Computer Science and Information Systems 20(3):1133-1155 https://doi.org/10.2298/CSIS230127038S

The Proposal of New Ethereum Request for Comments
for Supporting Fractional Ownership of
Non-Fungible Tokens *

Miroslav Stefanovié¢!, Porde Przulj', Darko Stefanovié¢!, Sonja Risti¢!,
and Darko Capko'+2

! University of Novi Sad, Faculty of Technical Sciences
Trg Dositeja Obradoviéa 6, 21000 Novi Sad, Serbia
{mstef, przulj, darko.stefanovic, sdristic} @uns.ac.rs
2 Ethernal, Nikolajevska 2, 21000 Novi Sad, Serbia

darko @ethernal.tech

Abstract. During the last couple of years, non-fungible tokens became the most
prominent implementation of blockchain technology apart from cryptocurrencies.
This is mainly due to their recent association with digital art, but the application
of non-fungible tokens has been in the focus of researchers since the appearance
of Blockchain 2.0. It was usually tightly coupled with the research on possible ap-
plications of blockchain technology in some real-life applications, such as land ad-
ministration, healthcare, or supply chain management. Since the initial release of
the Ethereum blockchain in 2015, until 2022, more than 44 million smart contracts
have been created, and out of those that are still active, more than 70% are based
on some prominent templates. In the Ethereum blockchain, the creation of non-
fungible tokens is usually based on Ethereum Request for Comments 721. In this
paper, the authors are proposing the creation of a new standard that would support
fractional ownership of non-fungible tokens. Fractional ownership is necessary so
non-fungible tokens and blockchain technology could be applied to an even wider
number of use cases. This paper also presents an example of a possible implemen-
tation of the newly proposed standard in the Solidity programming language.

Keywords: blockchain, smart contract, non-fungible tokens, NFT, Ethereum, ERC

1. Introduction

In 2009, a white paper titled "Bitcoin: A Peer-to-Peer Electronic Cash System" was pub-
lished and even though it was nowhere directly mentioned by that name, blockchain tech-
nology (BT) was born. BT represents the first implementation of distributed ledger tech-
nology (DLT). DLT is a solution that, instead of a centralized registry, has a unique reg-
istry that is distributed among multiple nodes with decentralized control. These nodes
record, share and synchronize data across the network, making the data secure by reach-
ing a consensus on the content of the registry [39]. The first concrete implementation of
BT is the Bitcoin blockchain, but over the years various DLT platforms have been imple-
mented [12].

* Based on extended abstract titled "Ethereum Request for Comments for Fractional Ownership of Non-
Fungible Tokens" that was presented at X VIII International Symposium - SymOrg2022, Belgrade, Serbia

1134 Miroslav Stefanovié et al.

In BT, transactions are stored in the chain of blocks. Blocks are added in chronological
order making the possibility of manipulation or forgery highly unlikely [25]. The system
is secured by making data falsification almost impossible because the data is distributed
among a large number of interconnected nodes, the so-called blockchain network. Dis-
tributed data and the fact that there is no single point of failure make the system resilient,
and the fact that the use of the system is public makes it transparent [30]. It is very im-
portant to eliminate or at least minimize the possibility of manipulation or forgery within
the transactions stored in a blockchain. To achieve this, BT relies on a cryptographic hash
function, asymmetric cryptography, and distributed consensus mechanism [55]. The role
of the consensus mechanism in the blockchain network is to make it possible for nodes
to reach an agreement on the single state of the network [2]. The new block is added to
the chain only once nodes perform the same computation, achieving the same result, and
reaching a consensus on that result [21]. Some of the advantages of BT are efficiency,
security, resilience, and transparency. The fact that it is possible to easily monitor and
manage complex data logs with the help of BT makes this solution very effective.

One of the most common classifications divides blockchains into three categories:
public permissionless blockchains, consortium/hybrid/public permissioned blockchains,
and private blockchains [46]. Public blockchains are blockchains where all transactions
are public and anyone can join the network as a node and participate in the process of con-
firmation of transactions[55][35]. In consortium/hybrid/public permissioned blockchains,
transactions are also public, but only a set of predetermined nodes participate in confir-
mations of transactions. Private blockchains are blockchains where only selected nodes
can see and participate in process of confirmations of transactions [28] [45].

The main characteristics of BT are decentralization, persistence, anonymity, and au-
ditability [13][21][35][49][55].

In BT, decentralization is achieved by the possibility for every node to manage and
store transactions. Information about transactions is exchanged between all the nodes on
the network, thus eliminating the need for a trusted third party [49].

Blocks are added onto a chain by having the content of the previous block, through
its hash value, participating in the content of the next block. In that way, each block
in the chain participates in the content of its successor block. This implies that in case
the content of a previous block, which is already a part of a blockchain, is changed, it
would invalidate all the following blocks [13]. In this way, persistency of the transactions
recorded within the blockchain is achieved. The new transactions can be added to the
blockchain while the possibility of deleting or updating previously registered transactions
is highly unlikely [35].

Anonymity is a characteristic of public permissionless and partly of consortium/hy-
brid/public permissioned blockchains. In these blockchains interested parties could par-
ticipate as clients by exchanging assets, or even as a node in a public permissionless
blockchain, without the need to expose their identity, thus preserving their anonymity.

In [31], Bitcoin is described as a peer-to-peer distributed timestamp server, meaning
that all transactions that happen on the blockchain are timestamped. As each transaction is
timestamped and since forgery is highly unlikely, as previously mentioned, an interested
party can search the blockchain for any previous transactions, thus making the blockchain
auditable [13][55].

The Proposal of New ERC for Supporting... 1135

All mentioned advantages and characteristics related to BT are applicable to smart
contracts, too. The term smart contract was mentioned for the first time in 1996 and it
was defined as a "set of promises, specified in digital form, including protocols within
which the parties perform on these promises" [43]. The idea was based on the possibility
for contract clauses to be implemented either through hardware or software in a way that
any breach of contract would cause significant expense for a breaching party [43]. In
BT, a smart contract is a computer program that is deployed on the blockchain network
and that is governed by the same rules that govern transactions [42]. They could be used
to automatically verify and execute contract clauses once predetermined conditions have
been met [17].

The most common way of representing real-life assets in smart contracts is through
tokens, and in the Ethereum blockchain, tokens are usually created in accordance with
ERC-20 and ERC-721 standards. ERC-20 token standard represents an interface that will
allow the creation of fungible tokens that can be used by other applications, such as wal-
lets and exchanges. Fungible tokens are used for representing interchangeable assets, for
example for the creation of new cryptocurrencies. ERC-721 non-fungible token standard
represents an interface that will allow the creation of non-fungible tokens (NFT) that can
be used in the same manner as ERC-20 tokens but are used to represent unique assets,
that can not be interchanged, such as artwork or real-estate. Although these two standards
can cover a wide range of use cases, there is a significant number of use cases that can
not be fully supported by either of these tokens and those are mainly related to fractional
ownership of non-fungible tokens. For example, in previously mentioned applications of
land administration and supply chain management, it would surely be necessary for smart
contracts to support fractional ownership and use cases in which:

— multiple entities could share ownership of an item,

— entities might have different shares in the ownership, and

— entities having a share of ownership could transfer less than their share of ownership
to another entity.

The lack of an adequate standard for supporting fractional ownership of NFTs leads to
the creation of smart contracts with different sets of application programming interfaces
(APIs). This means that any application that needs to communicate with such a smart
contract would need to be tailored to that specific set of APIs. This could especially be
problematic if an application needs to communicate with a large number of non-standard
smart contracts because it would need to be tailored to each of those smart contracts’
specific set of APIs. This represents a major issue and this paper proposes a solution for
1t.

