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Abstract. Understanding deep residual networks (ResNets) decisions are receiv-
ing much attention as a way to ensure their security and reliability. Recent research,
however, lacks theoretical analysis to guarantee the faithfulness of explanations and
could produce an unreliable explanation. In order to explain ResNets predictions,
we suggest a provably faithful explanation for ResNet using a surrogate explain-
able model, a neural ordinary differential equation network (Neural ODE). First,
ResNets are proved to converge to a Neural ODE and the Neural ODE is regarded
as a surrogate model to explain the decision-making attribution of the ResNets. And
then the decision feature and the explanation map of inputs belonging to the target
class for Neural ODE are generated via the symplectic adjoint method. Finally,
we prove that the explanations of Neural ODE can be sufficiently approximate to
ResNet. Experiments show that the proposed explanation method has higher faith-
fulness with lower computational cost than other explanation approaches and it is
effective for troubleshooting and optimizing a model by the explanation.

Keywords: Deep residual networks, Explanation, Neural ODE, Symplectic adjoint
method.

1. Introduction

Deep neural networks, such as deep residual networks (ResNets) [9], have been widely ap-
plied due to their superior performance. However, they are usually regarded as black box
models driven by data, and it is difficult to explain how the models work and predict their
decisions. Therefore, the result of ResNets may be out of control. For instance, the net-
works are easily tricked into incorrect classification results by adversarial instances, which
are produced by artificially created hostile perturbations that are invisible to humans [19],
[28],[25]. The uninterpretability of ResNets makes them potentially dangerous for ap-
plications in safety-critical tasks such as intelligent medical diagnosis and autonomous
driving [12],[18],[10].

⋆ Corresponding author
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How to make black box models transparent is a significant and intriguing subject
given the requirements for trusted and safe AI. Finding the ResNets’ decision-making at-
tribution is a focus of several researchers. By identifying the attribution and creating an
explanation why ResNets’ predictions are going, gradient-based backpropagation meth-
ods such as Guided-BP [27], IntegratedGrad [29] and SmoothGrad [26], and the combined
gradient class activation map (CAM) methods such as Grad-CAM [23] and Grad-CAM++
[3] have been proposed. Although these gradient-based methods make it easy to under-
stand the contribution of the input features and can locate meaningful image regions with
good semantic visual performance for humans, the gradient vanishing and saturation is-
sues may result in inaccurate explanations. Moreover, they require the gradients layer-by-
layer backpropagation, which leads to low computational efficiency. On the other hand,
the gradient-free methods such as Score-CAM [31] and Group-CAM [33] use feature
maps as masks on the original image to output the forward passing score as the weights
instead of gradients. Although the methods outperform current state-of-the-art methods
on both visual performance and localization tasks, the weights are obtained entirely based
on training, the lack of theoretical analysis cannot demonstrate the faithfulness of the
explanation, and retraining greatly reduces the computational efficiency.

Considering the problem of the naive gradient and the lack of theoretical analysis
to guarantee the faithfulness of the explanation, this paper proposes a novel explanation
method for ResNet with the symplectic adjoint method. An explainable neural ordinary
differential equation network (Neural ODE), which is proved to be the convergent model
of ResNets, as shown in Fig. 1, is built as a surrogate model to explain the decision
features of ResNets. Thus, inspired by [17], the symplectic adjoint method is used to get
over the naive gradient problem. Our method takes advantage of gradient-based methods,
and it makes up for the lack of theoretical analysis to demonstrate the faithfulness of the
explanation. The contributions of this paper are as follows.

1. ResNets are proved to converge to a Neural ODE which is obtained as a surrogate
model to explain ResNet predictions. And then the symplectic adjoint method instead of
the naive backpropagation algorithm is used to obtain a more accurate calculation of the
decision features with less memory and lower computational cost than other explanation
approaches.

2. The proposed method has class sensitivity not only in the deep layer but also in
the input layer. The gradient decomposition produces an explanation map for the Neural
ODE in the input layer that is sufficiently close to the explanation of ResNets under certain
conditions, based on a trade-off between faithfulness and intelligibility.

3. The faithfulness of the proposed explanation method is quantitatively evaluated
through the evaluation indicators of the deletion and insertion metrics. Experiments re-
sults show that the proposed approach has higher faithfulness with lower computational
cost than others, and it is effective for troubleshooting and optimizing a model by the
explanation.

The remainder of the paper is structured as follows: In Section 2, the related work is
presented, while the definitions of ResNet and Neural ODE, and the relationship between
ResNet and Neural ODE are introduced in Section 3. Section 4 proposes the symplectic
adjoint method. The faithfulness of the explanation between ResNet and the surrogate
model - Neural ODE is demonstrated in Section 5. In Section 6, the experimental results
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Fig. 1. Overview of our proposed method

are discussed, and finally, the concluding remarks and future directions are depicted in
Section 7.

