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Abstract. A Cyber-Physical System is a set of heterogeneous devices that inte-
grates computational and digital capabilities with their physical system. As tech-
nology evolves to facilitate human tasks, more complex Cyber-Physical Systems
are being developed, even integrating them with web technologies (Web of Things),
e.g., in the context of the Web of Things, supporting smart city scenarios with thou-
sands of devices available to be discovered online. In these complex solutions, some
capabilities related to locating, registering, and consulting devices must be provided
to adapt to the continuous changes in Cyber-Physical Systems. Suitable capabilities
could be using natural language queries, automatically describing and discovering
new devices, or locating devices in different subsystems. This paper1 proposes a dis-
covery model architecture for Cyber-Physical Systems based on the Web of Things,
including proactive discovery, recommendation, federation, and query expansion. In
an example scenario, the proposed architecture has been implemented with different
topologies using Edge Computing facilities to interact and manage Cyber-Physical
Systems. The results show that the capabilities of the discovery model architecture
facilitate the discovery of CPSs in different smart environments.
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1. Introduction

Cyber-Physical Systems (CPSs) are characterized by integrating physical devices with
computational and digital capabilities, working as a bridge between the physical and dig-
ital world [36, 39]. As the Internet of Things (IoT) is focused on communication between
devices, CPSs include the interconnection and collaboration of IoT devices for improv-
ing the communication between CPSs [17, 30]. Therefore, CPSs consist of heterogeneous
devices that make up an ecosystem to solve problems in smart environments, e.g., appli-
ances, smart watches, or sensors working with different technologies and protocols. The
Web of Things (WoT) initiative [23] attempts to bring all those different devices of the
CPSs together in a reference framework supported by the World Wide Web Consortium
(W3C). The WoT aims to establish an abstraction layer based on web technologies for
managing Internet of Things (IoT) devices, thus approaching the interconnection prob-
lem between heterogeneous devices in smart environments.

Smart environments are scenarios supported by CPSs, such as Smart Cities, Smart
Homes, or Smart Healthcare, equipped with computing power and coordinated by intel-
ligent systems to give the environment intelligence for supporting and reducing human

1 This is an extended version of The 14th International Conference on Management of Digital EcoSystems
conference paper “Towards a Discovery Model for the Web of Things”.
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interaction [22]. Smart environments are evolving into more challenging ecosystems that
use a higher number of devices with complex functionality. For instance, a smart garbage
collection in a Smart City, where trucks, containers, traffic, and traffic lights are monitored
to find time-optimal dynamic routes [4]. In this sense, discovering and managing devices
of this kind of smart scenarios and CPSs can be difficult.

A CPS ecosystem may integrate devices from different locations or subsystems, e.g.,
devices in different buildings; it may require the processing of complex or abstract queries,
e.g., natural language queries in a Smart Home or commercial building; or it may need
to discover automatically devices, e.g., a laboratory changing continuously. Current Dis-
covery Services in smart scenarios focus on managing many CPSs, but in terms of query
efficiency. Devices register themselves into the Discovery Service, and users search for
them using syntactic and semantic queries. However, with the evolution of CPSs and
smart environments, discovery should include more capabilities to follow the continuous
changes of the CPSs. These capabilities must adapt to the requirements when managing
and searching for CPSs, and the discovery should be prepared to adopt new faceted ca-
pabilities progressively for future needs. A faceted perspective of the proposal facilitates
further flexible, scalable, and open features of the architecture of the discovery model.

By capabilities of a Discovery Service, we mean features that are complex enough
to be developed alone and support the main task of discovering CPSs. Normally, these
features are not included in the Discovery Service system, the Discovery Service is devel-
oped as simply as possible in terms of functionality, and the capabilities are developed as
individual systems unrelated to the Discovery Service. Nevertheless, with the evolution
of CPSs, Discovery Services need additional capabilities as part of the main system to
support the search and discovery. For instance, integrating Artificial Intelligence (AI) and
federation capabilities with the Discovery Service to process natural language queries and
search for devices in large-scale scenarios, where users interact with the system by voice
commands. The Discovery Service must return devices located in different subsystems.

In this paper, we present a discovery model architecture for CPSs based on the Web of
Things (WoT) that includes different capabilities in a faceted way: (1) discover proactively
in a pull configuration, (2) recommending devices and services such as other Discovery
Services using AI, (3) federated searches through a federation of Discovery Services, and
(4) query expansion. Furthermore, as the discovery model architecture is based on the
WoT, it can be used with other implementations and environments as long as the services
are described following the Thing Description (TD) structure. The discovery model ar-
chitecture with two of four capabilities (i.e., proactive discovery and recommendation)
has been implemented in a real example scenario of a smart room with different topolo-
gies using Edge Computing facilities. The following research questions are addressed to
identify the objectives as well as to approach the aforementioned facts:

– RQ1: Would it be feasible to extend traditional Discovery Services for discovering
cyber-physical devices?