The solution for this issue is proposed in this paper in a form of a new ERC that will
be built upon existing ERC-721 standards and that will propose a solution for the problem
of fractional asset ownership and its sharing. Furthermore, the proposed solution defines
a standard set of APIs that would make smart contracts implementing this new standard
easily interoperable with other applications. This ERC will be proposed in a form of a
Unified Modeling Language (UML) class diagram and as a programming interface written
in Solidity programming language. The main contribution of the proposed solution is the
definition of a novel ERC that could be introduced as a new standard to the existing body
of ERC.

1136 Miroslav Stefanovié et al.

Apart from the Introduction and Conclusion, this paper is organized as follows, in
Section 2 a short literature review is presented. In Section 3 ERC-20 and ERC-721 stan-
dards are presented together with the proposal of the new standard in section 4 and an
example of implementation of the proposed standard in section 5.

2. Literature review

Bitcoin blockchain, now often referred to as Blockchain 1.0 [10][53], was introduced
with the intention of creating of peer-to-peer electronic cash system that would not suffer
from the problem of double spending and will not need a trusted third party to execute
transactions [31]. Bitcoin blockchain had some possibilities of application in fields other
than cryptocurrency, but true advances came with Blockchain 2.0. Blockchain 2.0 is a
term used to represent blockchain that supports smart contracts [34][48]. Smart contracts
are programs executed on the blockchain network and their correctness is enforced by the
consensus mechanism [4][26]. Smart contracts first appeared on blockchain in 2015 with
the Ethereum blockchain network. Ethereum blockchain network was first mentioned in
2014, in a white paper by Vitalik Buterin, where it was announced as a platform for
developing Decentralized Applications (DApps) based on smart contracts [8][27].

Since then, the application of BT in fields other than cryptocurrency has come into
the focus of scientific research. A literature review conducted in 2017, examining Web of
Science, IEEE Xplore, the AIS Electronic Library, ScienceDirect, and SSRN for scholarly
journal articles and conference proceedings, looking for conceptual papers or empirical
analyses on possible application, use, or implications that BT could have on humans, or-
ganizations, and markets, has discovered only 69 papers on these subjects [36]. In 2019,
another literature review paper presented the results of research conducted at the begin-
ning of 2018, has shown a significant increase in the number of published papers on this
subject. In this research, the main source of scientific papers was Scopus, and 245 papers
were identified in fields other than cryptocurrency and finance. Out of those 245 papers,
most were in the field of business and industry with 56 papers in total [11]. Research
conducted in 2021, which included only journal articles on the subject of security, appli-
cation, and challenges in BT, that were indexed in Scopus, IEEE Xplore, Google scholar,
ScienceDirect, SpringerLink, and Web of Science, showed that this trend continues with
335 analyzed papers [24].

Some of the more prominent examples of possible applications of BT in fields other
than cryptocurrency are healthcare [22][29][50], land administration [7][40][42], govern-
ment [19][23][32], IoT [1][3][52] and supply chain management [5][18][37][38].

According to [51], since the genesis block, the first block of the Ethereum blockchain,
over 44 million smart contracts have been deployed on this network. Half of that number
has been destroyed, but from the remaining 22 million, around 70% are created based
on only 15 templates. These data emphasize the importance of these templates, and in the
case of the Ethereum blockchain, templates are usually built in accordance with Ethereum
Request for Comments (ERC). In the Ethereum blockchain ERCs represent one of the
Ethereum Improvement Proposal (EIP) types that are intended for defining application-
level standards and conventions, such as token standards, URI schemes, library/package
formats, and name registries.

The Proposal of New ERC for Supporting... 1137

The introduction of smart contracts into BT has opened the possibility for the develop-
ment of DApps and Decentralized Autonomous Organizations (DAOs). As the blockchain
network represents a distributed system, with no central authority, where decisions are
made based on a decentralized consensus mechanism, in the same way, applications that
are executed on blockchain networks are also decentralized and represent a special kind
of software whose execution is not controlled by a single entity [47]. DAO represents a
long-term smart contract for managing certain digital properties that holds all the business
rules for one organization and functions without any human intervention [8][9].

Compared to traditional contracts, the following advantages of smart contracts have
been recognized.

— Reducing risks — due to the manner in which persistence is achieved in BT, once smart
contracts are deployed on a blockchain network, their implementation can not be
changed, furthermore, since all transactions are public and since they are being saved
on all full nodes they can be audited, thus reducing the risk of malicious behavior.

— Reducing administration and service costs — unlike centralized systems, where there
are costs associated with operating trusted third parties, in blockchain networks it is
a consensus mechanism that is tasked with confirming transactions, thus reducing the
associated costs.

— Improving the efficiency of business processes — the possibility to execute contract
clauses automatically, as soon as preconditions are met, can have significant time
reduction compared to that required for the process to be executed by a trusted third
party [54].

According to [45][54] life cycle of a smart contract consist of the following stages:

— Creation — involved parties, in some cases with help of a solicitor or other legal coun-
sel, draft the initial contract. Software engineers convert this contract into a smart
contract. The process of development of smart contracts passes the usual stages of
software development, such as design, implementation, and validation.

— Deployment — in this stage, a smart contract is being deployed on the blockchain net-
work. As previously mentioned, once deployed, a smart contract can not be changed
and if any change is necessary, then a new smart contract must be deployed.

— Execution — once a smart contract has been deployed, contracted clauses are being
monitored. When conditions are met, required functions are executed.

— Completion — once a smart contract has been executed, the state related to all parties
in the contract has been updated and the new state has been saved onto the blockchain
network.

The first application of smart contracts that achieved public prominence during the last
couple of years was NFTs [14]. This prominence came as a result of hype related to digital
collectibles. NFTs represent a tokenized item of value where each token owns a unique set
of characteristics [33]. In some cases, those tokens can be a part of the same "universe"
and still have different values, such as is the case with virtual collectibles Bored Ape
Yacht Club, CryptoPunks, and Mutant Ape Yacht Club, or could represent unique digital
artwork such as The Merge, The First 5000 Days, and Clock that were sold for almost
92m, 70m, and 53m dollars respectively [20]. Apart from these more prominent examples,
significant efforts have been put into research related to the application of NFTs in other

1138 Miroslav Stefanovié et al.

fields, and those fields mainly coincide with the previously mentioned field of interest
for the general application of BT. NFTs are often classified into six different categories:
collectibles, art, metaverse, utility, and others [6]. In some of those categories, having
a standard interface that would enable fractional ownership of NFTs would surely be
beneficial, while in others, especially those related to real-life goods, it’s not just that it
would be beneficial, but in fact, it would be necessary.

This paper is based on extended abstract that was presented at SymOrg 2022 - XVIII
International Symposium [41]. Presented extended abstract gave a short introduction to
the need for a standard that will support fractional ownership of NFTs and provided a
draft version of the necessary function that was used as a foundation of this research. The
draft UML class diagram presented in this extended abstract was extended, elaborated,
and refined for this paper. Based on this new UML class diagram, in this paper, a pro-
gramming interface written in Solidity programming language is presented. Additionally,
the proposed programming interface is accompanied by constraints that an implementa-
tion of this interface must satisfy. An example of such implementation of a smart contract,
that satisfies all the required constraints, also represents an addition to the previously pub-
lished extended abstract.

3. Existing ERC standards

In the Ethereum blockchain network, changes related to core protocol, smart contracts,
and client APIs are made based on the Ethereum Improvement Proposal (EIP). EIP repre-
sents a standard for specifying potential new capabilities and processes on the Ethereum
network. EIPs are divided into several categories, and those categories are:

— Standard track — used for changes that affect almost all segments of the Ethereum
network, such as network protocol changes. At the end of 2022, there were 531 EIPs
in this category.