2. Related works

With the widespread application of ResNets, making them interpretable is the impelling
priority to be solved to make them trustworthy. Recently, many researches on explicitly
explaining the decision attribution of models have emerged. Gradient-based backpropa-
gation methods, CAM-based methods, and Surrogate-based methods are the three major
methods.

Gradient-based backpropagation methods. These approaches compute and visual-
ize the gradient of the output concerning the input features for the target class to interpret
the contribution of the input features for the prediction result. Simonyan et al. [24] pro-
posed an explanation method to compute the gradient by the backpropagation algorithm
to visualize the saliency maps, highlighting the importance of the decision features of
the target class. Considering that the saliency maps obtained by the approach are noisy,
Guided-BP [27] only backpropagates positive error signals during the process of gradient
backpropagation, which is helpful to explain the positive influence of each neuron in the
deep network on the input image. Instead of only computing the gradient of the output to
the current input, IntegratedGrad [29] calculates the integral of the gradient of the input
scaled up from some starting value to the current value. In addition, SmoothGrad [26]
adds Gaussian noise to the sample to be interpreted to obtain similar samples, and then
the backpropagation algorithm is implemented to generate a saliency map for each input
sample. Finally, the average of all the saliency maps of the similarity-generated samples is
an explanation of ResNet’s decisions with less visual noise. Although the gradient-based
explanation methods have theoretical analysis to compute the gradient to make it easy to
understand the contribution of the input features, the explanations lack semantic intelli-
gibility and the gradient obtained by the backpropagation algorithm has vanishing and
saturation issues, which are the main reason to generate inaccurate explanations.
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CAM-based methods. For better visual performance than gradient-based backpropa-
gation methods, CAM-based methods calculate and visualize the linearly weighted com-
bination of the gradient of the target class and feature maps of the last convolutional layer
to locate meaningful image regions to explain important decision features. In [34], the
fully connected layer is replaced by a global average pooling layer to project the weight
of the output for the target class to the weighted combination of the last convolution
layer. And the class activation map is obtained to explain the region of the input image
that the model mainly depends on when making classification decisions. Without modi-
fying the architecture of the network, Grad-CAM [23] calculates the average gradients of
feature maps in the last convolutional layer for the target class as the weight of feature
maps to obtain gradient-weighted class activation maps. To obtain more exact explana-
tion results, Grad-CAM++ [3] uses higher-order gradients instead of the average gradient
in Grad-CAM as the weight of feature maps. But the gradient vanishing and saturation
issue during the backpropagation may also result in a trustless explanation, sometimes
image regions with higher weight values contribute less to the target class. To get rid of
the gradient, Score-CAM [31] applies feature maps as a mask on the original image as
the input image to obtain the forward passing score as the weight of each feature map
on the target class instead of the gradients, finally computes the linear combination of
the weights and feature maps. Furthermore, for less visual noise, Group-CAM [33], Aug-
mented Score-CAM [11] and FIMF Score-CAM [15] performs meaningful perturbations
on initial masks, which are then fed into the network to obtain new weights. However,
these weights are obtained entirely based on retraining, which requires high computa-
tional costs, and the faithfulness of the explanation cannot be demonstrated due to the
lack of theoretical analysis.

Surrogate-based methods. Surrogate-based methods attempt to explain the local or
global decision-making basis of the initial network by using a simple interpretable model
as a surrogate model. By perturbing the input samples and constructing a local linear
model as a model-independent local explanation method LIME to show the image re-
gion that is highly sensitive for the target score. While LIME cannot accurately explain
neural networks such as Recurrent Neural Networks (RNN), Guo, et al. [5] proposed a
high-fidelity explanation method LEMNA suitable for security applications, and a simple
regression model is trained to approximate the local decision boundaries of RNN. Then,
by introducing the fused lasso regularization to deal with the feature-dependent problem
in RNN, LEMNA effectively improves the approaches such as LIME in the fidelity of
the explanation. Although LIME and LEMNA are simple to understand, random pertur-
bation and feature selection methods lead to unstable explanations. Bramhall et al. [2]
proposed the quadratic approximation framework QLIME redefine the linear represen-
tation by LIME as a quadratic relationship, extending the flexibility in non-linear cases
and improving the accuracy of explanations. However, there is no theoretical analysis to
guarantee the consistency of the explanation between the initial network and the surrogate
model.

All these methods visualize the decision features of ResNets and help explain the
mechanism of ResNets, but there is no theoretical analysis to guarantee the faithfulness of
the explanation. In this paper, the advantages of gradient-based methods and CAM-based
methods are integrated, on a trade-off between explanation faithfulness and intelligibility,
an explainable Neural ODE, which is proved to be the convergent model of ResNets, is
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built as a surrogate model to explain ResNets to improve the faithfulness of the explana-
tion and reduce computational cost.

