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Abstract. Personalized training systems and augmented reality are two of the 

most promising educational technologies since they could enhance engineering 

students’ spatial ability. Prior research has examined the benefits of the 

integration of augmented reality in increasing students’ motivation and enhancing 

their spatial skills. However, based on the review of the literature, current training 

systems do not provide adaptivity to students’ individual needs. In view of the 

above, this paper presents a novel adaptive augmented reality training system, 

which teaches the knowledge domain of technical drawing. The novelty of the 

proposed system is that it proposes using fuzzy sets to represent the students’ 

knowledge levels more accurately in the adaptive augmented reality training 

system. The system determines the amount and the level of difficulty of the 

learning activities delivered to the students, based on their progress. The main 

contribution of the system is that it is student-centered, providing the students 

with an adaptive training experience. The evaluation of the system took place 

during the 2021-22 and 2022-23 winter semesters, and the results are very 

promising. 

Keywords: Fuzzy logic, augmented reality, spatial ability, adaptive training, 

personalized system. 

1. Introduction 

All technologically enhanced realities fall under the broad concept of Extended Reality 

(XR), which combines the experiences of augmented reality (AR), virtual reality (VR), 

and mixed reality (MR) [1]. To improve this experience, AR overlays virtual content on 

top of the already existing real-world environment [2]. Contrarily, VR immerses viewers 

in an entirely new environment that is often developed and rendered by computers [3]. 

Finally, MR is a user environment that combines digital content and physical reality in a 

manner that makes it possible for users to interact with both real-world and virtual 

objects [4]. 

A user's perspective of the real world is altered through AR technology [2], [5]. 

Digital input, such as visual components, are used to create an improved version of the 

real world, which is delivered through technology. User-friendly AR applications offer a 

straightforward and enjoyable form of human-computer interaction. AR has been used 

into a wide range of industries, and it has especially great potential in educational 

settings, more particularly, in the training of engineers [6]. 



1390           Christos Papakostas et al. 

 

In order to improve engineering students' design skills, it is essential for engineering 

education to enhance students' spatial ability [7]–[9]. Numerous studies have 

investigated how using AR technology might support students become more efficient at 

technical drawings and develop their spatial skills, both of which are important for their 

academic work and potential professions [10]–[13]. Even though many researchers have 

explored the integration of AR in spatial ability training, no study has specifically 

developed a personalized AR spatial ability training system, which takes the student 

profile into account [14]. 

For greater educational outcomes, a training system should, nevertheless, be 

adaptable to the various students’ individual needs. As a teacher would do in an in-

person approach in a real classroom, the training system should also be able to 

periodically change the teaching technique and instructional approach in light of the 

student’s needs. As a result, designing an adaptive learning system that satisfies the 

demands of the students might be challenging, since each student has unique learning 

needs and preferences [15]. 

Fuzzy logic developed by [16] can help with this challenge, as it is able to deal with 

ambiguity and inaccurate data. Knowledge level, in particular, is a concept that cannot 

be described as a variable that accepts distinct values, since learning is a complex 

process. In order to better accurately depict the learner's knowledge level, fuzzy sets and 

fuzzy logic may be employed. Since fuzzy logic techniques can deal with the uncertainty 

in data concerning students' cognitive state and behavior, they can be utilized to enhance 

the effectiveness of training systems. 

The primary goal of the research, as stated in this paper, is to propose a spatial ability 

training system that helps students in learning technical drawing. The system 

incorporates every knowledge domain found in a conventional course curriculum. Our 

research is innovative in that it combines adaptive learning strategies with learning 

theory to offer students individualized learning activities within the context of spatial 

ability training, utilizing augmented reality.  

Fuzzy sets are used each time to represent the knowledge level of the students. The 

assignments and training flow are then determined by the system. The training system 

specifically considers the student's progress, each time it has to select which learning 

activities need to be dynamically supplied to the student. 

Particularly, the training system determines the length and complexity of the video 

tutorials that constitute each chapter, which in turn determines the quantity and difficulty 

of the learning activities and the evaluation questions. As a result, the student receives 

more personalized training using fuzzy logic techniques, which select the questions to be 

delivered to the student in the training’s upcoming evaluation questions, based on the 

test results as input. In addition, the student receives a more individualized training 

experience due to AR characteristics which are dynamically shown in accordance with 

the student's progress and requirements. 

The paper’s contribution is as follows: 

 Contribution to intelligent tutoring systems: The use of fuzzy logic and the 

Mamdani inference system allows for the incorporation of imprecise and 

uncertain information in decision-making, which can lead to more accurate and 

personalized feedback for the learners. The use of fuzzy weights further allows 

for the weighting of different factors in the decision-making process, depending 

on their relative importance. Together, these techniques enable PARSAT to 
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provide personalized support for learners based on their individual needs and 

progress. 

 Contribution to domain knowledge model: The integration of educational 

taxonomies, augmented reality technology, and intelligent tutoring systems can help 

to create a more engaging and effective learning environment for students. 

 Contribution to student modeling: The integration of fuzzy logic and AR 

technology offers a promising avenue for developing personalized training systems 

in the domain of spatial skills training. 

 Contribution to electronic assessment: The study does contribute to the collection 

of data on student performance during the training session. The proposed system 

collects information on the number of errors made by students during assessment 

tasks, which is an important metric for evaluating performance and providing 

personalized feedback. By tracking this data and using it to adjust the difficulty and 

amount of learning activities, the system can provide a more tailored and effective 

training experience for engineering students [17]. 