— Core — improvements that consensus fork in the consensus mechanism. At the end of
2022, there were 197 EIPs in this category.

— Networking — improvements related to the implementation of devp2p Wire Protocol,
RLPx Discovery Protocol and RLPx TCP Transport Protocol. At the end of 2022,
there were 14 EIPs in this category.

— Interface — improvements related to API/remote procedure calls (RPC), standards
related to method naming, and application binary interface (ABI) of smart contracts.
At the end of 2022, there were 46 EIPs in this category.

— ERC - improvements related to standards and conventions at the application level,
such as standards for tokens, name registries, uniform resource identifier (URI) schema,
and library and package formats. At the end of 2022, there were 274 EIPs in this cat-
egory, and out of those 274, 46 were in status final, 9 were in the last call, 24 were in
review, 73 were in status draft, 117 were stagnant, and 5 were withdrawn.

— Meta — improvements related to the processes surrounding the Ethereum network, but
unlike the Standard track, they do not refer to the Ethereum protocol itself. At the end
of 2022, there were 20 EIPs in this category.

— Informational — do not represent improvement suggestions, but provide instructions,
guidelines, or information to the Ethereum community. At the end of 2022, there were
6 EIPs of this type [16].

The Proposal of New ERC for Supporting... 1139

Among the 46 ERC standards that are in final status, 7 represent standards related to
tokens:

ERC-20 Token Standard — defines a standard interface that enables the creation of
new tokens, which will be used by other applications,

ERC-721 Non-Fungible Token Standard — defines a standard interface for creating
unique (non-fungible) tokens,

ERC-777 Token Standard — defines the improvement of the ERC-20 Token Standard,
ERC-1155 Multi Token Standard — defines a standard interface for smart contracts
managed by several different tokens,

ERC-1363 Payable Token — defines the improvement of the ERC-20 Token Standard,
ERC-3525 Semi-Fungible Token — defines a standard interface for creating tokens
that will have part of the features described in ERC-20, and part of the features de-
scribed in ERC-721, and

ERC-4626 Tokenized Vaults — defines an enhancement of the ERC-20 Token Stan-
dard to provide support for the implementation of tokenized Vaults.

Out of those 7 standards, there are only two basic standards for creating tokens on the
Ethereum network, namely ERC-20 and ERC-721, while the remaining five represent
improvements of these standards. ERC-20 and ERC-721 are defined in the form of pro-
gramming interfaces written in the Solidity programming language. In both cases, a set
of APIs is defined that should allow tokens created in accordance with these standards to
be used by various applications, cryptocurrency wallets, and decentralized exchanges. By
implementing either of these two standards, functionality will be implemented that will
enable the transfer of tokens by the owner or another authorized entity [15][44]. Both stan-
dards will be presented in the form of UML class diagrams and their function calls will
be explained. UML class diagram representing the ERC-20 standard is shown in Fig. 1.

<<Interface>>
ERC20

+ name(): string

+ symbol(): string

+ decimals(): uint8

+ totalSupply(): uint256

+ balanceOf(_owner: address): uint256

+ transfer(_to: address, _value: uint256): bool

+ transferFrom(_from: address, _to: address, _value: uint256): bool
+ approve(_spender: address, _value: uint256): bool

+ allowance(_owner: address, _spender: address): uint256

+ Transfer(_from: address, _to: address, _value: uint256): void

+ Approval(_owner: address, _spender: address, _value: uint256): void

Fig. 1. UML class diagram of ERC-20 standard

Functions name(), symbol(), decimals(), and totalSupply() return values representing

a name, symbol, decimal value, and total supply of a created token. These values are
optional, and while they may improve application usability, other interfaces and smart
contracts cannot expect that token name value will exist in every ERC-20 implementation.

1140 Miroslav Stefanovié et al.

Function balanceOf () returns a number representing the amount of tokens owned by
that address passed as the argument in the function call. Address type in Solidity pro-
gramming language represents a 20-byte value of Ethereum address. Depending on the
function the address type is used to either represent the current or future owner of a token.

Functions transfer() and transferFrom() transfer the amount of tokens specified in the
function call from either function caller or from the address passed as an argument.

Functions approve() and allowance() make it possible for an address to be approved
to transfer a certain amount of tokens on the behalf of the owner.

Transfer() and Approval() events are emitted when corresponding functions are suc-
cessfully executed [44]. Events are abstractions of the Ethereum logging protocol. In the
case of their call, the passed arguments are stored in the transaction log, which is a special
data structure on the blockchain. These logs are linked to the smart contract address and
are permanently stored on the blockchain.

UML diagram representing the ERC-721 standard is shown in Fig. 2.

<<Interface>>
ERC721

+ balanceOf(_owner: address): uint256

+ ownerOf(_tokenld: uint256): address

+ safeTransferFrom(_from: address, _to: address, _tokenld: uint256, data: bytes): void
+ safeTransferFrom(_from: address, _to: address, _tokenld: uint256): void

+ transferFrom(_from: address, _to: address, _tokenld: uint256): void

+ approve(_approve: address, _tokenld: uint256): void

+ setApprovalForAll(_operator: address, _approved: bool): void

+ getApproved(_tokenld: uint256): address

+ isApprovedFor(_owner: address, _operator: address): bool

+ Transfer(_from: address, _to: address, _tokenld: uint256): void

+ Approval(_owner: address, _approved: address, _tokenld: uint256): void

+ ApprovalForAll(_owner: address, _operator: address, _approved: bool): void

Fig. 2. UML class diagram of ERC-721 standard

Functions balanceOf() and ownerOf() return the amount of NFTs that an address
owns or the address of a token owner, respectively.

Functions safeTransferFrom() and transferFrom() transfer ownership of a specific to-
ken from a previous owner to a new owner. Declarations of two safeTransferFrom() func-
tions differ in data parameter which could be used to store additional information. Func-
tion transferFrom() does not perform validity checks related to the new owner.

Functions approve(), setApprovalForAll(), getApproved(), and isApprovedForAll() are
providing a possibility for an entity other than the owner to be approved to transfer the
ownership on behalf of the owner and to query information related to those possibilities.

Events Transfer(), Approval(), and ApprovalForAll() are emitted once corresponding
functions are successfully executed.

Based on the described characteristics of ERC-20 and ERC-721, it is clear that neither
of these two standards meets the needs for managing fractional ownership of non-fungible
tokens. Mainly in ERC-20, there is no support for NFTs, while in ERC-721, there are no
APIs that will enable storing data about fractional ownership or transferring less than
full ownership of a token. To achieve this possibility, different solutions have been used
over the years, most commonly creating a combination of two existing standards, but

The Proposal of New ERC for Supporting... 1141

having different implementations makes it hard for smart contracts to communicate with
each other because there are no common APIs. Therefore, defining a new standard, with
the intention to provide a common set of APIs for managing fractional ownership of
non-fungible tokens would be beneficiary. The proposed standard is built upon existing
ERC-20 and ERC-721 standards.

4. New ERC standards proposal

UML class diagram representing the proposed standard is shown in Fig. 3.