3. ResNets and Neural ODE

In this section, we first introduce the definitions of ResNets, and a neural ordinary dif-
ferential equation network, namely Neural ODE, is obtained to be a convergent model of
ResNets, i.e. ResNets is sufficiently close to the Neural ODE. Thus, the Neural ODE can
be regarded as a surrogate model to explain ResNets predictions.

3.1. Definitions of ResNets

First, we generalize the mathematical definitions of ResNets RN . Suppose that an input
x ∈ Rd and its corresponding class label y ∈ Rs are given for a ResNet. The input
layer of ResNet is usually composed of C(x) ≜ X0 which is obtained by the convolution
operation C : Rd → Rm, and then it is composed of a series of residual blocks. One
residual block is composed of the identity mapping part and the residual part, which can
be described as

X l+1 = X l + λf
(
X l,θ

(N)
l

)
, l = 0, 1, . . . , N − 1 (1)

where θ
(N)
l is the model parameters of the l-th residual block, N represents the number

of residual blocks, λ = T/N , T is a given constant. X l =
(
X

(i)
l

)
m×1

∈ Rm. And

the residual part is generally composed of two convolution operations. To simplify the
discussion, let

f
(
X l,θ

(N)
l

)
= σ

(
ω

(N)
l X l + b

(N)
l

)
, l = 0, 1, . . . , N − 1 (2)

where σ(·) indicates the ReLU activation function, ω(N)
l ∈ Rm×m is the weight matrix

and b
(N)
l ∈ Rm is the bias.

Finally, let θ(N) =
{
θ
(N)
l

}N−1

l=0
,XN is the output of the last residual block and it is

operated by a fully connected layer and Softmax normalization operation ψ to obtain the
classification prediction probability

yN = yN

(
θ(N)

)
= ψ (ωXN + b) (3)

where ω ∈ Rs×m is the weight matrix and b ∈ Rs is the bias.
Consequently, if the input and label pairs

{
xi,yi

}n

i=1
of n samples are given, the

learning process of ResNets RN can be described as the following optimization problem

min
θ(N)

εN =
1

n

n∑
i=1

L
(
yi,yi

N

(
θ(N)

))
+R

(
θ(N)

)
s.t. Xi

l+1 = Xi
l + λf

(
Xi

l,θ
(N)
l

)
Xi

0 = C
(
xi
)

l = 0, 1, . . . , N − 1, i = 1, . . . , n

(4)
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where L
(
yi,yi

N

)
is the loss function between yi and yi

N , R is the regularization term.

3.2. Relationship between ResNet and Neural ODE

As observed in [32,6,16], Eq. (1) is the Euler discretization of the ordinary differential
equation

dX(t)

dt
= f(X(t), θ(t)), t ∈ [0, T ] (5)

when the initial condition X(0) = X0 is satisfied and the time step λ is selected.
Let tl = T l/N , the network obtained by replacing the residual blocks X l+1 = X l +

λf
(
X l,θ

N)
l

)
in the residual network RN with the ordinary differential equation Ẋ(t) =

f(X(t), θ(t)), t ∈ [tl, tl+1] is called the neural ordinary differential equation network
(Neural ODE) D. Suppose that the output of the Neural ODE D is

yT = yT (θ) = ψ(ωX(T ) + b) (6)

Therefore, the learning process of the Neural ODE D can be described as the following
optimization problem

min
θ

ε =
1

n

n∑
i=1

L
(
yi, yiT (θ)

)
+R(θ)

s.t. Ẋi(t) = f
(
Xi(t), θ(t)

)
, t ∈ [0, T ]

Xi(0) = Xi
0, i = 1, . . . , n

(7)

Remark 1. As observed in [8,30], If the functions ψ and L are continuous, σ is Lipschitz
continuous and σ(0) = 0, then for N → ∞, the optimal solution of Eq. (4) converges to
the optimal solution of Eq. (7). Moreover, assume that f(t,X) be continuous, and |f | ≤ p
satisfy the Lipschitz condition

|f(t,X)− f(t,Y )| ≤ k|X − Y | (8)

onD = {(t,X)|0 ≤ t ≤ T, |X −X0 |≤ η}. Suppose that f(t,X) is differentiable with
respect to t and X , and |∂f/∂X| ≤ k, |∂f/∂t| ≤ q, If T ≤ η/p, then it can be easily
proved that when N → ∞,XN converges to the value at the solution X(T ) of Eq. (5)
when t = T , and the error estimate is

|X(T )−XN | ≤
( q
k
+ p

) T

N

(
ekT − 1

)
(9)

In addition, the output yN = ψ (ωXN + b) of the residual network RN and the
output yT = ψ(ωX(T ) + b) of the Neural ODE D satisfy that

∥yT − yN∥ = o

(
1

N

)
(10)

Thus, we call that ResNet RN converges to the Neural ODE D, that is, the Neural ODE
D can be sufficiently approximated with ResNet RN when N is large enough. Therefore,
in the following, the Neural ODE is applied to explain the decision attribution of the
ResNet RN.
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4. Symplectic Adjoint Method

Since the Neural ODE can be regarded as a surrogate model to explain the influence of
the input features for the ResNets’ prediction, this section presents the symplectic ad-
joint method, which can be used to calculate the gradient that exactly characterizes the
contribution of input features for the target class.

