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Abstract. Computer vision (CV) has been successfully used in picture categoriza-
tion applications in various fields, including medicine, production quality control,
and transportation systems. CV models use an excessive number of photos to train
potential models. Considering that image acquisition is typically expensive and
time-consuming, in this study, we provide a multistep strategy to improve image
categorization accuracy with less data. In the first stage, we constructed numerous
datasets from a single dataset. Given that an image has pixels with values ranging
from 0 to 255, the images were separated into pixel intervals based on the type of
dataset. The pixel interval was split into two portions when the dataset was grayscale
and five portions when it was composed of RGB images. Next, we trained the model
using both the original and newly constructed datasets. Each image in the training
process showed a non-identical prediction space, and we suggested using the top-
three prediction probability ensemble technique. The top three predictions for the
newly created images were combined with the corresponding probability for the
original image. The results showed that learning patterns from each interval of pix-
els and ensembling the top three predictions significantly improve the performance
and accuracy, and this strategy can be used with any model.

Keywords: Classification probability, model optimization, ensemble learning.

1. Introduction

With the advent of neural networks (NNs) and the advancements in deep learning (DL),
computer vision (CV) is no longer limited to science-based fundamental experiments and
is now increasingly being applied to practical applications. The automotive sector, IoT,

⋆ This is an extended version of our INISTA 2022 conference paper [26]
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healthcare, and finance are only a few among the industries that are increasingly using
CV products as their main source of supply. In addition, there is a sharp increase in the
demand for high- accuracy models. To satisfy this requirement, numerous studies have
been conducted on DL and CV. Future advancements in this sector will be affected by a
slight improvement in model accuracy. The evolution of DL has led to the development
of numerous models and methods for each DL subfield to address various issues. To
address the issues and close the gaps in literature, numerous algorithms and tools have
been proposed. The first is ensemble learning, which enables DL models to exchange
knowledge using ensemble approaches.

Numerous researchers [1] - [7] have demonstrated the advantages of DL ensembles.
The models, data, and methods that enable the leveraging of the knowledge of ensemble
units have been approached in various ways. The outcomes of the ensemble models have
been presented in [8] - [20], among other domains, including medical, financial risk anal-
ysis, and oil price prediction . Improvements in the DL models can aid their evolution in
the future.

To resolve DL classification issues, we present an image pixel interval power (IPIP)
ensemble technique. We propose two sub-methods (IPDR and IPMR ), described by IPIP,
to create new datasets from the original dataset utilized for DL classification tasks. We
replicated the original dataset using the IPDR and replaced any pixel having value 127
or less with zero. Consequently, we obtained a second dataset for training. We duplicated
the initial dataset to create the third dataset; however, this time, all pixel values higher
than 127 were changed to zero. In the second stage, we trained three datasets using three
models and their ensemble prediction outcomes. The outcomes of this strategy were fa-
vorable. The accuracy of the model improved from 98.84% to 99.11%. Similar to IPDR,
IPMR uses more than two intervals to extract datasets from the original dataset and applies
them to training.

This paper is an extended version of our conference paper [26]. The new methods
consist of the following elements: the Sole-Top3 ensemble and Sum-Top3 ensemble are
two unique ensemble methods for enhancing the precision of image classification models.
This approach benefits from the fact that many image-classification methods can generate
precise predictions for the top three classes of images. Each submodel that we trained was
tailored to a certain subset of the classes. The top three prediction probabilities from each
submodel were then combined to create one prediction for the main model. We tested
our method on a number of image classification datasets and verified that it consistently
outperformed the competing ensemble methods. The proposed method makes two key
contributions to the literature. First, it can effectively combine the predictions of multiple
models even when the models are trained on different datasets. Second, it can improve the
accuracy of the image classification models without significantly increasing the training
time or computational cost.

An improvement in the accuracy to nearly 100% is an important factor to highlight. It
can be challenging to improve the results of various DL ensemble models once the accu-
racy has reached close to 100%. The prediction scope of an ensemble typically overlaps
with that of the main model and does not permit improved accuracy. Using our approach,
we partially resolve this issue and improve the outcomes of our models. This model is not
able to interfere with the primary model’s training ¬because it was developed indepen-
dently and incorporates nearly all its knowledge, which is another appealing aspect.
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This section provided background information on ensemble learning and an overview
of the subject matter. The remainder of this paper is organized as follows. Information on
relevant studies and issues related to ensemble learning is provided in Section 2. The chal-
lenges described in Section 2 are addressed in Section 3, which offers extensive justifica-
tion for the proposed methodology. Detailed information about the dataset, base method,
training configuration, evaluation metrics, experimental findings, and discussions is in-
cluded in Section 4, along with the experiments and findings of the study. Section 5 con-
cludes the paper with a few observations of the research as a whole, and suggests areas
for further investigation.

