. This approach
has helped produce an effective policy in less time while the designed reward structure
enabled the generation of collective behavior without the need for reward sharing, as seen
in Fig. 4. Moreover, the proposed model-free method, which is based on local observa-
tions independent of central control, is capable of guiding real applications with its reward
strategy.

The behavior strategy of the proposed method is based on the commonly used combi-
nation of ”attractiveness” and ”avoidance”. Inspired by [34], “attraction” is considered a
positive reward when agents are attracted to GCs in the target area as expressed in Algo-
rithm 2. If the agents go outside the communication distance, it is considered a negative
reward. In addition, as presented in Algorithm 4, agents receive positive rewards for PoIs
they cover with reachable agents. This positive reward prevents agents from exceeding the
communication distance. Therefore, a positive reward is obtained in terms of ”attractive-
ness”. Inspired by [11], the collision distance between agents is defined, and based on this
distance, a negative reward (avoidance) is given whenever any two agents are too close
to each other. Thus, according to Algorithm 3, each agent receives a positive reward for
being farther from the others than the specified distance and a negative reward for being
too close to others.

The proposed method has a model-free learning structure and operates the learning
process using the replay buffer. The centralized module guides agents on how to update
their policies during the training period. The training process is divided into sections, and
the location of the agents is randomly determined before each section is run. Agents store
a tuple of action, status, and reward information in the replay buffer to rerun the scenario
during the training process. At each time step, samples are taken from the replay buffer.
Critics are updated with Eq. 11, while the policy gradient of agents is updated with Eq. 12.
Each agent determines the most appropriate joint action to increase area coverage. In the
execution process, the central module is removed, and the actor-network is used for local
observations. The pseudo-code of the proposed method is given in Alg. 5.
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Fig. 4. The framework of the proposed multi-agent deep RL method
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Algorithm 5 Proposed method
1: Initialize: learning and reward discount factor
2: for from episode = 0 to M do
3: Start: N and target area T
4: Find: GCT using Algorithm 1
5: Get: the initial state of x
6: for from stept = 1 to maxstep do
7: Set: for each agent i, selected action with noise: Nt, ai = µθi(oi) + Nt, policy and

observation: w.r.t
8: Execute: actions a = (a1, ..., aN )
9: Calculate: r using Algorithm 4

10: Store: (x.a.r.x
′
) to replay buffer D

11: x← x
′

12: for from agenti = 0 to N do
13: Sample: mini-batch of S samples from replay buffer D
14: Update: critic network using Eq. 11
15: Update: actor-network using the sampled policy gradient using Eq. 12
16: Update: target network parameters for each agent

Training process Each agent has its own actor and critic network. As described in
Sect. 2.3, the method learns from experiences (i.e. action, state, and reward) stored in
the replay buffer. In other words, actors and critics of all agents are updated by using the
mini-batch, which is randomly sampled at each time step during the learning process. In
Algorithm 5, the pseudo-code of the learning approach in the training process is given. In
the proposed method, the process from the starting position of the agents to positioning
in the target area is expressed as an episode. Each episode for training consists of time
steps represented t. In the training loop, the system gets the initial state s1, and then the
initial conditions of the environment are created. Each agent i selects an action according
to the actor µθi by observation Qi. Noise is added to the selected action to prevent the
agent from choosing the most appropriate local policy and performing further exploration.
Agents performing the selected action obtain a reward value rt and a new state st+1. If the
selected action forces the agent to leave the target area or collide with other agents, it will
be penalized by Eq. 8. Therefore, the agent learns to avoid this action and not to choose
the state transition while the last values of (st, at, rt, st+1) are stored in the replay buffer.
At the end of the training period, each agent at time step t randomly selects the mini-batch
S from the replay buffer D and then updates the critic using Eq. 11. After updating the
critic, the actor is updated with Eq. 12. Finally, the target network is gradually updated
with the loss function and learning rate.