The structure of this paper is as follows. The literature review, regarding AR and 

adaptivity, is examined in Section 2. The description of the training system is presented 

in Section 3. The enhancement of the domain knowledge using taxonomy is discussed in 

Section 4. The modeling of students’ knowledge through fuzzy logic is presented in 

Section 5. Experimental results obtained from training and the outcome of the system’s 

evaluation are presented in Section 6. Finally, in Section 7, the work is concluded and 

continues with restrictions and future work. 

The present paper is an extended and revised version of our preliminary conference 

paper that was presented in [18]. This paper significantly expands the evaluation of the 

proposed adaptive AR training system. 

2. Literature Review 

Various studies have been conducted examining the use of AR technology in domains 

such as education [19], [20], healthcare [21], [22], tourism [23], [24], culture [25], 

marketing [26], [27], industry [28], [29], all of which highlighted the impact that AR 

technology had. Their main objective is to keep users motivated and interested in the 

subject by providing them a pleasant experience. An AR application, called adaptive 

AR, offers useful and effective real-time information based on the user's specific 

features, interests, and context [30]. 

In [31] the authors introduced the concept of plasticity of augmentations and defined 

it as the ability of human-computer interaction (HCI) interface to fit the context of use 

defined by the user, the environment and the platform. The study evaluated adaptive AR 

by taking into consideration the size of augmentations, the illumination level of the 

scene, and the ambient noise. More specific, the system modifies the scale of the 

augmented object based on distance, adjusts the scene's luminosity to match ambient 

lighting, and levels the sound based on background noise. 

In [32] the authors recognized adaptive behavior as the main challenge in developing 

AR systems, especially in the case of systems which provide information to the end 

users. The authors presented the trend inside the research community to develop 

techniques for better adaptation of the form and size of information that will be 
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delivered to the users. Such systems have numerous challenges in identifying the user's 

behavior, determining in real-time what kind of adaptation to perform, so that it 

continuously adapts the AR content to the user's interest. 

In [33] a user interface (UI) was presented, based on AR with head-mounted display 

(HMD), for increasing situational awareness during critical operations and improve 

human efficacy. The interface allowed the user to control a swarm of drones in order to 

explore the outside world, by presenting information in a virtual environment using 2D 

and 3D widgets. The research findings indicate that AR has the potential to increase 

human productivity and the success of mission-critical tasks. 

In [34] the authors address how adaptation in AR could enable 3D objects to have 

their contrast adjusted to the degree of the ambient lighting of the environment. Now 

that mobile phones have sensors built in, mobile AR can become more adaptive, taking 

advantage of their built-in sensor modules which can be used to gather information 

about the user, the surrounding, and the device. 

Explicit modalities, according to [35], are techniques that allow the system to receive 

input from users through gesture, speech, and touch. Information about changes at the 

environment (such as temperature, noise, and light) and changes at the device (such as 

orientation) are known as implicit modalities. A user's present location, for instance, can 

trigger a POI, based on the GPS sensor, while in order to provide a clearer view on the 

screen in low-light environments, the screen illuminance will be raised. Depending on 

the mobile device's orientation, the AR display screen can be changed. 

In [36] the authors carried out research to enhance the knowledge provided to 

museum visitors, based on their emotional state at the time of their visit. Sensors are 

utilized to track visitor engagement and interest levels in order to adapt the experience. 

Their work has completely changed the way that adaptive AR approaches cultural 

heritage. 

Even while adaptivity is significant and has a good impact on users, there are not 

many examples of educational systems that employ it. Only a few educational adaptive 

systems exist, however there is not an adaptive AR application for training students’ 

spatial skills. As a result, an educational AR system that uses a different model to 

evaluate the student's cognitive state and makes the proper adjustments can be useful. 

The process of learning is multifaceted, and user’s level of knowledge is an intangible 

concept. Knowledge is not a variable that can take on discrete values, and therefore, it is 

not accurate to claim if a domain concept is either known, or unknown. Fuzzy logic can 

be used to solve issues involving non-measurable entities [16]. 

As a result, fuzzy logic appears to be the best method for describing the students’ 

level of knowledge. Adaptive tutoring systems have employed fuzzy logic, however 

spatial ability training systems have not. In light of this, we present a personalized AR 

training system that includes a cutting-edge module that employs fuzzy logic to develop 

student models, and provide on-the-spot modifications to the learning path's flow. 

As a testbed for our research, we developed a personalized mobile application, 

namely PARSAT, for the training of spatial skills. PARSAT offers adaptivity regarding 

students’ preferences, plus it creates a learning environment providing individualized 

learning activities that assure the training quality. PARSAT was used by university 

students and the results were really encouraging. The main difference, between 

PARSAT and the existing AR applications, is that the educational process is adaptive 
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[37], [38]. The basic idea of the application is to deliver relevant content, based on 

student’s current level of knowledge [39]. 

3. Description of the System 

The research described in the current paper involves the implementation of the novel 

approach of a spatial ability training system, incorporating fuzzy logic for the automatic 

recognition of the students’ knowledge level, and augmented reality digital technology 

for the spatial ability training. Specifically, an innovative mobile environment for spatial 

skills training, namely PARSAT, has been developed. A set of hardware and software 

components, along with data that describe the real world and virtual content, form the 

basis of the augmented reality system. Fig. 1 presents the architecture of PARSAT, 

which is structured in three layers, as follows: the hardware is in the upper section, the 

software is in the middle, and the data is in the lower half. 
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Fig. 1. The architecture of PARSAT 

3.1. Hardware Layer 

The tracking module consists of a range of sensors, such as accelerometer, gyroscope, 

magnetometer, and GPS, which determine the position and the orientation of the system, 

so that the virtual information will be in-line with the physical environment. Almost all 

mobile devices (smartphones and tablets) incorporate most of the aforementioned 

sensors. 