2. Literature Review

Deep neural networks include multiple nonlinear hidden layers, leading to expressive
models that learn complex relationships between inputs and outputs. With limited train-
ing data, many complex relationships involve noise, resulting in overfitting. The transfer
learning of image pixel values and prediction probability-based methods have shown ad-
vantages in numerous research areas, such as image classification [21], natural language
processing [22], speech recognition, and remote sensing. In recent years, several machine-
learning [23], [24] and deep-learning models [29], including convolutional neural net-
works [25] and recurrent neural networks, have been evaluated for image classification
tasks.

To address the limitations of conventional classification approaches, [26] we pro¬pose
a novel ensemble learning paradigm with imbalanced data, which comprises three phases:
data preprocessing , base classifier training, and an output ensemble. CNNs and deep
residual networks are used as individual classifiers and random subspaces, respectively.
To diversify the ensemble system in a simple and effective manner to further improve
classification accuracy, ensemble and transfer learning were evaluated, as specified in
[28], to transfer the learned weights from one individual classifier to another (i.e., CNNs).
The generalization of the existing semi-supervised ensembles can be strongly affected
by incorrect label esti¬mates produced by ensemble algorithms to train supervised base
learners. [27] proposed cluster-based boosting, which is a multiclass classification algo-
rithm with cluster regularization. In contrast to existing algorithms, cluster-based boosters
and their base learners jointly perform cluster-based semi-supervised optimization.

Clustering ensembles and their applications in different disciplines have been the fo-
cus of numerous studies [30,31,32,33]. The clustering ensemble investigates the joint
success of clustering models; however, it generates a large number of clustering parti-
tions and combines them to obtain a better consensus function. Soares et al. [34] inves-
tigated the labeling of data in dense locations with overlapping classes and suggested a
cluster-based boosting technique with cluster regularization for multiclass classification.
Numerous studies have been conducted on semi-supervised clustering methods. One of
them is [35], which uses the random subspace technique and constraint propagation ap-
proach for incremental semi-supervised clustering for high-dimensional data clustering.
Furthermore, this method selects incremental ensemble members using newly proposed
local and global cost functions.

The advantage of using the DL ensemble employing faster RCNN, TOOD, YOLOX
, and cascade with Swin-Transformers in detecting intestinal parasite illnesses was pre-
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sented by [36] and achieved better performance than each technique when used sepa-
rately. Another recent study [37] integrated convolutional and bidirectional LSTM in a
customized deep learning ensemble model for the time-series forecasting of COVID-19.
The results obtained for several measures were remarkable. [38] improved COVID de-
tection using CT scan images by combining the retrieved features from the CNN and
ML algorithms. [39] used a DL ensemble comprising robustly optimized bidirectional
encoder representations from transformers approach (RoBERTa), long short-term mem-
ory (LSTM), bidirectional long short-term memory (BiLSTM), and a gated recurrent unit
(GRU) in sentiment analysis. The model outperformed state-of-the-art models in terms of
performance.

During image preprocessing, visual data is captured as pixel arrays. Convolutions,
which is the de facto deep learning operator for computer vision, are then used to process
these pixel arrays. Convolutions attempt to relate to spatially distant concepts by explic-
itly modeling all concepts across all images, regardless of content, and taking into account
all image pixels equally, regardless of relevance. The majority of the research under re-
view left missing the ensemble of the top three prediction outcomes and knowledge of the
image pixel interval variance, which could be useful for improving the classification ac-
curacy of CNN models. To close this gap, we conduct this study to examine the outcomes
of the aforementioned approach.

3. Proposed Methodology

3.1. Image Pixel Interval

In data pre-processing, we applied a method comprising two sub-methods that studies
image pixel variance. The main contribution of our method is the use of datasets copied
from the original dataset, except certain interval pixel values . The difference in the num-
ber of intervals enabled us to create an initial double representation of the main dataset
and multiple representations of the main dataset. The IPDR is a simple double represen-
tation of the main dataset. For IPDR, we created two zero arrays of the same size as the
main dataset. We used the MNIST and CIFAR-10 dataset in our experiments. For the
MNIST dataset, we created two arrays of size 60000 x 32 × 32 × 1, all filled with zeros.
For the first subdataset, we selected pixel values from the main dataset that belonged only
to the [0:127] interval, copied and pasted them at the same position in the image, and all
other image pixels in the dataset were changed to zero. The second subdataset was built
using the same method as the first subdataset, except that the pixel value interval for the
second subdataset was [128:255]. All values higher than 127 were copied and pasted at
appropriate positions in the image, and all other image pixels in the dataset were changed
to zero (figure 1).