<<Interface>>
NewERCProposal

+ ownersOf(_tokenld: uint256): address[]

+ tokens Of(_owner:address): uint256[]

+ shareOf(_owner:address, _tokenld:uint256): uint16

+ safeTransferFrom(_from: address, _to: address, _tokenld: uint256, _share:uint16, _data: bytes): void
+ safeTransferFrom(_from: address, _to: address, _tokenld: uint256, _share:uint16): void
+transferFrom(_from: address, _to: address, _tokenld: uint256, _share:uint16): void

+ approve(_approve: address, _tokenld: uint256): void

+ setApprovalForAll(_operator: address, _approved: bool): void

+ getApproved(_tokenld: uint256): address

+ isApprovedForAll(_owner: address, _operator: address): bool

+ Transfer(_from: address, _to: address, _tokenld: uint256, _share:uint16): void

+ Approval(_owner: address, _approved: address, _tokenld: uint256): void

+ ApprovalForAll(_owner: address, _operator: address, _approved: bool): void

Fig. 3. UML class diagram of new ERC standard

Function ownersOf{_tokenld: uint256): address[] — unlike the function ownerOf()
from ERC-721 where function call would return the only owner of a token, in case of the
proposed function ownersOf(), for a token identifier, passed as a _tokenld argument of
type uint256, the function returns the array of data type address representing the addresses
of the owners of the token.

Function tokensOf{_owner: address): uint256[] — this function is based on function
balanceOf() from ERC-721, but instead of providing a count of owned tokens, a call
to proposed fokensOf() function for the owner who is identified by argument passed as
a _owner argument of type address, the function returns the array of data type uint256
representing identifiers of all the tokens that that specific owner owns. In case the function
is called with an argument representing a zero address, an exception should be thrown.

Function shareOf(_owner: address, _tokenld: uint256): uint16 — for the owner that
is identified as _owner argument of data type address, the function will return the share
of ownership as data type uintl6, representing the share that that specific owner has in
the token that identified as _tokenld argument of data type uint256 that is passed in the
function call. In case the function is called with an argument representing a zero address,
an exception should be thrown.

Function safeTransferFrom(_from: address, _to: address, _tokenld: uint256,
_share:uintl6, _data: bytes): void — Similarly to safeTransferFrom() function ERC-721
this function for the address of the current owner, which is passed as the _from argument,
to the address that is passed as _to argument, the ownership of the token whose identifier
is passed as the _fokenld argument, is being transferred, with additional argument _share,

1142 Miroslav Stefanovié et al.

representing the share of ownership that is being transferred. The function keeps the addi-
tional parameter _data for the same purpose as is the case in ERC-721. The function does
not return data. An exception should be thrown if the address that calls the function is not
the owner of the token, if the address is not approved for the transfer of ownership of a
specific token, if _fokenld is not a valid identifier if the _fo argument is not a valid address
or if transfer share specified in _share argument is bigger than the share the owner has in
the specific token.

Function safeTransfer(_from: address, _to: address, _tokenld: uint256), _share: uint16):
void — the function works as in the previous case with the difference that the function does
not have an input parameter data, and the value data is set to an empty string ().

Function transferFrom(_from: address, _to: address, _tokenld: uint256, _share: uintl6):
void — from the address of the current owner, passed as the _from argument, to the address
passed as the _to argument, ownership of the token whose identifier is passed as _tokenld
is transferred in a share that is specified with argument _share. In this case, the function
is not expected to check whether the address passed as the _to argument is valid, but
the check should be done by the client calling the function. An exception will occur in
the function if the address calling the function is not the owner of the token, if it is not
approved for the transfer of ownership of the specific token, if _fokenld is not a valid iden-
tifier or if transfer share specified in _share argument is bigger than the share the owner
has in the specific token.

Functions approve(), setApprovalForAll(), getApproved(), and isApprovedForAll() de-
clare the same behavior as already presented in ERC-721, so they will not be presented
again.

Event Transfer(_from: address, _to: address, _tokenld: uint256, _share: uintl6) —
an event that must be triggered in the case of a transaction and that will broadcast that
ownership has been transferred from the address passed as the _from argument to the
address passed as the _to argument over the token with the identifier passed in the _fokenld
argument in a share passed as _share argument. The requirements set for Transfer() event
in ERC-721 are valid in the case of this newly proposed Transfer() event.

Events Approval() and ApprovalForAll() declare the same behavior as already pre-
sented in ERC-721, so they will not be presented again.

In the following section, a simple implementation of the newly proposed ERC stan-
dard in the Solidity programming language will be presented and discussed.

5. Example of implementation of the proposed ERC standard

In this section, one implementation of the proposed ERC standard, written in the Solidity
programming language, is presented. In Listing 1, the code representing the declaration of
the new programming interface is shown, to be followed by examples of implementations
of declared functions in Listings 2 through 6. Helper functions are presented in Listings 7
through 13, while error definitions are shown in Listing 14. The code is divided into
several listings to make it easier to comment. In the presented listings, three dots replace
the part of the smart contract code that is not relevant to the implementation currently
being presented.

1 // SPDX-License-Identifier: MIT
2 pragma solidity ~0.8.17;

The Proposal of New ERC for Supporting... 1143

3

4 interface NewERCProposal {

5 function ownersOf (uint256 _tokenId) external view

6 returns (address[] memory) ;

7 function tokensOf (address _owner) external view

8 returns (uint256[] memory) ;

9 function shareOf (address _owner, uint256 _tokenId) external
view

10 returns (uintlé6);

11 function safeTransferFrom(address _from, address _to,

12 uint256 _tokenId, uintl6é _share,

13 bytes memory _data) external;

14 function safeTransferFrom(address _from, address _to,

15 uint256 _tokenId, uintlé _share) external;

16 function transferFrom(address _from, address _to,

17 uint256 _tokenId, uintlé _share) external;

18 function approve (address _approve, uint256 _tokenId) external;

19 function setApprovalForAll (address _owner, address _operator)

20 external;

21 function getApproved (uint256 _tokenId) external view

22 returns (address);

23 function isApprovedForAll (address _owner, address _operator)

24 external view returns (bool);

25

26 event Transfer (address indexed _from, address indexed _to,

27 uint256 indexed _tokenId, uintl6é _share);

28 event Approval (address indexed _owner,

29 address indexed _approved,

30 uint256 indexed tokenId);

31 event ApprovalForAll (address indexed _owner,

32 address indexed _operator,

33 bool indexed _approved);

34 3

35

Listing 1. Interface declaration

In Listing 1 the functions are declared using the function reserved word, while events
are declared using the event reserved word. In addition to these reserved words, the fol-
lowing reserved words are also used in the declaration of functions and methods: external,
which represents one of the four function visibility specifiers in Solidity, view, which in-
dicates that the function is not allowed to change the state of the blockchain, memory,
which indicates that the argument passed to the function call will be saved only temporar-
ily, during the execution of the function, and it will be deleted afterward, and indexed,
which is used in events and indicates that arguments marked as indexed will be saved as
a so-called topic and that events can be searched for by these values. In Listing 2, smart
contract and state variables definitions are presented.

35 ...
36 contract FractionalOwnership is NewERCProposal {
37 address creator;
38 uintl6é maximumShare;
39 mapping (uint256 => address([]) owners;
40 mapping (address => uint256[]) tokens;
41 mapping (uint256 => mapping (address => uintl6)) share;
42 mapping (uint256 => address) approved;
(

43 mapping (address => address) approvedForAll;

1144 Miroslav Stefanovié et al.

44
45
46
47
48
49

constructor (uintl6 _maximumShare) {
creator = msg.sender;
maximumShare = _maximumShare;

Listing 2. Smart contract and state variables definitions

Listing 2 begins with the reserved word contract, followed by the name of the smart

contract FractionalOwnership, and in line 36 it is declared that the smart contract im-
plements the NewERCProposal interface. In listing 2, the following state variables are
declared:

creator — variable representing the address that was used to deploy the smart contract,
and that will be used in the mint() function that will be presented in Listing 7;
maximumShare — variable of type uintl6 that represents the maximum share in the
ownership of a token. The value should be large enough to cover all the necessary use
cases in the specific application;

owners — variable of type mapping, mappings in the Solidity programming language
represent the so-called key/value structure and in this case, it represents the relation-
ship between the uint256 value, which represents a token, and an array of address
data type, which represent the owners of the token, is mapped;

tokens — maps the relationship between the address, which represents the owner,
and a series of uint256 values, which represent tokens over which the address has
ownership shares;

share — maps the relationship between the uint256 value, which represents the token,
and the mapping that maps the relationship between the address, representing the
owner, and the uintl6 value, representing the ownership share;

approved - maps the relationship between the address, which represents the approved
address for managing a token identified by uint256 value;

approvedForAll - maps the relationship in which key address grants the rights to value
address to manage all of key address’s tokens.