The processing module consists of the fuzzy inference system, the 3D rendering, and 

overall, the system’s user interface, are computational processes, and as such, they 

require significant hardware resources. To this purpose, all mobile devices embed 

powerful processing units. The graphics processing unit of mobile devices is specifically 

designed to accelerate the image output to a display, while the central processing unit of 

the mobile devices executes all the tasks and instructions from the user.  
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The interacting component incorporates a range of sensors, such as tactile surfaces, 

gesture recognition, and biometrics, which translate the user’s interaction with the 

system. Tactile sensor is integrated in PARSAT, so that the identified information is due 

to the contact of the student’s fingers on the mobile screen. All mobile devices support 

touch commands, which are identified by key components, such as a tactile sensor. 

3.2. Software Layer 

A user interface's success is determined by how discretely people may use it, without 

interruptions from other interface components. In the context of AR applications, this is 

also accurate. Due to AR's immersive and captivating nature, PARSAT’s user interface 

aims to focus on how students engage with the system. It is achieved by focusing on the 

five essential User Interface (UI) – User Experience (UX) AR pillars [40]–[42] as listed 

below: 

• Environment: for AR design, the environment in which users will interact with the 

application, must be considered. Everything is included, from the lighting to the 

actual area where users are positioned. In the case of PARSAT, students used the 

application in their university laboratories, which are organized taking into 

consideration the best user ergonomics and safety.  

• Interaction design: this parameter is also crucial, as the interaction design 

determines how the user interacts with the context of PARSAT. The main gestures 

that are used to manipulate the application, and make the most of the AR 

experience, are: a) tapping, which is performed with a light touch of student’s 

finger, and it is used for pressing buttons and selecting, b) double tapping, which is 

used to zoom in on the 3D models, c) pinching, which needs two fingers close 

together, or spread apart, to adjust the size of the 3D models, and d) rotating, 

which is the basic gesture for the understanding the spatial geometry of the 3D 

models from different perspectives, and revealing their hidden views. 

• Colors: the science of color theory applies to AR, just as it does to print, mobile, 

and the web. PARSAT’s colors are acceptable for its educational scope. The text is 

visible, and fonts are appropriate, so the student find it simple to read. Depending 

on the situation, San Serif fonts may be simpler to read than Serif fonts. The 

optimum contrast schemes for reading are selected using light text on a dark 

background. 

• Feedback: it is a critical parameter which is considered, defining how students will 

be informed of their activities and the results or outcome of those actions. Whether 

it is the feedback on the assessment score, or feedback encouraging the student to 

continue the effort on training, it is a parameter which adaptive systems usually 

integrate.   

The 3D rendering engine is a combination of the software integrated in the PARSAT 

application. More specific, this engine maintains an internal 3D representation of the 

virtual scene augmenting the real world.  

This internal representation is updated in real-time according to several factors such 

as the user’s profile, student’s interactions, the 3D objects behavior, the updated 

knowledge domain, and the fuzzy inference adaptation.  Both, hardware components 
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such as the CPU and the GPU, and data components, are dedicated to the 3D rendering 

engine for the creation of the user interface screens.  

PARSAT is implemented using Unity 3D cross-platform game engine, v. 2020.3.43f1 

LTS, Vuforia Software Development Kit (SDK), Autodesk 3ds Max 2020, scripts in C# 

programming language, Visual Studio 2019, and Android Studio Integrated 

Development Environment (IDE). 

3.3. Data Layer 

PARSAT integrates marker-based AR, requiring a trigger image or a QR code to 

activate the AR experience. The student detects and scans the marker using the mobile 

device’s camera, the image is identified as a marker, and then, the device renders the 

virtual content on top of the marker. This feature allows the student to move around the 

marker and observe the perspectives of the 3D content. 

Cloud-based or device-localized are the two categories of marker-based AR. In the 

first category, since the AR assets must be downloaded from the server, a cloud-based 

AR experience may require a few additional minutes to load. In the second category, 

since the AR assets have already been pre-downloaded to the student’s mobile device 

via the application, a localized AR experience may be accessed instantly. For greater 

storage capacity, the choice of the cloud-based AR is preferred, but localized AR is less 

expensive and not dependent on network availability. PARSAT integrates localized 

marker-based AR.  

The marker-based AR experience is created using a software development kit (SDK), 

namely Vuforia, one of the best-known AR tool sets, which adds advanced computer 

vision functionality by creating AR experiences that realistically interact with the 3D 

geometrical objects displayed at each level, supporting a broad range of devices, not 

only Android and iOS smartphones and tablets, but also AR headsets, such as Microsoft 

Hololens and Magic Leap.   

The 3D models database is crucial, as the students interact with the virtual models to 

train their spatial visualization skills. 3D modeling software options are separated into 

two main categories, the first one is the free and the second category is the license-paid 

software.  

The effective selection of 3D modeling software depends on the objects which are to 

be designed, the interface of the software, the community behind the software offering 

tutorials, step-by-step guides, and commonly asked questions, and, in case of a paid 

license, the actual cost of the product. PARSAT’s 3D models database is prepared using 

Autodesk 3ds Max. 

4. Enhancing Domain Knowledge with SOLO Taxonomy 

In this section, the training system’s domain knowledge is presented, considering the 

Structure of Observed Learning Outcomes (SOLO) taxonomy. The content of the 

domain model is a critical component of the application’s structure, whereas the 



 PARSAT: Fuzzy logic for adaptive spatial…           1397 

 

 

combination of the learning theory with adaptive learning activities enhances the 

students’ motivation and improves their learning outcome. 