First, we discuss the influence of the perturbation for a given input on the prediction
of Neural ODE. For the differential system Eq. (5), when the initial value X(0) = X0

is perturbed by τ to be X ′(0) = X0 + τ , the corresponding perturbed solution X ′(t)
satisfies

X ′(t) = X(t) + δ(t) + o(τ), τ → 0 (11)

where δ(t) is the variational variable which solves the variational equation

dδ(t)

dt
=
∂f(X(t), θ(t))

∂X(t)
δ(t) (12)

for δ(0) = I .

Remark 2. As observed in [8], suppose that f(X(t), θ(t)) is continuous and differentiable
with respect to X , then there exists ∂X(t)/∂X0 and ∂X(t)/∂X0 = δ(t), where the
variational variable δ(t) satisfies the variational equation Eq. (12).

According to Remark 2,, the gradient of X(T ) with respect to initial values X0 is
∂X(T )/∂X0 = δ(T ). Furthermore, we consider the adjoint equation of Eq. (12)

dα(t)

dt
= −

(
∂f(X(t), θ(t))

∂X(t)

)T

α(t) (13)

Where the adjoint variable α(t) is the gradient of L(X(T )) with respect to X(t) and
α(T ) = ∂L(X(T ))/∂X(T ), and the conservation property Eq. (14) for the solutions of
variational equation Eq. (12) and adjoint equation Eq. (13) below holds

α(T )Tδ(T ) = α(0)Tδ(0) (14)

Aim at computing the gradients of L(X(T )) with respect to the initial condition X0

and the parameters θ for the Neural ODE D, [4] proposed the adjoint method to solve
the gradient, but this approach cannot obtain the accurate gradient and requires high com-
putational costs to suppress numerical errors, we present the symplectic adjoint Method,
which solves the adjoint equation by the Symplectic Runge-Kutta method to obtain the
exact gradient and the final trained network is denoted as the Neural ODE DN . The sym-
plestic adjoint method consumes much less memory consumption, but performs faster
computation and more robust to rounding errors than the naive backpropagation algo-
rithm.

Firstly, the ordinary differential equation Eq. (5) is discretized by the Runge-Kutta
method

X ′
l+1 = X ′

l + λ

s∑
i=1

bifl,i, l = 0, 1, . . . , N − 1 (15)
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Where

fl,1 = f
(
tl,X

′
l

)
, fl,i = f

tl + ciλ,X
′
l + λ

i−1∑
j=1

ai,jfi,j

 (16)

i = 2, . . . , s, ai,j , bi, ci are summarized as the Butcher tableau [8,7,22], and there is∥∥X(T )−X ′
N

∥∥ = o(1/N) for N → ∞. Suppose that the output of the Neural ODE DN

is y′
N = ψ

(
ωX ′

N + b
)
.

Remark 3. ([7,1]) When the ordinary differential equation Eq. (5) is discretized by the
Runge-Kutta method in Eq. (15), the variational equation Eq. (12) is discretized by the
same Runge-Kutta method as follows

δi+1 = δi + λ

s∑
i=1

bipl,i, l = 0, 1, . . . , N − 1 (17)

Where δi is the discretization of the variational variable δ(t) in Eq.(12) and

pl,1 =
∂f

∂X
(tl,X l)

pl,i =
∂f

∂X

tl + ciλl, δl + λ

i−1∑
j=1

ai,jpi,j

 , i = 2, . . . , s
(18)

Moreover, assume the adjoint variable αN = ∂L
(
X ′

N

)
/∂X ′

N , to obtain the ex-
act backpropagation gradient for the Neural ODE DN efficiently, the Symplectic Runge-
Kutta method solves the adjoint equation by the Symplectic Runge-Kutta method as fol-
lows

αl+1 = αl + λl

s∑
i=1

b̃iϕl,i, l = 0, 1, . . . , N − 1

ϕl,i = −

 ∂f

∂X

tl + ciλ,X
′
l + λ

i−1∑
j=1

ai,jfl,j

T

ξl,i

ξl,i =

{
αl + λ

∑s
j=1 b̃j

(
1− aj,i

bi

)
ϕl,j , if i /∈ I0

−
∑s

j=1 b̃jaj,iϕl,j , if i ∈ I0

(19)

where

b̃i =

{
bi, if i /∈ I0
λ, if i ∈ I0,

I0 = {i | i = 1, . . . , s, bi = 0} (20)

Finally, the gradient that exactly characterizes the contribution of input features for the
output α0 = ∂L

(
X ′

N

)
/∂X0 can be obtained by the backpropagation iteration.