In addition to state variables, a constructor is declared and implemented in Listing 2. In
smart contracts, the constructor is a function that is called only once, when the smart
contract is placed on the blockchain network. In this particular case, the implementation
of the smart contract is such that in line 46 the smart contract first queries which address
sent the request for its creation and sets that value in the creator state variable and then
in line 47, it sets the passed uintl/6 argument in the maximumShare state variable. In
Listing 3 implementation of ownersOf () function will be presented.

function ownersOf (uint256 _tokenId) override external view
returns (address[] memory) {
if (isOwnerZeroAddress (_tokenId)) {
revert zeroAddress ({
_owner: address (0),
_message:
bytes ("Zero address can not be queried.")

The Proposal of New ERC for Supporting... 1145

67 }

68 return owners|[_tokenId];
69 }

70

Listing 3. Example of implementation of ownersOf() function

The reserved word override in the ownersOf() function declaration in Listing 4 indi-
cates that it is an implementation of the function declared in New ERCProposal interface.
Inlines 61 to 67, a check is made to see if the argument passed in the function call is bound
to the zero address. This is done by calling isOwnerZeroAddress() function that will be
presented Listing 10. In the case that this function call returns frue, revert() function is
called. The revert() function, will revert any changes that might have happened during
the execution of the initial function call and throw zeroAddress error. The error zeroAd-
dress accepts as parameters a zero address and the message that zero addresses cannot be
queried. In case the call to the isOwnerZeroAddress function returns false, the function
will perform a query on the owners state variable by passing the _tokenld argument and
get a list of addresses representing all owners of a token. In Listing 4, implementations of
tokensOf () and shareOf () functions will be presented.

70

71 function tokensOf (address _owner) override external view
72 returns (uint256[] memory) {

73 if (_owner == address(0)) {

74 revert zeroAddress ({

75 _owner: address (0),

76 _message:

77 bytes ("Zero address can not be queried.")
78 1)

79 }

80 return tokens[_owner];

81 }

82

83 function shareOf (address _owner, uint256 _tokenId) override
84 public view returns (uintl6) {

85 if (_owner == address (0)) {

86 revert zeroAddress ({

87 _owner: address (0),

88 _message:

89 bytes ("Zero address can not be queried.")
90 1)

91 }

92 return share[_tokenId] [_owner];

93 }

94

Listing 4. Example of implementation of rokensOf() and shareOf () functions

The role of the fokensOf() function is to make it possible to find out all the tokens
associated with a specific address. In lines 73 to 79 requirements related to zero address
are checked and in case those requirements are met in line 80 array of tokens owned by
the address for which the function is called is returned.

The shareOf () for the arguments representing the owner and a token, if requirements
related to zero address are met, as shown in Lines 85 to 91, will in line 92 return the share

1146 Miroslav Stefanovié et al.

of ownership that _owner had over _tokenld. In Listing 4, implementations of safeTrans-
ferFrom() and transferFrom() functions will be presented.

94 ...

95 function safeTransferFrom(address _from, address _to,

96 uint256 _tokenId, uintlé _share,

97 bytes memory _data) override public {

98 if (_to == address (0)) {

99 revert zeroAddress ({

100 _owner: address (0),

101 _message:

102 bytes ("Tokens can not be sent to zero address."
)

103 }) i

104 }

105 transferFrom(_from, _to, _tokenId, _share);

106 }

107

108 function safeTransferFrom(address _from, address _to,

109 uint256 _tokenId, uintl6é _share)

110 override external ({

111 safeTransferFrom(_from, _to, _tokenId, _share, "");

112 }

113

114 function transferFrom(address _from, address _to,

115 uint256 _tokenId, uintl6é _share)

116 override public {

117 checkIfTransferIsPermited(_from, _tokenId, _share);

118

119 share[_tokenId] [_from] —-= _share;

120 share[_tokenId] [_to] += _share;

121 addToTokensIfNewToken (_tokenId, _to);

122 removeFromOwnersIfNoShare (_tokenId, _from);

123 addToOwnersIfNewOwner (_to, _tokenId);

124 removeFromTokensIfNoShare (_from, _tokenId);

125 emit Transfer(_from, _to, _tokenId, _share);

126 }

127

Listing 5. Example of implementation of safeTransferFrom() and transferFrom()
functions

In Listing 5, starting from line 95, safeTransferFrom() function is implemented. Firstly
in lines 98 through 104 requirements related to zero address are checked, to be followed
by a call to transferFrom() function.

In lines 108 through 111, function implementation of safeTranferFrom() function is
shown for the call that does not have _date parameter, or as required, call that has an
empty string for _date.

Implementation of transferFrom() function is shown in lines 113 through 124. Firstly,
function checklfTransferlsPermited() is called to check if necessary conditions for trans-
fer have been met, this function will be presented in Listing 8. If all conditions are met, in
lines 119 and 120 the share of ownership will be reduced and increased for old and new
owners, to be followed by calls to function addToTokensIfNewToken(), removeFromOwn-
erslfNoShare(), addToOwnerslfNewOwner(), and removeFromTokensIfNoShare() in lines
121 through 124, for adding/removing tokens/owners from owners and tokens state vari-

The Proposal of New ERC for Supporting... 1147

ables. These functions will be presented in Listing 12 and 13. In line 125 required Trans-
fer() event is being emitted. In Listing 6, implementations of functions approve(), setAp-
provalForAll(), isApprovedForAll(), and getApproved() are presented.

127 ...

128 function approve (address _approve, uint256 _tokenId)

129 override external{

130 require (isInOwners (msg.sender, _tokenId),

131 "Caller is not the owner.");

132 if (_approve == address (0)) {

133 revert zeroAddress ({

134 _owner: address (0),

135 _message: bytes

136 ("Zero address can not be approved")

137 1)

138 }

139 approved|[_tokenId] = _approve;

140 emit Approval (msg.sender, _approve, _tokenId);

141 }

142

143 function setApprovalForAll (address _owner, address _operator)
144 override external ({

145 approvedForAll [_owner] = _operator;

146 }

147

148 function isApprovedForAll (address _owner, address _operator)
149 override external view returns (bool) {
150 return approvedForAll [_owner] == _operator;

151 }

152

153 function getApproved (uint256 _tokenId) override external view
154 returns (address) {

155 return approved[_tokenId];

156 }

157

Listing 6. Example of implementation of approve(), setApprovalForAll(),
isApprovedForAll(), and getApproved() functions

In Listing 6, starting with line 128 approve() function is implemented. In lines 129
and 130 requirement that the caller has a share in the ownership of a token is checked.
The requirement that zero address can not be approved is checked in lines 131 through
137. If all requirements are met in line 138 state variable approved is updated with the
new approval and in line 139 Approval() event is emitted.

In lines 142 through 145 function setApprovalForAll() is implemented by mapping
_owner and _operator in approvedForAll state variable in line 144.

Functions isApprovedForAll() and getApproved() are implemented in lines 147 through
150 and 152 through 155 respectively returning results of calls to approvedForAll and ap-
proved state variables.