4.1. Domain Model 

The content of the domain knowledge is consisted of three levels, covering the topic of 

the Technical Drawing (TD) course, and its objectives in detail, as follows: 

• Recognize the exploratory potential of technical drawing while acknowledging the 

universality of objective language in information transmission and comprehension. 

• Strengthen the skills necessary for them to represent graphical solutions precisely 

and objectively. 

• Have a basic understanding of technical drawing so that students can utilize it to 

read and interpret simple designs and artistic creations as well as to develop well-

thought-out solutions to mathematical challenges in both the plane and space. 

• Recognize normalization as the optimum realist for condensing communication 

and giving it a more universal tone. 

• Include technical drawing tasks in a study area where aesthetic considerations are 

relevant, such as art, architecture, or industrial design. 

• Recognize and depict shapes in accordance with ISO standards. 

• Recognize how different approaches enhance the traditional idea of technical 

drawing. 

• Include the information provided by technical drawing in technological, artistic, or 

scientific research process. 

• Encourage method and rationality in sketching, as a way to convey scientific and 

technological concepts. 

• Acquire abilities that enable the expression of graphical solutions with accuracy, 

clarity, and objectivity. 

• Skillfully employ the specialized tools of technical drawing, and pay attention to 

the drawing's proper execution, as well as the enhancements that various graphical 

styles can provide to the depiction. 

• Master the art of sketching to improve the speed and accuracy while expressing 

graphically. 

• Connect the space to the plane, recognizing the requirement to complete exercises 

from the activity book. 

4.2. Domain Knowledge Alongside SOLO Taxonomy 

SOLO taxonomy was created, within a constructivist context, as a tool for teaching 

students how to use basic rubrics to think more thoroughly about their own 

understanding. In addition to evaluation, SOLO is used in the developed system to 

design the curriculum according to the expected level of learning outcomes, which helps 

in establishing constructive alignment. 

PARSAT has used the SOLO taxonomy in the development of the assessment items 

for the learning objectives in technical drawing. These items had to fit to curriculum’s 
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objectives and levels, and measure both surface and deep cognitive states. Throughout 

the PARSAT development, experienced faculty members in the field of technical 

drawing have been involved in designing and reviewing the assessment tasks according 

to the SOLO taxonomy. Table 1 illustrates the learning goals and the corresponding 

activities per SOLO level. 

Table 1. Learning goals and activities per SOLO level [43], [44] 

SOLO level Learning goal Learning activities Description of the activities 

Pre-structural (L1) Students get 

information on the 

subject 

1. Define concepts 

2. List items 

3. Match information 

4. Name facts 

Introduction to Technical Drawing: A 

history and current importance of drawing 

are presented 

Students are asked to illustrate the 

significance of drawing by presenting 

applications and reports of both good and 

negative uses of the skill 

Unistructural (L2) Students define, 

recognize, name, 

sketch, reproduce, 

recite, follow 

simple 

instructions, 

calculate, 

reproduce, 

arrange, find 

5. Identify content to be 

memorized, show examples 

6. Provide disciplinary 

context 

7. Mnemonics in groups 

8. Repetition of procedures 

9. Games 

10. Repetitive testing and 

matching 

11. Peer testing (one student 

asks, one answers) 

Setting up a model space in CAD 

software by defining limits, grid, snap, 

layers, and object snap 

Video tutorials on standard views, views’ 

alignment, completion of activity sheet, 

and setting up the model space 

Border creation with a completed title 

block to be used for all future drawings, 

and drawing templates with all the 

settings necessary saved within it 

Multi-structural (L3) Students describe, 

list, classify, 

structure, 

enumerate, 

conduct, complete, 

illustrate, solve 

12. Glossaries of key terms 

with definitions, classifications,  

examples to build disciplinary 

vocabulary 

13. Simple laboratory exercises 

14. Define terms, compare to 

glossary 

15. Games modelled on Trivial 

Pursuit, Family Feud 

Orthographic drawing creation 

Lines, layers 

Isometric object drawing 

Video tutorials on linetype, lineweight and 

isometric drawing creation of objects in 

the activity 

Relational (L4) Students relate, 

analyze, compare, 

integrate, plan, 

construct, 

implement, 

summarize 

16. Case studies, simulations, 

and complex lab exercises 

17. Concept maps 

18. Research projects and 

experiential learning cycles 

19. Application of theoretical 

models 

20. Reflective journals 

21. Student seminars and 

debates 

22. Syndicate groups (each 

group is part of whole) 

23. Problem-Based Learning 

and Inquiry Learning 

Scaling the border and title block to fit the 

orthographic drawing 

Dimensioning an orthographic drawing 

Video tutorials on basic dimensioning 

rules and parts of dimensions 

Filling in a title block, including Name, 

Date, Title, Drawing No., and the correct 

scale 

Snapping and  

Text commands 

Extended abstract (L5) Students 

generalize, 

hypothesize, 

theorize, predict, 

judge, evaluate, 

assess, predict, 

reason, criticize  

24. Self-directed projects 

involving research, design, 

application, argumentation, 

evaluation 

25. Case studies involving 

extensive analysis, debate, reflection, 

argumentation, evaluation, 

forecasting 

26. Development of a theory or 

model 

27. Experiential learning cycles 

28. Problem Based Learning 

and Inquiry learning 

Printing the drawing on 8.5” × 11” paper 

(letter size) in landscape orientation  

Video tutorial on cutting plane, half and 

full sections 

Printer/plotter settings  

Export/plot an object that has been drawn 

in CAD so it can be exported or printed to 

a variety of other applications 

CAD software to create objects that are 

more precise and sometimes easier to 

draw in CAD than in other software 
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4.3. Examples of learning activities of each SOLO level 

A simple uni-structural assignment is presented in Fig. 2, while the student must observe 

the object in 3D, place herself/himself on the spot that the black arrow points to, and 

identify the object’s front view in 2D, ignoring the other views, and following simple 

procedure of the general principles of graphical representation of objects on technical 

drawings.   