– RQ2: Does implementing additional capabilities improve the discovery of CPSs?

This paper extends one from The 14th International Conference on Management of
Digital EcoSystems [27]. In [27], we proposed a discovery model for the WoT. In this
paper, we extend that contribution with an architecture supported by four capabilities that
complement the discovery model: recommendation system, proactive discovery, query
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expansion, and federation (RQ2). Furthermore, we implement and validate the model in
a smart room scenario using different topologies to experiment with the architecture in
a real scenario with limitations, such as public access to CPS’s information in a local
network and communication between subsystems through secure connections (RQ1).

This article is structured as follows. Section 2 offers an overview of related projects
about Discovery Services in CPSs and WoT, and describes the background information
and the fundamentals required to understand the proposed discovery model architecture.
Section 3 describes the architecture and the four capabilities complementing the discov-
ery model. Section 4 shows the experimental scenario of a smart room to validate the
proposed discovery model, while Section 5 discusses some advantages and limitations of
the proposal. Finally, Section 6 presents the conclusions and outlines future work lines.

2. Literature Review

This section offers an overview of existing approaches related to the discovery model.
Furthermore, a background is summarized to describe some of the main terms related to
our approach.

2.1. Related Work

Related to discovery, there are different topics about discovering systems, e.g., discovery
service, process discovery, or component discovery, among others [11]. In all of these
topics exists techniques to discover the most relevant information. For instance, in [37],
the authors apply process discovery algorithms on some of the event logs instead of ap-
plying them on the whole logs, thus increasing the performance in the discovery process.
For component discovery, in [21], the authors propose a discovery, called trader, based
on the Open Distributed Processing (ODP) trading model, for discovering and integrat-
ing COTS (Commercial Off-The-Shelf) components through a federation approach. Other
techniques applied are the federation of directories to increase the range of solutions re-
turned to the user [16] or the implementation of security mechanisms when searching for
information [5]. In this paper, we focus on discovering CPSs by proposing the addition
of capabilities to the Discovery Service to support the search process and to adapt the
Discovery Service to the evolution of CPSs.

The proposed discovery model architecture is based on the W3C Discovery Service,
which started with DiscoWoT, a Discovery Service for smart things [31]. Additionally,
IoT Discovery Services are also relevant to this research work. One of the relevant con-
tributions to discovering IoT devices is IoTCrawler [20]. In IoTCrawler, devices are dis-
covered using the Context Information Management API (NGSI-LD) standard. Using the
NGSI-LD standard, users can subscribe directly to the device data. Furthermore, NGSI-
LD brokers can be interconnected, creating a federation where every broker can access
the information of the other brokers. A feature of IoTCrawler similar to our approach
is the layer structure used for the discovery. The discovery is deployed independently
from the search, thus speeding up the search and discovery process. In our proposal, each
capability is an independent system that supports the discovery system. This approach
follows a modular structure, where more systems can be integrated; Furthermore, as they
are independent systems, the performance and maintenance benefit from decoupling.
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A more industrial approach for discovering IoT devices is the proposal of GS1 [12].
GS1 is an international organization that improves supply chain efficiency by creating
standards such as the barcode and the EPC (Electronic Product Code) Tag Data. GS1 de-
veloped a Discovery Service for discovering RFID (Radio-frequency identification) items.
The Discovery Service performs a broadcast to identify all RFID items deployed in a sub-
net. Furthermore, GS1 is developing a Discovery Service for choreographing repositories
from different businesses that work in the same chain but are unrelated. For instance, con-
necting the information of a business that produces tomatoes with that of a business that
uses tomatoes to create sauces. The solution of GS1 for discovering RFID items is simi-
lar to the proactive discovery capability. In both approaches, the Discovery Service scans
the subnetwork to locate the items deployed. However, in our proposal, the discovery is
focused on CPSs, where multiple communication protocols are involved.

Another approach is QoDisco [15], a semantic-based discovery service that stores the
information of the devices following an ontology-based information model. The ontol-
ogy extends the Semantic Sensor Network, the Semantic Actuator Network, part of the
Standard Ontology for Ubiquitous and Pervasive Applications, and the Web Ontology
Language for Services. QoDisco focuses on discovering IoT devices registered in repos-
itories. The user selects the query from the repositories more relevant to the query, and
QoDisco returns the address and topic of the broker with the desired information. QoDisco
focuses on how to store and retrieve the information of IoT devices. Our approach focuses
on facilitating the discovery of CPSs, thus proposing capabilities that improve the discov-
ery in different scenarios. Nevertheless, the ideas of QoDisco about using the domain and
searching for devices in the repositories could help us research the federation capability.