49 ...

50 function mint (uint _tokenId) external |

51 require (msg.sender == creator,

52 "Sender not creator address.");
53 addToOwnersIfNewOwner (creator, _tokenId);

54 addToTokensIfNewToken (_tokenId, creator);

1148 Miroslav Stefanovié et al.

55 share[_tokenId] [creator] = maximumShare;

56 emit Transfer (address (0), creator, _tokenId, maximumShare) ;
57 }

58

Listing 7. Example of implementation of min#() function

The mint() is not declared in NewERCProposal interface, but it represents a common
solution for the initial creation of tokens and usually, it is only available for the address
that initially deployed the contract and that is why that address is preserved in the cre-
ator state variable. The function accepts the parameters _fokenld, which represents the
identifier of the token to be created. In lines 52 and 53, the requirement that the function
call came from the creator address is checked, and if this requirement is met in lines 54
through 56 functions required for the creation of new token are called in a similar way
as it was the case with transferFrom() function. In line 57, Transfer() event is emitted.
Helper function checklfTransferIsPermited is presented in Listing 8.

The remaining, helper functions will be presented in the following listings: in Listing 8
checklfTransferlsPermited() function, functions islnOwners() and isInTokens() are pre-
sented in Listing 9, to be followed by the implementation of isOwnerZeroAddress() func-
tions in Listing 10. Listing 11 presents implementations of functions getIndexOfOwner ()
and getIndexOfToken() functions, while in Listing 12 addToOwnerslfNewOwner() and
removeFromOwnerslfNoShare() are presented. Listing 13 holds implementations of func-
tions addToTokenslfNewToken() and removeFromTokenslfNoShare(), to be concluded with
error declarations in Listing 14.

157 ...

158 function checkIfTransferIsPermited (address _from,
159 uint256 _tokenId, uintlé _share)
160 internal view({

161 if (_from == address (0)) {

162 revert zeroAddress ({

163 _owner: address (0),

164 _message: bytes

165 ("Transfers from zero address are not allowed.")
166 }) i

167 }

168

169 if (!isInOwners (msg.sender, _tokenId)

170 && ! (msg.sender == approved[_tokenId]

171 && ! (msg.sender == approvedForAll[_from]))) {
172 revert notOwnerOrApproved ({

173 _tokenId: _tokenId,

174 _from: _from

175 }) i

176 }

177

178 if (shareOf (_from, _tokenId) < _share) {

179 revert notOwningBigEnoughShare ({

180 _tokenId: _tokenId,

181 _from: _from,

182 _owningShare: shareOf (_from, _tokenId),
183 _transferingShare: _share

184 1)

185 }

186 }

187

The Proposal of New ERC for Supporting...

Listing 8. Example of implementation of checklfTransferlsPermited() function

187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

Listing 9. Example of implementation of islnOwners() and isInTokens() functions

209
210
211
212
213
214
215
216
217
218
219
220

function isInOwners (address _address, uint256 _tokenId)
internal view returns (bool) {

address[] memory allOwners = owners[_tokenId];
for (uint i=0; i < allOwners.length; i++) {
if (allOwners[i] == _address) {

return true;
}
}
return false;

}

function isInTokens (uint256 _tokenId, address _address)
internal view returns (bool) {

uint256[] memory allOwned = tokens[_address];
for (uint i=0; i < allOwned.length; i++) {

if (allOwned[i] == _tokenId) {

return true;

}

}

return false;

function isOwnerZeroAddress (uint256 _tokenId)
internal view returns (bool) {

address[] memory allOwners = owners[_tokenId];
for (uint i=0; i < allOwners.length; i++) {
if (allOwners[i] == address (0)) {

return true;
}
}

return false;

Listing 10. Example of implementation of isOwnerZeroAddress() function

220
221
222
223
224
225
226
227
228
229
230
231

function getIndexOfOwner (uint256 _tokenId,
address _owner)
internal view returns (int) {

for (uint i = 0;
i < owners[_tokenId].length; i++) {
if (_owner == owners|[_tokenId][1])

return int (1i);

}

return -1;

1149

1150 Miroslav Stefanovic et al.

232 function getIndexOfToken (uint256 _tokenId,

233 address _owner)

234 internal view returns (int) {

235 for(uint 1 = 0; i < tokens[_owner].length; i++) {
236 if (_tokenId == tokens[_owner][i])

237 return int (i);

238 }

239 return -1;

240 }

241

Listing 11. Example of implementation of getlndexOfOwner() and getindexOfToken()
functions

241

242 function addToOwnersIfNewOwner (address _owner, uint256 _tokenId
)

243 internal {

244 if (!isInOwners (_owner, _tokenId)) {

245 owners[_tokenId] .push(_owner);

246 }

247 }

248

249 function removeFromOwnersIfNoShare (uint256 _tokenId,

250 address _from) internal ({

251 if (shareOf (_from, _tokenId) == 0) {

252 int i = getIndexOfOwner (_tokenId, _from);

253 if (i !'= -1) {

254 owners[_tokenId] [uint (i)] =

255 owners|[_tokenId] [owners[_tokenId].length - 1];

256 owners [_tokenId].pop();

257 }

258 }

259 }

260

Listing 12. Example of implementation of ownersOf() function

260

261 function addToTokensIfNewToken (uint256 _tokenlId, address _owner
)

262 internal {

263 if (!isInTokens (_tokenId, _owner)) {

264 tokens[_owner] .push (_tokenId);

265 }

266 }

267

268 function removeFromTokensIfNoShare (address _owner,

269 uint256 _tokenId) internal {

270 if (shareOf (_owner, _tokenId) == 0) {

271 int i = getIndexOfToken (_tokenId, _owner);

272 if (i !'= -1) {

273 tokens|[_owner] [uint (i)] =

274 tokens[_owner] [tokens[_owner] .length - 17];

275 tokens|[_owner] .pop () ;

276 }

271 }

The Proposal of New ERC for Supporting... 1151

278 }
279

Listing 13. Example of implementation of ownersOf() function

279

280 error zeroAddress (address _owner, bytes _message);

281 error notApproved (address _from);

282 error notOwnerOrApproved (uint256 _tokenId, address _from);
283 error notOwningBigEnoughShare (uint256 _tokenId, address _from,
284 uintl6é _owningShare,

285 uint1l6 _transferingShare);

286 error documentHashMustBeProvided (address _from, address _to,
287 uint256 _tokenId,

288 uintl6é _share,

289 bytes _documentHash) ;

290 }

Listing 14. Example of implementation of ownersOf() function

6. Conclusion

BT has for some time been described as a technology that could be used in fields other
than cryptocurrency and fintech. Various possible applications that would benefit from the
advantages and characteristics of BT have been identified. The most common applications
of BT in those filed are tied to smart contracts and either fungible or NFTs. NFTs are
recognized as a possible way to represent unique items from the real world in a blockchain
network. What was identified as possible improvements related to NFTs was a standard set
of APIs for the representation of fractional ownership of NFTs. In this paper, a proposal
for a new ERC is made in a form of a UML class diagram and an interface written in
Solidity programming language. Also, the implementation of the proposed interface is
presented in a form of a smart contract, together with all the required constraints. The
adoption of such a new ERC would define a standard set of APIs for exchanging function
calls that would solve the issue that was usually resolved by combining multiple standards.

Future research could be directed into the possible optimization of smart contracts
implementing the proposed new ERC. The costs associated with running smart contracts
on the Ethereum network are related to the gas spent during the prices of execution of a
transaction. Limiting those costs should be of concern. This concern is of especially big
importance in use cases where there are a significant number of NFTs managed by a sin-
gle smart contract. Preliminary research on the proposed implementation shows that the
amount of gas spent related to the transaction could vary between 140.000 and 2.800.000
gas. Another possible research might be related to cost comparison between the applica-
tion of a single smart contract that will manage multiple NFTs, or multiple smart con-
tracts, each representing a single NFT.