 

Fig. 2. Sample activity of uni-structural SOLO level 

In the assignment of the relational SOLO level of Fig. 3, the students would need to 

analyze the individual views of the object and consider how they relate to one another. 

They would need to identify key features and elements in each view and determine how 

they fit together to create a complete picture of the object's structure and geometry. 

Students would also need to think critically about the limitations of each view and 

consider how they might be used together to overcome these limitations. For example, 

the front view might provide a clear representation of the object's height and width, 

while the top view might be better for showing its depth and overall shape. 

Overall, this assignment requires students to engage in higher order thinking and 

consider the relationships between different pieces of information to create a more 

integrated and holistic understanding of the object. 
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Fig. 3. Relational level question of SOLO taxonomy 

5. Modelling the Knowledge of Students with Fuzzy Logic 

In this section, the principles of the design of the student model, within the spatial ability 

training platform, are discussed. The model allows steering of the sequence of the 

educational material and the deliverable learning activities, through the incorporation of 

fuzzy logic, quantitative inputs, and fuzzy weights. 

5.1. Fuzzy Logic Algorithm 

The student model, which may be found in most of the latest adaptive educational 

software [45], is responsible for defining the student’s knowledge level. The purpose of 

the student model is to represent the students' current level of knowledge [37], and it is 

essential for the system to provide the necessary level of customization on every 
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student's learning requirement. Other approaches regarding adaptivity, are those of 

neural networks, machine learning, fuzzy logic networks etc., which can be utilized to 

build the student model [46]. The backbone of PARSAT’s student model is fuzzy logic, 

which defines the students' current level of knowledge. 

PARSAT’s fuzzy system consists of three main parts: a) the part of the linguistic 

variables, b) the part of the membership functions, and c) the rules. This section 

describes the general process of designing the fuzzy system.  

The process of developing the fuzzy system starts by defining the linguistic variables, 

which represent, in words, the system’s input and output variables. Each linguistic 

variable is described by a specific number of linguistic values, while in most cases three 

to seven terms are enough. 

The proposed fuzzy model has four inputs, namely prior knowledge (PRK), video-

based learning duration (VLD), augmented-reality interaction duration (ARID), and 

number of errors (NoE). The first input is derived from the student profile, while the 

remaining three inputs are derived from the interaction model. Furthermore, the output 

value and its linguistic name is the current knowledge level (CKL). Table 2 presents the 

input linguistic variables and their ranges.  

Table 2. Linguistic input variables and their ranges 

Linguistic Variable: Prior Knowledge (PRK) 

Linguistic Value Notation Range (normalized) 

Poor PRK_PR [0, 0.35] 

Medium PRK_MDM [0.30, 0.75] 

Good PRK_GD [0.70, 1.00] 

Linguistic Variable: Video-based Learning Duration (VLD) 

Linguistic Value Notation Range (normalized) 

Short VLD_SRT [0, 0.35] 

Normal VLD_NRML [0.30, 0.70] 

Long VLD_LNG [0.60, 1.00] 

Linguistic Variable: Augmented-Reality Interaction Duration (ARID) 

Linguistic Value Notation Range (normalized) 

Short ARID_SRT [0, 0.60] 

Normal ARID_NRML [0.40, 0.80] 

Long ARID_LNG [0.70, 1.00] 

Linguistic Variable: Number of Errors (NoE) 

Linguistic Value Notation Range (normalized) 

Small NoE_SMLL [0, 0.40] 

Medium NoE_MDM [0.35, 0.65] 

Large NoE_LRG [0.60, 1] 

5.2. Fuzzy Sets 

At the second part, fuzzy sets are determined. All input values are mapped into fuzzy 

ones using the membership functions. We integrated membership functions, which are 

formed using straight lines, having the advantage of simplicity, and more specific the 

trapezoidal membership function. A trapezoidal membership function is assigned to 

each linguistic variable. A curve with four points (a, b, c, d) representing a lower limit 
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(a), an upper limit (b), a lower support limit (c), and an upper support limit (d) is known 

as a trapezoidal membership function. The curve's values range from 0 to 1. Real values 

between b and c are represented by degree of membership 1. Values between a and b 

have a higher degree of membership as they move closer to element b, whereas values 

between c and d have a lower degree of membership as they move closer to element d. 

The membership degree is zero in all other cases.  

The student’s video-based learning duration of each topic is recorded in seconds, and 

the current level’s cumulative sum is normalized, resulting in the values of the linguistic 

variable of this input, namely short (VLD_SRT), normal (VLD_NRML) and long 

(VLD_LNG) (Fig. 4). 

 

 

Fig. 4. Membership functions describing video-based learning duration 

Another example is the variable of the fourth input, namely number of errors, which 

is defined by the average student’s performance in the level’s test, rated on a 100-point 

scale. The values of the linguistic variable are small (NoE_SMLL), medium 

(NoE_MDM) and large (NoE_LRG) (Fig. 5). 

Figures 6 and 7 present the rest two input variables, namely prior knowledge, and 

augmented-reality interaction duration, which take the linguistic variables poor 

(PRK_PR), medium (PRK_MDM), good (PRK_GD) and short (ARID_SRT), normal 

(ARID_NRML), long (ARID_LNG), respectively. 