For the IPMR, we applied the same method as previously described; however, in-
stead of two intervals, we used multiple intervals of 50 (i.e., [0:50], [51:100], [101:150],
[151:200], and [201:255]) for the CIFAR-10 dataset, as shown in figure 2. Number of
intervals depends on the type of dataset. During our experiments, we observed that to
achieve high accuracy in training, the RGB channel images should be divided into five
parts.
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Fig. 1. Image pixel interval process for MNIST dataset

Fig. 2. Image pixel interval process for Cifar 10 dataset

3.2. Transfer Learning

Two model architectures with different numbers of parameters were used during the train-
ing process. The first model included 259,658 trainable parameters, as shown in Figure 3.
The other proposed model had 165,514 trainable parameters.

We selected a model with a small number of parameters to avoid the overuse of time
and power during IPIP implementation. However, the important aspect of our study was
that we could achieve the same outcomes using a decreased-size model. The architecture
for the regular model comprised three convolutional layers with 32, 64, and 128 filters
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and four dense layers with 256, 256, 128, and the number of class nodes for each dataset.
In addition, we used max pooling with a 2 × 2 filter and batch normalization layers in both
model architectures. The filter of size 3 × 3 was used for the convolutional layers in both
the models. The architecture of the proposed model, as presented in Figure 3, comprises
three convolutional layers with 32, 64, and 128 filters, and one fully connected layer in
Part 1. The entire model in Part 1 was replicated by excluding the output layer from the
new sequential model. We then iterated each layer in a new sequential model and set it as
nontrainable. This froze the weights and other trainable parameters in each layer so that
they would not be trained or updated. We added new fully connected layers and an output
layer with a softmax activation function. The model was identical to the original model
except that the number of trainable parameters decreased.

3.3. Prediction Probability Ensemble

In this section, we propose the top-three prediction probability ensemble. Each training
dataset in our instance—three datasets each for the MNIST and Fashion MNIST datasets
and six datasets for the CIFAR-10 dataset—represents a different prediction space. To cre-
ate the main models that correspond to the prediction 5 probabilities, we ensembled the
top three prediction probabilities of each image trained in the sub-model. The Sole-Top3
ensemble and Sum-Top3 ensemble were both used to test the ensemble method. The top
three prediction probabilities from each submodel were combined with the correspond-
ing prediction probabilities from the main model in the Sole-Top3 ensemble procedure.
The top three prediction probabilities from each submodel were combined into the corre-
sponding prediction probabilities for the main model in the Sum-Top3 ensemble. Equation
1 shows method of sorting prediction probabilities for each trained model. Here, k is the
number of ensemble model indices, and k=1–5. Equation 2 shows the ensemble of each
prediction probability from the submodels to the main model. Here, i is the number of
the image in the datasets, that is, i= 0,1,2...m and j is the top three maximum probability
indices, where j= 0,1,2.

bk = np.argsort(Ak, axis = 0).sort(reverse = True). (1)

A[bk[:, i][j], i]+ = Ak[bk[:, i][j], i]. (2)

4. Experiments and Results

4.1. Datasets

We used two widely used grayscale and RGB color datasets in our proposed method:
CIFAR-10, Fashion MNIST, and MNIST shown in Fig. 4, 5(a), and 5(b), respectively.
The MNIST database of handwritten digits contains a training set of 60000 examples and
a test set of 10000 examples. It is a subset of a larger set available from NIST . The digits
were size normalized and centered on a fixed-size image.
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Fig. 4. Cifar 10 dataset

This is a database for people who want to test learning techniques and pattern 2recog-
nition methods on real-world data while spending minimal effort on preprocessing and
3formatting. It contains 60000 training sets and 10000 test sets. The MNIST dataset was
originally selected and tested by Chris Burges and Corinna Cortes. They used bounding
box 5 normalization and centering. Yann LeCun’s version used center of mass6 to center
within a larger window. This is an extremely light-task DL model used to train the dataset.
The 7CIFAR-10 dataset consists of 60000 color images of size 32 x 32 in 10 classes, with
6000 images8 per class. It includes 50000 training images and 10000 test images. The
dataset was 9 divided into five training batches and one test batch, each containing 10000
images. The 10test batch contained exactly 1000 randomly selected images from each
class. The training 11batches contained more images from one class than from another.
The 12training batches contained exactly 5000 images from each class.

4.2. Experimental Setup

Python 3.6.12 and TensorFlow 2.1.0 were used to build the model architecture for the
proposed method. For the experiments, we used a 12 GB Nvidia GeForce RTX 3080 Ti
16 with CUDA 10.2, on a computer with an AMD Ryzen 7 3700X and 64 GB of RAM.
For training, the weight of the model was randomly initialized and trained for certain
epochs. To train the model, we used the Adam optimizer with a default learning rate of
0.001 and 19 sparse categorical loss function. Each model was trained for 15 epochs.
Results 20 from the 15th epoch were used to build a new ensemble and were evaluated
using metrics addressed in this study.