References

1. Abdelmaboud, A., Ahmed, A., Abaker, M., Eisa, T., Albasheer, H., Ghorashi, S., Karim, F.:
Blockchain for iot applications: Taxonomy, platforms, recent advances, challenges and future
research directions. Electronics 11(4) (2022)

1152 Miroslav Stefanovié et al.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

. Aggarwal, S., Kumar, N., Chelliah, P.: Cryptographic consensus mechanisms. Advances in

Computers 121(4), 211-226 (2021)

. Alamri, M., Jhanjhi, N., Humayun, M.: Blockchain for internet of things (iot) research is-

sues challenges & future directions: A review. International Journal of Computer Science and
Network Security 19(5), 248-258 (2019)

. Alotaibi, L., Alshamrani, S.: Smart contract: Security and privacy. Computer Systems Science

and Engineering 38(1), 93—-101 (2021)

. Azzi, R., Chamoun, R., Sokhn, M.: The power of a blockchain-based supply chain. Computers

& Industrial Engineering 135 (2019)

. Bao, H., Roubaud, D.: Non-fungible token: A systematic review and research agenda. Journal

of Risk and Financial Management 15(215) (2022)

. Bennett, R., Miller, T., Pickering, M., Kara, A.: Hybrid approaches for smart contracts in land

administration: Lessons from three blockchain proofs-of-concept. Land 10(2) (2021)

. Buterin, V.: Ethereum white paper - a next generation smart contract & decentralized applica-

tion platform. https://blockchainlab.com/pdf/Ethereum_white_paper
\-a_next_generation_smart_contract_and_decentralized_a
pplication_platform\-vitalik\-buterin.pdf (2015), accessed: 2022-12-04

. Cai, W., Wang, Z., Ernst, J., Hong, Z., Feng, C., Leung, V.: Decentralized applications: The

blockchain-empowered software system. IEEE Access 6, 53019-53033 (2018)

Cao, X., Zhang, J., Wu, X., Liu, B.: A survey on security in consensus and smart contracts.
Peer-to-Peer Networking and Applications 15, 1008-1028 (2022)

Casino, F., Dasaklisb, T., Patsakis, C.: A systematic literature review of blockchain-based ap-
plications: Current status, classification and open issues. Telematics and Informatics 36, 55-81
(2019)

Chowdhury, M., Ferdous, M., Biswas, K., Chowdhury, N., Kayes, A., Alazab, M., Watters, P.:
A comparative analysis of distributed ledger technology platforms. IEEE Access 7, 167930-
167943 (2019)

Dai, H., Zheng, Y., Zhang, Y.: Blockchain for internet of things: A survey. IEEE Internet of
Things Journal 6(5), 8076-8094 (2019)

Dowling, M.: Is non-fungible token pricing driven by cryptocurrencies? Finance Research Let-
ters 44 (2022)

Entriken, W., Shirley, D., Evans, J., Sachs, N.: Eip-721: Non-fungible token standard. https:
//eips.ethereum.org/EIPS/eip—-721 (2018), accessed: 2022-10-23

Ethereum: Ethereum improvement proposals. https://eips.ethereum.org/ (2022),
accessed: 2022-12-04

Giancaspro, M.: Is a ’smart contract’ really a smart idea? insights from a legal perspective.
Computer Law & Security Review 33(6), 825-835 (2017)

Guido, R., Mirabelli, G., Palermo, E., Solina, V.: A framework for food traceability: Case
study—italian extra-virgin olive oil supply chain. International Journal of Industrial Engineering
and Management 11(1), 50-60 (2020)

Hassija, V., Chamola, V., Krishna, D., Kumar, N., Guizani, M.: A blockchain and edge-
computing-based secure framework for government tender allocation. IEEE Internet of Things
Journal 8(4), 2409-2418 (2021)

Hood, D.: The most expensive nfts ever sold. https://www.business2community.c
om/nft/most-expensive-nft (2022), accessed: 2022-11-23

Huo, R., Zeng, Z., Wang, J., Shang, W., Chen, T., Huang, S., Wang, R., Yu, Y., Liu, Y.: A
comprehensive survey on blockchain in industrial internet of things: Motivations, research
progresses, and future challenges. IEEE Communications Survey & Tutorials 24(1), 88-122
(2022)

Hussien, H., Yasin, S., Yan, J., Udzir, N., Ninggal, M., Salman, S.: Blockchain technology in
the healthcare industry: Trends and opportunities. Journal of Industrial Information Integration
22 (2021)

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

The Proposal of New ERC for Supporting... 1153

Kassen, M.: Blockchain and e-government innovation: Automation of public information pro-
cesses. Information Systems 103 (2022)

Le, T., Hsu, C.: A systematic literature review of blockchain technology: Security properties,
applications and challenges. Journal of Internet Technology 22(4), 789-801 (2021)

Lu, y.: The blockchain: State-of-the-art and research challenges. Journal of Industrial Informa-
tion Integration 15, 80-90 (2019)

Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts smarter. In: Pro-
ceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
pp. 254-269. Association for Computing Machinery, New York, NY, United States (2016)
Majeed, U., Khan, L., Yaqoob, 1., Kazmi, S., Salah, K., Hong, C.: Blockchain for iot-based
smart cities: Recent advances, requirements, and future challenges. Journal of Network and
Computer Applications 181 (2021)

Marjanovié, J., Dal¢ekovié, N., Sladié, G.: Blockchain-based model for tracking compliance
with security requirements. Computer Science and Information Systems 20(1), 359-380 (2023)
Matulevicius, R., Igbal, M., Elhadjamor, E., Ghannouchi, S., Bakhtina, M., Ghannouchi, S.:
Ontological representation of healthcare application security using blockchain technology. IN-
FORMATICA 33(2), 365-397 (2022)

Mohsin, A., Zaidan, A., Zaidan, B., Albahri, A., Albahri, M., Alsalem, M., Mohammed,
K.: Ontological representation of healthcare application security using blockchain technology.
INFORMATICA 33(2), 365-397 (2022)

Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. https://bitcoin.org/
bitcoin.pdf (2009), accessed: 2022-11-28

Ning, X., Ramirez, R., Khuntia, J.: Blockchain-enabled government efficiency and impartial-
ity: using blockchain for targeted poverty alleviation in a city in china. Information Technology
for Development 27(3), 599-616 (2021)

Park, A., Kietzmann, J., Pitt, L., Dabirian, A.: The evolution of nonfungible tokens: Complexity
and novelty of nft use-cases. IT Professional 24(1), 9-14 (2022)

Peng, K., Li, M., Huang, H., Wang, C., Wan, S., Choo, K.: Security challenges and opportuni-
ties for smart contracts in internet of things: A survey. IEEE Internet of Things Journal 8(15),
12004-12020 (2021)

Politou, E., Casino, E., Alepis, E., Patsakis, C.: Blockchain mutability: Challenges and pro-
posed solutions. IEEE Transactions on Emerging Topics in Computing 9, 1082—-1986 (2021)
Risius, M., Spohrer, K.: A blockchain research framework: What we (don’t) know, where we
go from here, and how we will get there. Business & Information Systems Engineering 59(6),
385-409 (2017)

Saberi, S., Kouhizadeh, M., Sarkis, J., Shen, L.: Blockchain technology and its relationships
to sustainable supply chain management. International Journal of Production Research 57(7),
2117-2135 (2019)