The fuzzy system’s output value, and its linguistic term, is the student’s current level 

of knowledge (CLK), taking the values namely Novice (N), Beginner (B), Competent 

(C), Very Good (VG), Proficient (P), and Expert (E). 
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Fig. 5. Membership functions describing number of errors 

 

Fig. 6. Membership functions describing student’s prior knowledge 
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Fig. 7. Membership functions describing augmented-reality interaction duration 

5.3. Fuzzy Rule Base 

A set of linguistic statements, known as a fuzzy rule base, describes how PARSAT’s 

fuzzy inference system makes decisions by classifying input, or controlling output. 

Fuzzy IF-THEN rules are used to aggregate all the variables, as there are input and 

output variables.  

A set of 81 fuzzy rules were formulated, and they have been incorporated in the 

proposed system, which were specifically designed to create the logical outcome. The 

rest part of this subsection presents a representative sample of the aforementioned rules, 

showing how inputs affect the output. 

Example Rule 1: 

IF PRK is PRK_PR AND VLD is VLD_LNG AND ARID is ARID_LNG AND NoE is 

NoE_LRG THEN CLK is N 

The aforementioned rule indicates that a student, with poor prior knowledge 

background, spending long time, both in watching the session’s video tutorials (maybe 

by replaying them all the time, or constantly pausing and rewinding them) and in 

manipulating the 3D models through the AR environment (maybe finding it difficult to 

conceptualize their geometry), and finally scoring a large number of errors in the 

assessment section, then the user is classified as a novice student.  

Example Rule 2: 

IF PRK is PRK_GD AND VLD is VLD_NRML AND ARID is ARID_NRML AND 

NoE is NoE_SMLL THEN CLK is E 
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The above rule highlights a student who is an expert, while the main contributing 

factor is that the student has a good background in technical drawing, and the 

assessment’s measured errors are small. 

Example Rule 3: 

IF PRK is PRK_MDM AND VLD is VLD_NRML AND ARID is ARID_NRML AND 

NoE is NoE_SMLL THEN CLK is P 

The 3rd example of rule results in a proficient student, as the starting point is at 

medium level, but through training and personalized learning activities, managed to 

achieve excellent assessment score. 

The next two rules consider the various inputs that all contribute to the knowledge 

level rating of the student being beginner. 

Example Rule 4: 

IF PRK is PRK_PR AND VLD is VLD_NRML AND ARID is ARID_LNG AND NoE 

is NoE_LRG THEN CLK is B 

Example Rule 5: 

IF PRK is PRK_PR AND VLD is VLD_LNG AND ARID is ARID_NRML AND NoE 

is NoE_LRG THEN CLK is B 

The next rule indicates that spending normal time watching the educational tutorials 

and interacting with the virtual models, results in a competent knowledge rating. 

Example Rule 6: 

IF PRK is PRK_PR AND VLD is VLD_NRML AND ARID is ARID_NRML AND 

NoE is NoE_LRG THEN CLK is C 

Example Rule 7: 

IF PRK is PRK_MDM AND VLD is VLD_SRT AND ARID is ARID_NRML AND 

NoE is NoE_MDM THEN CLK is VG 

Example Rule 8: 

IF PRK is PRK_GD AND VLD is VLD_NRML AND ARID is ARID_SRT AND NoE 

is NoE_MDM THEN CLK is VG 

Example rules 7 and 8 highlight a very good student, and case it when a student 

answers the assessment’s evaluation test with normal number of errors.  

5.4. Fuzzy Inference System 

The fuzzy inference system (FIS) evaluates the rules saved the rule base and combines 

the results of each rule. The proposed system gets four inputs, namely prior knowledge, 

video-based learning duration, augmented-reality interaction duration and number of 

errors, fuzzified through the trapezoidal membership functions (Fig. 8).  
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Fig. 8. Architecture of the fuzzy inference system 

Then, 81 fuzzy rules were fed to the inference engine, in order to determine output, 

namely the student’s current knowledge level. In this research, the Mamdani FIS [47] is 

employed, as it is typically used to capture expert knowledge. It enables us to 

communicate more naturally, while describing the expertise. 

The fuzzy inputs must be combined into a single fuzzy output, by using the Mamdani 

inference engine's fuzzy implication. The fuzzy input variables for each of the rules are 

then connected using the AND operator. This operator's function is to extract the 

minimum membership function value from the fuzzy input variables. Using the value 

obtained from the input component, the fuzzy output variable is truncated. By taking the 

maximum value of the membership degree, the entire shortened output is therefore 

aggregated into a single graph and employed in the final stage of the fuzzy logic system. 

5.5. Defuzzification 

Defuzzifier procedure maps the fuzzy output to a crisp value according to the 

membership function of output variable. In order to get the crisp value, a diverse method 

is required. This defuzzification is not part of the “mathematical fuzzy logic” and 

various methods are possible [48]–[50]. The input for the defuzzification process is the 

aggregate output fuzzy set, while the output is a single number. The Center of gravity 

(COG) method is most prevalent and physically appealing of all the defuzzification 

methods [51], which was taken into consideration in this model, resulting the gravity 

center procedure to be applied in this study. The basic principle in COG method is a 

centroid approach, which finds the point where a vertical line slices the aggregate set 

into two equal masses.   
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5.6. Adaptation of the Learning Activities Based on Fuzzy Weights 

Technical drawing assumes high level training of spatial ability, while it is achieved 

by using adaptive learning activities considering the student’s level of knowledge. This 

is accomplished by converting student’s current knowledge level to fuzzy weights to 

deliver appropriate learning activities both in quantity and level of difficulty, learning 

activities. 