5. Explaining ResNet Predictions

In this section, we show that our proposed method guarantees the faithfulness of the expla-
nation between ResNet and the surrogate model - Neural ODE. First, the decision feature
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and the explanation map of an input to the target class for Neural ODE are generated via
the symplectic adjoint method. Then, we prove that the explanations of Neural ODE can
be sufficiently approximate to the true behavior of ResNet when N is large enough.

5.1. Understanding Neural ODE Predictions via symplectic adjoint method

Since it is well known that the deep convolution layer has high-level semantics, the pre-
vious CAM-based explanation methods focused on the analysis of the feature maps in
the last convolution layer, while the feature maps in the shallow layer is noisy and lacks
semantic intelligibility. However, in theory, to explain the importance of the input fea-
tures for the output prediction score of the target class, the gradient of the target class
should be back-propagated to the input layer to highlight the image region that has a great
influence on the prediction. In this paper only positive influence on the prediction is con-
sidered, as observed in [14], the definition of the explanation map based on the gradient
decomposition of the input layer is given as follows.

Definition 1. Assume that any instance x and the trained Neural ODE DN is given,
the input layer of DN is X0 and the output prediction vector is y, the i-th row vector
∂yi/∂X0 of ∂y/∂X0 is called the decision feature about X0 that x belongs to class i.
If the derivative of y with respect to the input ∂y/∂X0 is obtained, then DN is called
explainable and the explanation map that x belongs to class i for DN is

I = ReLU

(
∂yi
∂X0

)T

◦X0 (21)

where ◦ denotes Hadamard product.

Considering the problem of the gradient ∂yi/∂X0 computed by previous research,
we first introduce a novel gradient solution method to ensure the accuracy of the expla-
nation. The symplectic adjoint method for Neural ODE which consumes less memory
than the naive backpropagation algorithm and has faster computational efficiency, is used
to compute the gradient to explain the Neural ODE DN . By section 4, according to the
symplectic adjoint Method, the initial α0 = ∂L

(
X ′

N

)
/∂X0 has been obtained by the

iteration of the adjoint variable αN = ∂L
(
X ′

N

)
/∂X ′

N into Eq. (19). On the other hand,
as observed in [22], if α0, δN are respectively the solutions for Eq. (19) and Eq. (17), then
we have

αN
TδN = α0

Tδ0 (22)

where δ(0) = I . Therefore, it is not necessary to spend much more time on iterative
calculations in Eq. (12), the variational variable δN = ∂X ′

N/∂X0 can be solved from
the Eq. (22) and

∂y′
N

∂X0
=

∂y′
N

∂X ′
N

δN = ψ′ωδN (23)

Thus the i - th row vector (ψ′ωδN )i of ψ′ωδN is called the decision feature about X0

that x belongs to class i for Neural ODE DN .
Therefore, by Definition 1, we have that the Neural ODE DN is explainable, and the

explanation map that x belongs to class i for DN is

I = ReLU ((ψ′ωδN )i)
T ◦X0 (24)
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where ◦ denotes Hadamard product. Since we are only interested in features that have a
positive impact on the target class and are good for visualization, the function is to filter
the negative impact. The explanation map I is can explain the image region where the
Neural ODE DN is for image recognition has a high influence on the prediction result of
the input image belonging to class i.

5.2. Relationship between explanations of ResNet and Neural ODE

To show the consistency of the explanation between ResNet and the Neural ODE, the
metrics of the approximation of the two models is first introduced as follows [13].

Definition 2. For a neural network Dn, if there is a neural network D′
n which is explain-

able and the explanation map that x belongs to class i for D′
n is I , and for ∀ε > 0,∃K ∈

N+, when n > K, there is

κ (Dn,D′
n) = ∥y − y′∥ < ε (25)

for any instance x, where y and y′ are the prediction vectors obtained by the model Dn

and D′
n for the input x respectively, then we define D′

n as an approximate interpretable
model of Dn when n is large enough.

According to Definition 2, it is obvious that when κ (Dn,D′
n) is smaller, the model

approximation degree of the two models is higher and D′
n is considered to be a better

explainable model of Dn. In the following, we demonstrate that the Neural ODE DN is
the approximate explainable model of RessNet RN .

Theorem 1. For the ResNet RN and the corresponding Neural ODE DN , If the functions
L andψ are continuous, the function σ is Lipschitz continuous and σ(0) = 0, f(X(t), θ(t))
is continuous and differentiable with respect to X , then for ∀ε > 0,∃K ∈ N+, when
N > K, there is κ (DN ,RN ) < ε for any x.