4.3. Evaluation Metrics

For this study, we selected two metrics that meaningfully explained the method’s achieve-
ments in different datasets. The accuracy is the ratio of true predictions to the total number
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(a) (b)

Fig. 5. Fashion MNIST (a) and MNIST (b) datasets

of cases used to evaluate the model. Equation 3 shows the accuracy of the calculations.
The next evaluation metric was the UTP , which is the percentage of unique predictions
for each model with respect to another model. In Equation 4, UTP(X, Y) determines the
unique true predictions of Model X with respect to those of Model Y. These metrics ex-
plain why the proposed model achieved better results than the main model, for which
only the main dataset was trained. The indices of the true predicted images were different
for each model but had the same accuracy. This enabled the ensemble to achieve better
results.

Accuracy =
TP + TN

TP + TN + FP + FN
. (3)

UTP (X,Y ) = X −X ∩ Y (4)

4.4. Experimental Results and Discussions

The main motivation for this study was to utilize knowledge from pixel-level variance by
changing the data representation and achieve better accuracy metrics for the classification
task. After changing the data representation, we proposed an ensemble of the outcomes
of each subdataset from the top three predictions to the corresponding three predictions
of the main model, as shown in fig. 6. Classic training was used as the baseline method
for the experimental evaluation. Classic training was selected because of the difficulty in
finding alternative methods that could be used to compare the results. Most DL ensemble
models focus on model architectures and data representations by image-level preprocess-
ing rather than on researching pixel-level variances. The main objective of this method
is to apply it simultaneously to various combinations with many other DL ensembles.
The training dataset was prepared by dividing it into different parts depending on the im-
age. CIFAR-10 was divided into six types. The first copy of the dataset included all pixel
values in the images from 0 to 255. The second dataset had pixel values between 0 and
50, and all other pixel values were set to zero. In all the other datasets, a certain interval
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Fig. 6. Experimental results of accuracy and loss metrics using proposed model on the
validation set and training set of the datasets: MNIST, Cifar10 and Fashion MNIST
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of pixel values was maintained by ignoring the other values at intervals of 50, [51:100],
[101:150], [151:200], and [201:255]. The primary purpose of the pixel interval method
is to study and classify image pixels individually. After splitting the images, each dataset
was individually trained using the specified CNN models described in Section 3. The ex-
periments were conducted using the same method as for the MNIST dataset, although the
data preprocessing was different. Because the MNIST dataset is grayscale, the image in-
terval splitting of dataset consisted of two equal parts. The first part included pixel values
from 0 to 127 and excluded all other values by equaling them to zero. The second part
had pixel values between 128 and 255. All datasets were trained using the proposed fine-
tuned model with 165,514 trainable parameters, whereas the original model used 259,658
trainable parameters. There was a reduction of approximately 100,000 parameters that
saved computational power and memory and also helped to increase the training speed.
The numbers were more visible when the model epochs were set to 100: 16,551,400 and
(1) 25,965,800. By applying the proposed model, we achieved output results of 73.58%
and 99.07% of the original model, for the CIFAR-10 and MNIST datasets, respectively
(Table 1).

Table 1. Test set accuracy for MNIST, Fashion MNIST and CIFAR-10 datasets and
proposed methods

Dataset Method Accuracy Score

MNIST IPIP 98.90
Sole-Top3 99.01
Sum-Top3 99.07

Cifar 10 IPIP 73.38
Sole-Top3 73.45
Sum-Top3 73.58

Fashion MNIST IPIP 89.46

5. Conclusion

In this study, we proposed an enhanced version of the layer dropout technique and trans-
fer learning to regularize deep neural networks. By applying transfer learning, we ex-
tracted features from the images before feeding them into the model. A fine-tuned con-
volutional neural network was applied by placing dropout operations before each con-
volutional layer. In addition to image classification, we tested the proposed method on a
pixel-interval dataset. The proposed method could generalize deep neural networks with
lower gradient descent and faster convergence during training and achieved promising re-
sults on classification tasks. Deactivation of the basic components of the neural network
models discussed in this study are based on randomly setting a particular component to
zero. The main disadvantage of this technique is the risk of losing useful information in
the image. In future research, we will focus on further improving the pixel-interval image
pre-processing method and we plan to combine with the analysis of user opinions in social
media to improve the accuracy. We will use consensus methods for integrating the user
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opinions yielding a common opinion which can be taken into account for determining the
prediction. Consensus methods have been proved to be very useful in many integration
tasks and should be also useful in integrating user opinions [40, 41, 42].
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