Six fuzzy weights have been defined in this approach to represent the current knowledge 

level of students in the domain of technical drawing. The membership functions which 

are used to calculate the sextet that best defines the student's current level of knowledge 

are presented in Fig. 9.  

 

Fig. 9. Membership functions describing student’s knowledge level 

The output of the aforementioned membership functions is limited to between 0 and 

1, and they are used in the fuzzification and defuzzification steps of the fuzzy logic 

system, as they map the non-fuzzy input values to fuzzy linguistic terms and vice versa. 

We integrated membership functions which are formed using straight lines, having the 

advantage of simplicity, and more specific the trapezoidal membership function (Fig. 

10). 
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Fig. 10. Fuzzy weights of knowledge level in linguistic terms 

Student’s knowledge level is described by the sextet (N, B, C, VG, P, and E), and as 

such, the student may be fully assigned to one, or partially assigned to more fuzzy sets, 

meaning that student’s knowledge level can be described as ‘Competent’ or partially 

‘Very Good’ and partially ‘Proficient’, respectively. As an example, a student’s sextet of 

(0, 1, 0, 0, 0, 0), classifies the student as 100% ‘Beginner’. Another example of a 

student’s sextet which is (0, 0, 0, 0.70, 0.30, 0), classifies the student to be 70% ‘Very 

Good’ and 30% ‘Proficient’. But whatever the values of the sextet are, the equation 

μN(x) + μB(x) + μC(x) + μVG(x) + μP(x) + μE(x) = 1 stands. 

In this section, the analysis of the rules, in combination with the fuzzy weights, is 

presented to adapt the teaching strategy to the students’ knowledge level [52]–[54]. The 

number of learning activities of each level’s chapter that the student must learn each 

time, is dynamically defined according to the current level of knowledge [55]. 

The rules’ design plays an important role in determining the number and the difficulty 

of the learning activities delivered to the students. The rules have been defined by eight 

professors from the Department of Informatics and Computer Engineering, who utilized 

the fuzzy rules, and their related thresholds at the membership functions. The faculty 

members were asked to define, in more detail, the technical drawing knowledge levels 

that students gain during the course throughout the course of an entire semester. All the 

faculty members have more than 15 years of experience instructing technical drawing in 

academic contexts, and they can attest to the accuracy of the depiction of students’ 

knowledge levels. They contributed to the current stage by matching each learning 

activity with the corresponding SOLO level.  

As an example, a beginner student needs to study many topics of low difficulty of the 

initial levels of SOLO taxonomy, such as pre-structural and unistructural level, whereas 

an expert student can deal topics of the multi-structural and relational level of SOLO 

taxonomy of lesser quantity. The set of rules in total is presented in Table 3. 
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Table 3. Decision rules for adaptive instruction 

Current level of  

knowledge 

L1 L2 L3 L4 L5 Sum of 

LAs 

μΝ = 1 9 5 0 0 0 14 

μΝ < 1 and μΒ < 1 8 5 0 0 0 13 

μΒ = 1 6 6 0 0 0 12 

μΒ < 1 and μC < 1 5 5 1 0 0 11 

μC = 1 4 4 2 0 0 10 

μC < 1 and μVG < 1 3 3 3 0 0 9 

μVG = 1 1 1 3 2 1 8 

μVG < 1 and μP < 1 0 1 2 3 1 7 

μP = 1  0 0 1 4 1 6 

μP < 1 and μE < 1 0 0 0 3 2 5 

μE = 1 0 0 0 1 3 4 

According to Table 3, a student who was assigned a crisp output value of 76 per cent, 

has been classified as partially very good and partially proficient, and will be delivered 

learning activities (LAs), as follows: 

• no learning activity of SOLO-L1; 

• one learning activity of SOLO-L2; 

• two learning activity of SOLO-L3; 

• three learning activities of SOLO-L4; and 

• one learning activities of SOLO-L5. 

6. Evaluation and Discussion 

The evaluation of PARSAT took place for the winter academic semester 2022-2023 

during the tutoring of the undergraduate course of “Technical Drawing” of a public 

University of the capital city of the country. In particular, three educators, and 240 

undergraduate students, participated in the evaluation process. All the measurements of 

gender and age were derived from a randomly selected sample and do not have an 

impact on our research findings. The demographics analysis is shown in Table 4. 

The population was equally divided by the instructors in two groups, each of which 

had equal number of students. The first group, namely experimental group, were asked 

to operate the PARSAT by themselves, taking advantage of the system’s adaptivity. For 

instance, the modeling of the students’ domain knowledge, offered them the opportunity 

to watch video tutorials of different duration, to rotate 3D objects of different 

complexity in order to visualize and understand their structures, and overall face 

different learning activities according to their personalized profile.  

The second group, namely control group, used the learning material with the same 

learning activities, without any adaptivity in students’ personal profile. All three 

instructors were engaged in both groups. 
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Table 4. Demographics 

Measure Item Frequency Percentage (%) 

Sample size  240 100.0 

Gender Male 151 62.9 

 Female 88 36.7 

 Non-binary 1 0.4 

Age 15-17 0 0 

 18-19 199 82.9 

 Over 20 41 17.1 

Prior knowledge None 198 82.5 

 High school course 42 17.5 

After the completion of the course at the end of the semester, the two groups 

(experimental and control) were asked to answer a questionnaire, based on a 7-point 

Likert scale ranging from (1) strongly disagree to (7) strongly agree. The questions are 

the following [56], [57]: 

Question 1 (Q1): The learning activities were in accordance with your knowledge 

level; 

Question 1 (Q2): The number of the learning activities was effective; 

Question 3 (Q3): PARSAT successfully identified your learning style. 