Saini, H., Dash, S., Kumar Pani, S., Jos e Sousa, M., Rocha, A.: Blockchain-based raw material
shipping with poc in hyperledger composer. Computer Science and Information Systems 19(3),
1075-1092 (2022)

Shahaab, A., Lidgey, B., Hewage, C., Khan, I.: Applicability and appropriateness of dis-
tributed ledgers consensus protocols in public and private sectors: A systematic review. IEEE
Access 7, 43622-43636 (2019)

Sladi¢, G., Milosavljevi¢, B., Nikoli¢, S., Sladi¢, D., Radulovié, A.: A blockchain solution
for securing real property transactions: A case study for serbia. ISPRS International Journal of
Geo-Information 10(1) (2021)

Stefanovic, M., Przulj, D., Stefanovi¢, D.: Making smart contracts smarter. In: Book of ab-
stracts of Symorg 2022. pp. 10-12. Faculty of Organizational Sciences, University of Belgrade,
Belgrade, Serbia (2022)

Stefanovi¢, M., Przulj, D., Risti¢, S., Stefanovié, D., Nikoli¢, D.: Smart contract application for
managing land administration system transactions. IEEE Access 10, 2169-3536 (2022)

1154 Miroslav Stefanovié et al.

43. Szabo, N.: Smart contracts: Building blocks for digital markets. Extropy, 16, 50-53, 61-63
(1996)

44. Vogelsteller, F., Buterin, V.: Eip-20: Epc-20 token standard. https://eips.ethereum.
org/EIPS/eip-20 (2015), accessed: 2022-10-23

45. Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., Wang, F.: Blockchain-enabled smart con-
tracts: Architecture, applications, and future trends. IEEE Transactions on Systems, Man, and
Cybernetics: Systems 49(11), 22662277 (2019)

46. Woznica, A., Kedziora, M.: Performance and scalability evaluation of a permissioned
blockchain based on the hyperledger fabric, sawtooth and iroha. Computer Science and In-
formation Systems 19(2), 659-678 (2022)

47. Wu, K., Ma, Y., Huang, G., Liu, X.: A first look at blockchain-based decentralized applications.
Software: Practice and Experience 51, 2033-2050 (2021)

48. Xuan, S., Zheng, L., Chung, 1., Wnag, W., Man, D., Du, X., Yang, W., Guizani, M.: An in-
centive mechanism for data sharing based on blockchain with smart contracts. Computers and
Electrical Engineering 83 (2020)

49. Yang, L.: The blockchain: State-of-the-art and research challenges. Journal of Industrial Infor-
mation Integration 15, 80-90 (2019)

50. Yaqoob, I. and Salah, K., Jayaraman, R., Al-Hammadi, Y.: Blockchain for healthcare data
management: opportunities, challenges, and future recommendations. Neural Computing &
Applications 34(44), 11475-11490 (2022)

51. Young, M.: Over 44 million contracts deployed to ethereum since genesis: Research. https:
//cryptopotato.com/over-44-million-contracts—-deployed-to-ether
eum—-since—genesis-research/ (2022), accessed: 2022-11-16

52. Zafar, S. and Bhatti, K., Shabbir, M., Hashmat, F., Akbar, A.: Blockchain for healthcare data
management: opportunities, challenges, and future recommendations. Annals f Telecommuni-
cations 77(1-2), 13-32 (2021)

53. Zhao, J., Fan, S., Yan, J.: Overview of business innovations and research opportunities in
blockchain and introduction to the special issue. Finacial Inovation 2(28) (2016)

54. Zheng, Z., Xie, S., Dai, H., Chen, X., Chen, J., Weng, J., Imran, M.: An overview on smart con-
tracts: Challenges, advances and platforms. Future Generation Computer Systems 105, 475—
491 (2020)

55. Zheng, Z., Xie, S., Dai, H., Chen, X., Wang, H.: Blockchain challenges and opportunities: A
survey. International Journal of Web and Grid Services 14(2), 352-375 (2018)

Miroslav Stefanovié received his B.S. degree in information management in 2014 and the
M.S. degree in information systems engineering in 2016 from the University of Novi Sad,
Faculty of Technical Sciences, Novi Sad, Serbia. He received the Ph.D. degree in indus-
trial engineering and engineering management from the same institution in 2023. From
2015 to 2016, hewas a Teaching Associate and since 2016, he is a Teaching Assistant
at the University of Novi Sad, Faculty of Technical Sciences, Department of Industrial
Engineering and Engineering Management, Chair for Information and Communication
Systems. His research interests include blockchain technologies, especially the implemen-
tation of blockchain technology in fields other than cryptocurrency, mainly e-government
and land administration systems.

Dorde Przulj received his B.S. degree in mechanical engineering in 1999 and the Mr
degree in industrial engineering and engineering management in 2004 from the Univer-
sity of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia. He received the Ph.D.

The Proposal of New ERC for Supporting... 1155

degree in industrial engineering and engineering management from the same institution
in 2013. From 1999 to 2013 he was a Teaching Assistant and from 2013 to 2018 Assis-
tant Professor at the University of Novi Sad, Faculty of Technical Sciences, Department
of Industrial Engineering and Engineering Management, Chair for Information and Com-
munication Systems. Since 2018 he has been an Associate Professor at the same institu-
tion. His research interests include land administration systems, service oriented architec-
ture, microservices, ontologies, domain specific languages, and blockchain applications
in information systems. Porde Przulj has published in several international information
systems journals.

Sonja Risti¢ works as a full professor at the University of Novi Sad, Faculty of Technical
Sciences, Novi Sad, Serbia. She received two bachelor’s degrees with honors from the
University of Novi Sad, one in Mathematics, Faculty of Science in 1983, and the other in
Economics from Faculty of Economics, in 1989. She received her Mr (2 years) and Ph.D.
degrees in Informatics, both from the University of Novi Sad, Faculty of Economics, in
1994 and 2003. From 1984 until 1990 she worked with the Novi Sad Cable Company
NOVKABEL-Factory of Electronic Computers. From 1990 till 2006 she was with Novi
Sad School of Business, and since 2006 she has been with the University of Novi Sad,
Faculty of Technical Sciences. Her research interests include database systems, software
engineering, model-driven software engineering and domain specific languages. She is the
author or co-author of over 100 papers, and 10 industry projects and software solutions in
the area.

Darko Stefanovié received his B.S. degree in mechanical engineering in 1999 and the Mr
degree in industrial engineering and engineering management in 2005 from the Univer-
sity of Novi Sad, Faculty of Technical Sciences, Novi Sad, Serbia. He received the Ph.D.
degree in industrial engineering and engineering management from the same institution
in 2012. From 2001 to 2012, he was a Teaching Assistant and from 2012 to 2017, Assis-
tant Professor at the University of Novi Sad, Faculty of Technical Sciences, Department
of Industrial Engineering and Engineering Management, Chair for Information and Com-
munication Systems. Since 2017 he is Associate Professor at the same institution. He is
also a vice-dean for Science and International Cooperation at the University of Novi Sad,
Faculty of Technical Sciences, and head of Chair of Information and Communication
Systems. His research interest includes ERP systems, e-learning systems, e-government
systems, data mining, and business process mining in production planning. Darko Ste-
fanovic has published in several international information systems journals. s

Darko Capko received the Ph.D. degree from the University of Novi Sad, in 2012. He is a
Full Professor at Faculty of Technical Sciences, University of Novi Sad and CSO at Ether-
nal, Novi Sad. He has published over 80 articles and participated in more than 20 projects.
His research interests are related to distributed algorithms, cryptography, blockchain and
artificial intelligence.

Received: January 27, 2023; Accepted: May 04, 2023.