3. Experimental Studies

A simulation environment is designed using the multi-agent actor-critic platform devel-
oped by the OpenAI team [20] to evaluate the proposed method.
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3.1. Experimental Settings

A coordinate plane, which is formed of both a horizontal line and a vertical line as 1 unit,
is used as a simulation environment where the geometric center is the origin. The agents
and target area are located on the plane. A circular shape is used to express an agent. Also,
the area coverage of an agent is represented by a circle around the agent. At the beginning
of the training episode, the locations of the agents, the shape and the location of the target
area, the number and location(s) of PoI(s), and the communication distance of agents are
randomly generated. The number of episodes of training is determined as 5000 while the
number of step size of the episode is set to 250. The rest of the parameters are specified
as follows; the number of units in the multi-layer perceptron is 64, the learning rate is
0.001, the batch size is 1024. The learning rate γr to be used in the r2 is chosen as 1. Due
to the random generation of the initial positions of the agents, the simulation scenarios
are repeated 50 times. The average of the metrics obtained are taken is to evaluate the
proposed method’s performance.

Two analyses were carried out to determine discount factor and find out the effects of
the reward functions to coverage quality. Firstly, it was fixed the number of agents to 5, and
then discount factor was set the number of between 0.8 and 0.99 to try to find appropriate
one. According to the results, in particular, as g was increased, benchmark metrics went
up until the peak value, then fluctuated it as seen in Fig. 5. According to these result, the
best results were obtained when the discount factor was set to 0.88. Secondly, it was tried
to find appropriate coefficient values to maximize collaborative reward. In this scenario,
three experimental studies applied while only one coefficient function was changed at
each experimental study. The coefficient matrices used for collaborative reward function
are expressed as [k1, 1, 1], [1, k2, 1], [1, 1, k3] where k1, k2, k3 ∈ k = {0.1, 0.5, 1, 1.5, 2}.
As seen in Fig. 6, when the weights of the reward functions used for target assignment and
area coverage increased, the number of covered PoIs increased while the average step size
decreased. However, as the collision avoidance function weight was increased too much,
agents focused on collision avoidance and the quality of coverage decreased. According to
these results, when the coefficient matrix was set to [k1 = 2, k2 = 0.5, k3 = 2], coverage
quality could increase satisfactorily.

The proposed model is compared with DRL-EC3, improved-DRL-EC3, and SBG-
AC, using the same simulation settings. Three topics are used for the comparison and
validation of the simulation results:

– The effect of increasing the number of agents on coverage: It is the average PoI score
covered by the system. It is calculated using algorithm 4.

– The effect of increasing the number of agents on energy consumption: energy effi-
ciency is expressed by the ratio of the number of agents to the PoIs covered. It is
the normalized version of the PoIs covered, that is, the ratio of the result obtained by
Algorithm 4 to the number of agents in the system.

– Fairness index for covered PoIs: The Jain [13] fairness index for PoI coverage scores.
Where N represents the number of PoIs in the environment, ct(i) represents the num-
ber of agents containing the PoI at time t. The case of J = 1 indicates perfect fairness
between agents.
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Fig. 5. The effects of the discount factor on coverage quality
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Fig. 6. The effects of the collaborative reward function coefficients on coverage quality
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J =
(
∑N

i=1 ct(i))
2

N
∑N

i=1 ct(i)
2

(13)

3.2. Experimental Results

In the first experiment, the effect of increasing the number of agents is examined and
the performance of the 4 models was compared. The coverage ratios to be used for
comparison were calculated according to the method given in Algorithm 4. As seen in
Fig. 7, the proposed method achieved approximately 10.1% more coverage than DRL-
EC3, 5.06% more coverage than improved-DRL-EC3, and 3.18% more coverage than
SBG-AC. For example, when the number of agents was 4, the proposed method covered
approximately 59.8%, while DRL-EC3 covered approximately 53.9%, improved-DRL-
EC3 approximately 55.2%, and SBG-AC approximately 57.4%. In the case of 8 agents,
the coverage obtained by the proposed method was approximately 90.9%, 80.2% obtained
by DRL-EC3, 87.3% obtained by improved-DRL-EC3, while the coverage obtained by
SBG-AC was 88.7%. There was a similar trend for other scenarios. Therefore, the aver-
age covered PoI rate achieved by the proposed method increased regularly. The increase
in the number of agents has allowed agents to connect with different patterns in the PoI
coverage process.