Analyzing the answers to the aforementioned questions, we present the results in 

three pie charts (Figures 11-13).       

 

Fig. 11. Question 1 results 

 

Fig. 12. Question 2 results 
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Fig. 13. Question 3 results 

According to the evaluation results presented in the paper, a majority of the students 

found the learning activities to be appropriate for their knowledge level and effective for 

learning. Specifically, 182 students (76%) found the learning activities to be in 

accordance with their knowledge level, while 190 students (79%) found the number of 

learning activities to be appropriate for effective learning. Additionally, most students 

(180 or 75%) highly evaluated PARSAT as pedagogically useful for supporting their 

learning process. These positive evaluation results suggest that the proposed system, 

which utilizes fuzzy logic and AR technology, can provide a personalized and effective 

training experience for engineering students in the domain of technical drawing. 

A statistical hypothesis test was used to assess the system more thoroughly. The 2-

tailed t-test results indicate that there is a significant difference between the mean values 

of all three questions, which relate to the appropriateness of the learning activities, the 

number of learning activities, and the overall pedagogical usefulness of PARSAT. The t-

Stat values for all three questions are greater than the critical t values, indicating that the 

results are statistically significant. This suggests that the proposed system, which 

incorporates an adaptive mechanism for learning activities, had a positive effect on 

student satisfaction and improved learning outcomes. Overall, the statistical analysis 

provides further evidence of the effectiveness of the PARSAT system for training 

engineering students in technical drawing. 

Table 5. t-test results 

 Question 1 Question 2 Question 3 

 Experimental 

group 

Control 

group 

Experimental 

Group 

Control 

group 

Experimental 

Group 

Control 

group 

Mean 6.03 3.71 6.48 3.66 6.01 3.29 

Variance 0.74 0.43 0.42 0.49 0.57 0.65 

t-Stat 2.72 4.04 3.79 

P two-tail 0.0016 0.00061 0.00035 

t Critical two-

tail 

2.01 1.89 1.97 

 

As far as the learning outcome is concerned, the authors compared the pretest-posttest 

results of an experimental group (120 students) who used the PARSAT system's 

adaptive learning material distribution using fuzzy logic, to a control group (also 

consisting of 120 students) who did not have access to this advanced functionality. All 
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students, both in the experimental and control groups, took the same pretest to establish 

their prior knowledge of technical drawing. At the end of the semester, both groups took 

the same posttest, and a paired t-test was used to compare the differences in learning 

outcomes between the two groups. This approach allows the researchers to assess the 

effectiveness of the PARSAT system in improving learning outcomes in technical 

drawing. 

Table 6 presents the evaluation results of the pretest and posttest scores of both the 

experimental and control groups. The experimental group had a pretest mean score of 

4.19 and a posttest mean score of 6.24, indicating an improvement of 2.05 points. On 

the other hand, the control group had a pretest mean score of 4.38 and a posttest mean 

score of 5.01, indicating an improvement of only 0.63 points. While both groups 

improved their scores, the improvement in the experimental group was significantly 

greater than that of the control group, indicating that the adaptive system used by the 

experimental group had a positive impact on their learning outcomes. 

Table 6. t-test results of the pretest and the posttest scores 

 Experimental 

group 

Control 

group 

Pretest Mean 4.19 4.38 

Posttest 

Mean 

6.24 5.01 

Difference 2.05 0.63 

t-Stat 4.23 1.64 

P-value 0.00033 0.0038 

  

The evaluation results presented in Table 6 show the pretest and posttest mean scores 

of the experimental and control groups. A pretest is a test administered before the 

instruction, while a posttest is a test administered after the instruction. By comparing the 

pretest and posttest scores, the authors determined how much the instruction has 

improved students' learning outcomes. 

In this study, the experimental group used the PARSAT system, which provided 

adaptive learning material distribution using fuzzy logic, while the control group did not 

have access to this system. The results show that both groups improved their scores from 

the pretest to the posttest. However, the experimental group showed a much greater 

improvement than the control group, indicating that the adaptive system used by the 

experimental group had a positive impact on their learning outcomes. 

7. Conclusion 

This paper presents PARSAT, which is a mobile augmented reality application for the 

training of spatial skills. PARSAT asks the user to insert three inputs, namely age, 

gender and prior knowledge, and personalizes the educational experience to each 

student. The adaptivity is accomplished by employing fuzzy weight-based decisions, 

defining the students’ domain knowledge level, and according to the fuzzy logic results, 

each student receives different learning activities. 
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The findings of the system’s evaluation are quite encouraging, as they show a high 

level of student satisfaction and improved learning outcomes. Students gave this 

personalized teaching approach a high feedback grade, indicating the correctness of the 

learning activities supplied, depending on their knowledge level. Finally, the pretest and 

posttest evaluations revealed a considerable improvement in students' scores, verifying 

the pedagogical suitability of the proposed learning approach. 

In addition to the findings, there are some limitations related to screen size, hardware 

variability, and the limited computational resources of mobile devices. This can result in 

slower performance and limitations in the types of augmented reality experiences that 

can be created.  

The current research focuses on providing students with appropriate learning 

activities based on their knowledge level as the primary determinant of their 

adaptability. Incorporation of extra fuzzy weights regarding other students' 

characteristics, such as emotional state and/or types of mistakes is a future inquiry 

coming from this work, with the goal of improving system adaptation, and, hence 

learning outcomes.  

Integrating hybrid algorithmic techniques for modelling student knowledge can be a 

promising future extension. By combining different techniques, such as fuzzy logic, 

Bayesian networks, and decision trees, it may be possible to create more accurate and 

reliable student models. This can lead to more personalized and effective learning 

experiences for individual learners. 
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