Proof. For any input x, it is known that Eq. (1) in ResNet RN is the Euler discretization of
the ordinary differential equation Eq. (5) when the initial conditionX(0) = X0 is satisfied
and the time step λ is selected. By Remark 1, if the functions ψ and L are continuous, σ
is Lipschitz continuous and σ(0) = 0, then the numerical solution obtained from Eq. (1)
converges to the exact solution of Eq. (5). So XN converges to the solution X(T ) of
Eq. (5) when t = T , that is, limN→∞ (XN −X(T )) = 0, then for ∀ε′ > 0,∃M1 ∈ N+,
when N > M1, there is ∥XN −X(T )∥ < ε′.

Moreover, let
ωXN + b =

[
x
(1)
N , x

(2)
N , . . . , x

(s)
N

]
∈ Rs (26)

ωX(T ) + b =
[
x(1), x(2), . . . , x(s)

]
∈ Rs (27)

then whenN > M1, there is
∣∣∣x(i)N − x(i)

∣∣∣ < ωε′. Moreover, the output prediction vectors
obtained by ResNet RN and Neural ODE D are

yN = ψ (ωXN + b) , yT = ψ(ωX(T ) + b) (28)
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Let yN =
[
y
(1)
N , y

(2)
N , . . . , y

(s)
N

]
,yT =

[
y
(1)
T , y

(2)
T , . . . , y

(s)
T

]
∈ Rs, then there exists
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(i)
T
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(j)
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− ex
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x(j)

∣∣∣∣∣
≤

∣∣∣ex(i)
N − ex

(i)
∣∣∣

≤ ωciε
′

(29)

Let ε = 2ω
∑s

i−1 ciε
′, so we have

κ (RN ,D) = ∥yN − yT ∥ < ω

s∑
i=1

ciε
′ = ε/2 (30)

Therefore, ∀ε > 0,∃M1 ∈ N+, when N > M1, there is κ (RN,D) < ε/2 for any x.
Similarly, ∀ε > 0,∃M2 ∈ N+, when N > M2, there is κ (D,DN ) < ε for any x,

assume that the output prediction vector obtained by the Neural ODE DN is

y′
N = ψ

(
ωX ′

N + b
)
=

[
y
(1)
N , y

(2)
N , . . . , y

(s)
N

]
∈ Rs (31)

then let K = max {M1,M2} ∈ N+, when N > K, we have

κ (RN,DN ) ≤ κ (RN,D) + κ (D,DN ) < ε (32)

Overall, the Neural ODE DN is proved to be an explainable model sufficiently close to
ResNet RN whenN is large enough, and the explanation map I = ReLU ((ψ′ωδN )i)

T ◦
X0 can explain the image region where the ResNet RN for image recognition has high
influence on the prediction result of the input image belonging to class i. Theorem 1 en-
sures the faithfulness of the explanation between ResNet and the surrogate model, and
since the symplectic adjoint method instead of the naive backpropagation algorithm is
used, the proposed explanation method has lower computational cost than other explana-
tion approaches.

6. Experimental Implementation and Evaluation

In this section, we evaluate the effectiveness of the explanation method for ResNet in this
paper. First, we visualize the saliency maps obtained by the CAM-based explanation of
ResNet with the gradient via the symplectic adjoint method to compare other CAM-based
methods with the gradient obtained by the naive backpropagation algorithm. Second, we
demonstrate the faithfulness of the proposed explanation method for ResNet by conduct-
ing deletion and insertion tests to compare with the ones in Grad-CAM and Group-CAM.
Moreover, we present the proposed explanation method, which is more efficient than oth-
ers and effective for users to find out the reason for the wrong decision on some samples
in the prediction. Finally, by modifying the training set and retraining, the effectiveness
of the explanation for debugging and optimizing a model can be validated.

In the following experiments, the model architecture we performed is a pre-trained
ResNet with six standard residual blocks [4] and the publicly available classification
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dataset Cifar10 is used. For the input images, all images are resized to 3 × 32 × 32,
and then transformed to tensors and normalized to the range [0, 1]. The performance of
the proposed explanation method via the symplectic adjoint method and existing methods
is evaluated by PyTorch 1.7.0 [20] and demonstrated by extending the adjoint method
implemented in the package torchdiffeq 0.8.1 [34].

Input

Grad-CAM

Group-CAM

Adjoint-CAM

Fig. 2. Visualization results of Grad-CAM, Group-CAM, and Adjoint-CAM. The class
activation maps are similar for the various explanation methods in the last convolutional
layer, especially for Grad-CAM and Adjoint-CAM