Fig. 7. Agent relationship with the covered PoIs

In the second experimental study, an energy consumption comparison of 4 models
was made. In the calculation of energy consumption, the number of actions performed
by the agents was used. In each episode, the coverage rate achieved by the system is
recorded. At the end of the training, the coverage scores are summed and divided by the
number of actions. The result obtained is divided by the number of agents in the system
so that the number of PoIs covered per action is found. Finally, it is calculated how many
steps an agent takes from the initial position to the final position to cover one PoI. This
result represents the normalized average energy consumption. As seen in Fig. 8, DRL-
EC3, improved-DRL-EC3, and SBG-AC models consumed approximately 9.35%, 4.44%,
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and 2.8% more energy, respectively, than the proposed method. For example, when the
number of agents was 4 and 8, the normalized average step size is given as follows; the
proposed model was 16.85 and 22.1, DRL-EC3 was 18.55 and 24.94, improved-DRL-
EC3 was 18.12 and 22.94, and SBG-AC was 17.77 and 22.53. According to these results,
it was observed that there was no significant change in energy consumption values as the
number of agents increased. Due to the competitive and cooperative nature of multi-agent
systems, the number of agents does not have a large impact on policies. The proposed
method has reached the maximum coverage rate by consuming less energy. It is thought
that there are 2 reasons for this; (i) a specific reward strategy is designed for path planning;
(ii) the reward is calculated by the status of each agent it can access, not just the agent’s
own status.

Fig. 8. Number of actions-agent relationships

Finally, four models were compared in terms of fairness index according to the num-
ber of agents. In Fig. 9, the fairness index results obtained by different numbers of agents
for the 4 models are presented. The proposed model appeared to have a better fairness in-
dex than DRL-EC3, improved-DRL-EC3, and SBG-AC with an average increase of about
11.14%, 2.34%, and 1.76%, respectively. For example, when the number of agents is 3, the
proposed model achieved 0.71 fairness index, DRL-EC3 obtained 0.588 fairness index,
improved-DRL-EC3 obtained 0.698 fairness index and SBG-AC obtained 0.698 fairness
index. When the number of agents was 6, the fairness indices of the proposed model,
DRL-EC3, improved-DRL-EC3, and SBG-AC were 0.937, 0.801, 0.911, and 0.919, re-
spectively. A similar trend is observed for other scenarios as well. The larger the number
of agents, the greater the number of grids covered. This relationship leads to a direct im-
provement in the fairness index. In addition, with fewer steps in the proposed method, a
similar fairness index rate was achieved with other methods due to purpose-based reward
strategies.

In this section, the behavior of the proposed model against issues such as energy,
coverage, and fairness index are examined. Then, using these three metrics, the proposed
method is compared with DRL-EC3, improved-DRL-EC3, and SBG-AC models. The
simulation results are summarized in Table 1.
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Table 1. Simulation results

proposed
method

DRL-EC3 improved-
DRL-EC3

SBG-AC

Approach MARL MARL MARL MARL

Algorithm MADDPG DDPG MADDPG MADDPG

Reward strategy Agent&group-
specific

Agent specific Agent specific Group specific

Evaluation Metric
Average rate of
PoIs covered

3 agents: 45.2

4 agents: 59.8

5 agents: 65.1

6 agents: 74.6

7 agents: 83.1

8 agents: 90.9

3 agents: 39.8

4 agents: 53.9

5 agents: 60.7

6 agents: 66.2

7 agents: 75.6

8 agents: 80.2

3 agents: 41.8

4 agents: 55.2

5 agents: 63.3

6 agents: 70.2

7 agents: 79.7

8 agents: 87.3

3 agents: 42.9

4 agents: 57.4

5 agents: 63.8

6 agents: 71.7

7 agents: 80.9

8 agents: 88.7

Evaluation Metric
Normalized aver-
age step size

3 agents: 16.72

4 agents: 16.85

5 agents: 19.21

6 agents: 20.28

7 agents: 21.54

8 agents: 22.1

3 agents: 18.83

4 agents: 18.55

5 agents: 20.59

6 agents: 22.68

7 agents: 23.15

8 agents: 24.94

3 agents: 17.95

4 agents: 18.12

5 agents: 19.76

6 agents: 21.37

7 agents: 21.98

8 agents: 22.94

3 agents: 17.2

4 agents:17.77

5 agents: 19.69

6 agents: 21.26

7 agents: 21.61

8 agents: 22.53

Evaluation Metric
Average fairness
index

3 agents: 0.71

4 agents: 0.75

5 agents: 0.82

6 agents: 0.937

7 agents: 0.946

8 agents: 0.957

3 agents: 0.588

4 agents: 0.694

5 agents: 0.762

6 agents: 0.801

7 agents: 0.844

8 agents: 0.86

3 agents: 0.698

4 agents: 0.724

5 agents: 0.812

6 agents: 0.911

7 agents: 0.915

8 agents: 0.94

3 agents: 0.698

4 agents: 0.731

5 agents: 0.814

6 agents: 0.919

7 agents: 0.923

8 agents: 0.945
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Fig. 9. Average fairness index with respect to number of agents

In this paper, 3 different reward strategies are designed as purpose-based while there
is only one reward strategy in the DRL-EC3, improved-DRL-EC3 and SBG-AC methods.
With the collaborative design, low energy consumption-high coverage ratio has been tried
to be achieved. The use of 3 different reward strategies increases the space of the reward
that can be obtained and clarifies the relationship between situation-action pairs. There-
fore, while learning time decreases, learning quality increases. There are two main reasons
for this result; (i) connected agents are positioned on grids without going out of commu-
nication range, (ii) agents receive high rewards as they distribute into grids and reduce
intersections. DRL-EC3 and improved-DRL-EC3 use only agent-specific reward strate-
gies that the reward received is only affected by agent-environment interaction. However,
SBG-AC and the proposed method are interested in the current state of the environment,
in which all agents share a common reward. Contrary to the proposed method, there is
no reward strategy related to target assignment in DRL-EC3, improved-DRL-EC3, and
SBG-AC methods. In the proposed method, agents try to maximize their reward points by
using the information of connected agents. This approach forces agents to connect with
each other and make collaborative decisions. In addition, successful results were obtained
in terms of energy consumption, since the agents tried to locate the GC with the maxi-
mum number of PoIs in the closest distance to them. This approach represents the path
planning algorithm with target assignment in MAS. With the help of this algorithm, the
intersection of the agents in the coverage areas is minimized and a high fairness index
result is obtained.

4. Conclusions

In this paper, a method is proposed that aims to cover the maximum number of PoIs
in regular-irregular shaped areas with MAS. In the method designed in the context of
the actor-critic, it is aimed to achieve high coverage of the connected agents with low
energy consumption. According to the experimental results, the proposed method was
able to successfully complete the coverage task in the dynamic environment. In the testing
phase, the agents created distributed but collective actions for the common purpose of the
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group using their own critic and actor networks. In addition, the results show that policies
with high fairness index were produced under communication restrictions by adapting to
the changing number of agents in the dynamic environment. On the other hand, in the
proposed method, the state space depends on local observations. Therefore, the growing
action-state space is eliminated. This approach has helped produce an effective policy in
less time while the designed reward structure enabled the generation of collective behavior
without the need for reward sharing. Moreover, the proposed model-free method, which
is based on local observations independent of central control, is capable of guiding real
applications with its reward strategy.
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