6.1. CAM-based explanation of ResNet via symplectic adjoint method and naive
backpropagation Algorithm

Since the CAM-based explanation methods have a good performance on class discrim-
inative visualization and localization ability, they have been widely applied to visualize
the task of locating objects in images. For instance, Grad-CAM calculates the average of
the naive gradients of feature maps in the last convolutional layer for the target class as
the weight of feature maps to obtain gradient-weighted class activation maps to highlight
important features. In this section, the method that generates the weighted class activa-
tion maps by computing the average of gradients of feature maps in the last convolutional
layer for the target class via the symplectic adjoint method as the weight of feature maps is
called Adjoint-CAM, and the weighted class activation maps obtained by Adjoint-CAM
can be demonstrated to be similar to those generated by Grad-CAM which computes the
average of gradients via the naive backpropagation algorithm. Therefore, the proposed
method also has a good performance on the visualization of class-conditional localization
of objects in the last convolutional layer for the target class.
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As shown in Remark 1, the output of the last residual block of ResNet is approximate
to the output of the corresponding Neural ODE at t = T ,which means the feature maps
of ResNet and Neural ODE in the last convolutional layer are similar. On the other hand,
the output of ResNet and Neural ODE is Eq. (3) and Eq. (6) respectively, then it is obvious
that the gradients of feature maps in the last convolutional layer for the target class via
the symplectic adjoint method for Neural ODE are the same as the gradients via the naive
backpropagation algorithm for ResNet. Therefore, the weighted class activation maps ob-
tained by Adjoint-CAM which computes the weight via the symplectic adjoint method
approximate with that generated by Grad-CAM to locate the important region of given
images. We visualize the depth-wise saliency maps through Grad-CAM, Group-CAM,
and Adjoint-CAM in Fig. 2. As shown in Fig. 2, the class activation maps are similar for
the various methods and localize the target object well in the last convolutional layer.

Grad-CAM Group-CAM OurMethod

Fig. 3. The explanation maps generated by Grad-CAM, Group-CAM, and OurMethod for
representative images with deletion and insertion curves. In the insertion curve, a more
faithful explanation should increase faster, the area under the curve is expected to be large.
While in the deletion curve, a more faithful explanation should drop faster, the area under
the curve is expected to be small

6.2. Evaluating Faithfulness of Explanations

Although the CAM-based explanation methods outperform other methods on visualiza-
tion performance in the last convolutional layer, the gradient obtained by the naive back-
propagation algorithm in the shallow layer may result in an inaccurate explanation for the
gradient vanishing and saturation issue. Sometimes, image regions with higher weight val-
ues contribute less to the target class. Therefore, we propose a novel explanation method
in which the shallow gradient is obtained exactly by the symplectic adjoint method. To
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demonstrate the faithfulness of the explanation of our proposed method in this paper is
higher than that of other methods, the deletion and insertion metrics that are prepared in
[21] are used to qualitatively evaluate the faithfulness of the interpretation methods.

Intuitively, if the pixels obtained from the explanation methods are more important
for decisions, the removal of pixels will cause the predicted score for the target class
to drop more significantly, which shows that the explanation method is more faithful.
Therefore, the deletion metric is a qualitative evaluation metric to measure the decrease
in the probability of the predicted class when more and more important pixels obtained
by the explanation methods are removed from the original image. A lower area under the
probability curve indicates a more faithful explanation. In addition, the insertion metric,
which starts with a blurred image, evaluates the increase in the probability of the predicted
score for the target class as more and more pixels are introduced, and a higher area under
the probability curve means a more faithful explanation.

In detail, for the deletion test, there are several approaches to removing pixels from
an image and all of these have different pros and cons. In our experiment, the deletion
test gradually replaces 1% of pixels from the original image with a highly blurred one
according to the importance of pixels for decisions obtained by the explanation methods
until no pixels are left. On the other hand, for the insertion test, we gradually replace 1%
pixels of the blurred image with the original version according to the importance of pixels
until the image is well recovered. Some examples generated by Grad-CAM, Group-CAM,
and our proposed method for the first layer of the ResNet block and the corresponding
deletion and insertion curves are illustrated in Fig. 3. Furthermore, for a more general
comparison, the average results calculated by area under the probability curve of deletion
and insertion tests over 1000 images are demonstrated in Table 1. As shown in Table 1, our
proposed method outperforms other CAM methods in terms of deletion AUC compared
with gradient-based CAM methods.

Table 1. Comparative evaluation in terms of insertion (higher is better) and deletion (lower
is better) scores

Grad-CAM Group-CAM OurMethod

Insertion 0.614 0.623 0.616
Deletion 0.161 0.152 0.132

6.3. Comparative Evaluation in Terms of Memory and Computation Efficiency

In the experiment, the Neural ODE obtained by replacing residual blocks of ResNet with
ODESolve modules is the surrogate explainable model of ResNet and the explanation
map is generated by the gradient calculated by the symplectic adjoint method. Table 2
summarizes the test error and number of parameters for ResNet and the Neural ODE
on Cifar10, respectively. As shown in Table 2, the Neural ODE has around the same
performance as the ResNet with fewer parameters.

Furthermore, the memory consumption and running time for the explanation by Grad-
CAM, Grad-CAM++, Group-CAM and the proposed method are shown in Table 3. L
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Table 2. Comparative evaluation in terms of the test accuracy and number of parameters
for ResNet and neural ode on Cifar10.

Test Accuracy Parameters

ResNet 83.89 0.58M
Neural ODE 83.57 0.21M

is the number of layers in the ResNet, and all the feature maps and neuron importance
weights are splited into G groups. Grad-CAM and Grad-CAM++ which generate the
shallow layer gradients via the naive backpropagation algorithm for the ResNet requires a
memory ofO(L) for the backpropagation, and compute gradients by the chain rule step by
step with roughly computational cost O(L). Group-CAM needs to input the constructed
mask back into the network for training to obtain new weights for G rounds, so the com-
putational cost is O(GL). While the symplectic adjoint method has superior performance
than the naive backpropagation in terms of the memory consumption and running time.
Our proposed method had no more need of storing any intermediate quantities of the
backpropagation, only the first and last adjoint variable is required to obtain the explana-
tion map, and then the memory consumption and running time are both O(1). Therefore,
as shown in Table 3, the proposed explanation approach outperforms Grad-CAM, Grad-
CAM++ and Group-CAM in terms of the memory consumption and computational cost.

Table 3. Comparative evaluation in terms of the memory consumption and running time
for Grad-CAM, Grad-CAM++, Group-CAM and our proposed method on cifar10.

Grad-CAM Grad-CAM++ Group-CAM OurMethod

Memory O(L) O(L) O(L) O(1)
Running Time O(L) O(L) O(GL) O(1)

6.4. Effectiveness for Troubleshooting and Optimizing a Model by the Explanation

When we know how the deep learning model thinks, it provides us with the privilege to
optimize it. This section illustrates that our proposed approach can explain why ResNet
makes a wrong prediction, and then improve the performance of the model pertinently.
Intuitively, if the pixels obtained from the explanation methods are more important for
prediction, the modification of pixels will cause the probability of the predicted class to
decrease more significantly. As shown in Fig.3, the deletion of less than 10% pixels from
the original image can generate adversarial images to producing incorrect classification
results. Furthermore, Fig.4 shows the explanation maps for two misclassified images with
respect to their top-3 predicted classes by the proposed method. As shown in Fig. 4, the
first image labeled “horse” is classified as an airplane, the second one labeled “horse” is
classified as a frog, and the second column are the explanation maps generated by our
method to show the image region has a high influence on the prediction results for the
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top-1 predicted classes of airplane and frog. It can be seen that ResNet makes a wrong
prediction for the two images, mostly in terms of the background of the images. It seems
reasonable that the sky is white and the frog is green in the training dataset, but the reason
why the model makes a wrong prediction is that it ignores the shape of images.

Fig. 4. The explanation maps with respect to top3 predicted class for mis-classified im-
ages. The first column is the input images. The prediction score for the first input image
with respect to top3 predicted class is 0.6373 (airplane), 0.1715 (horse), 0.1623 (bird), the
second is 0.6770 (frog), 0.1336 (automobile), 0.1306 (horse)

Table 4. Comparative evaluation in terms of the test accuracy before and after debugging

No debugging After debugging

Test Accuracy 83.89% 87.29%

Therefore, by diagnosing the reason why the model makes a wrong prediction, these
mistakes can be avoided with sufficient training. Specifically, for a given misclassified
sample, first we identify the corresponding regions in the model that were undertrained.
Then some targeted training samples are generated by replacing the values of important
pixels with random values to augment the original training data and retrain the model.
Due to the addition of new samples, the impact of misleading features is reduced, and
target errors are patched without reducing the previous accuracy of the model. We con-
sider the proposed explanation method is practical for optimizing a model by modifying
the training set and retraining. After adding 3000 artificially constructed images by the
interpretation method to the original training set, ResNet is retrained by the reconstructed
training set. As shown in Table 4, the test accuracy of the pre-trained model is 83.89% and
the test accuracy of the model is improved to 87.29% after the training of the new training
set. Moreover, after retraining, the image labeled ”horse” in Fig.4 can be correctly iden-
tified, and the corresponding predicted probabilities are increased to 0.6312 and 0.7065,
respectively. Overall, the explanation map obtained by our method is helpful for overall
diagnosing and debugging of the model.
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7. Conclusion and Future Work

Using the Neural ODE as the surrogate model, we proposed a new way for a more faith-
ful explanation of ResNets predictions. To get over the naive gradient problem and make
sure that images regions with higher gradient values contribute more to the target class,
the gradients with respect to the input layer are calculated using the symplectic adjoint
method. Additionally, the gradient decomposition method yields an explanation map for
the Neural ODE at the input layer that can be shown to be sufficiently near to the ex-
planation of ResNets. Quantitative analyses are provided to demonstrate that our method
outperforms than other cutting-edge methods in terms of effectiveness and explanation
faithfulness, and it is effective for troubleshooting and debugging a model by the explana-
tion. In the future work, we will analyze the stability and generalization ability of ResNet
with symplectic adjoint method.
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