Regarding the discovery of WoT devices, WoTStore [38] is a framework based on
the recommendation of the W3C for managing and deploying Things and applications
related to the Things. WoTStore is microservice-oriented and consists of a Thing Manager
for discovering devices, an Application Manager for storing and returning applications
related to the Things, and a Data Manager for managing complex queries. The Discovery
Service of WoTStore allows the subscription to the device’s Thing Description (TD) and
notifies the user when the TD is modified. Furthermore, the Thing Manager dynamically
creates a Graphical User Interface (GUI) for the TD, thus easing the usage of the devices.
In contrast to our approach, WoTStore creates a solution focused on creating a platform
for using devices. Our approach aims to facilitate the discovery of CPSs, regarding their
technology, by implementing a set of features or capabilities that support the discovery
process. However, in our proposal, the modification of the Thing Descriptions is notified
in the proactive discovery process. Consequently, users cannot subscribe to the devices
registered in the directory, while in WoTStore, users can subscribe and be notified when
a Thing Description changes.

DomOS [24] is an approach that implements a Discovery Service based on the rec-
ommendation of the W3C. DomOS is an ontology for managing and discovering WoT
devices, and authors implement the Discovery Service recommendation of the W3C to
evaluate it. Our proposal extends and improves the Discovery Service used to implement
DomOS with additional capabilities. Furthermore, the discovery model presented in this
paper includes a capability for supporting non-WoT devices.

Other implementations based on the Discovery Service specification of the W3C are
WoTHive from the Universidad Politécnica de Madrid, LinkSmart Thing Directory from



A Faceted Discovery Model Architecture for... 1643

Fraunhofer, and LogiLab TDD from Siemens2. LinkSmart [40] implements the Discovery
Service focused on the Thing Directory. LinkSmart implements a RESTful API for CRUD
(Create, Read, Update, Delete), notification, validation, and search operations. Further-
more, the Thing Directory of LinkSmart has authorization and authentication features.
Although LinkSmart focuses on implementing a Thing Directory, LinkSmart proposes a
service catalogue to discover other web services using HTTP and MQTT.

On the other hand, LogiLab TDD is an emerging implementation developed before the
W3C started the recommendation of the Discovery Service for the WoT. Later, Siemens
developed SparTDD [14], an evolution of LogiLab that uses the Thing Description archi-
tecture proposed by the W3C. SparTDD implements the WoT discovery recommendation
that introduces the semantic search using a SPARQL endpoint for searching for TDs.

Finally, WoTHive [9] is the most advanced implementation of the three WoT dis-
covery recommendations. WoTHive research is focused on the discovery feature of the
recommendation and implements the Discovery Service recommendation from the W3C
using SPARQL and a triple store to register the WoT devices. The discovery is imple-
mented using syntactic and semantic operations. Furthermore, WoTHive compares the
performance of syntactic and semantic queries when discovering different amounts of de-
vices. The results show that the semantic search resolves faster than the syntactic search
and, in some scenarios, better than the syntactic search. In addition, they propose as future
work to research the federation of Discovery Services.

The three implementations of the W3C recommendation of the Discovery Service are
based on the published specification [10]. WoTHive is the most developed, introducing
the semantic search and proposing the federation of Discovery Services. In contrast to
our approach, WoTHive and the LogiLab implementation propose a semantic search of
WoT devices using SPARQL. In our approach, the API allows syntactic operations to
search for CPSs. Nevertheless, we propose using a recommender system to search using
natural language sentences. Our Discovery Service searches for CPSs using syntactic and
semantic operations and extends the W3C recommendation by introducing capabilities
supporting the discovery process. These capabilities facilitate the discovery of CPSs in
different smart environments, thus improving the W3C Discovery Service.

2.2. Background

The discovery model architecture aims to facilitate looking for CPSs in smart environ-
ments using web technologies, thus making access to public devices available on the web.
The discovery model follows the WoT architecture and uses the TD to store and access
CPSs information. In addition, techniques such as pull and push discovery federation sys-
tems and artificial intelligence are used to develop the capabilities of the discovery model.
Finally, Edge Computing is applied in the topology of the scenario to allow the secure ac-
cess of external users to CPSs deployed inside a network of different subsystems.

Web of Things. The Web of Things is a framework created in 2010 by Guinard et al. [19]
to build an ecosystem of the IoT in a flexible, scalable, and open way using web technolo-
gies. Lately, the WoT proposal was included as a recommendation of the W3C to define
IoT devices that use the Web as the underlying technology [8].

2 W3C Discovery Services: https://github.com/w3c/wot-discovery/tree/main/implementations
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For storing the information describing a device in the discovery model, we use the
W3C WoT Thing Description, a JSON-LD template document that describes the basic
information of WoT devices. The TD provides a model for defining, in a common way,
WoT devices to integrate devices and applications, allowing them to interoperate.

The Thing Description defines a set of features called InteractionAffordances,
which can be properties, actions, or events, and describes how the device interacts and how
to interact with it [7]. Properties describe the attributes of the device (e.g., the tempera-
ture, actions), actions describe the operations that the device can perform (e.g., turning
on a light bulb), and events describe asynchronous notifications that a device may send
(e.g., turning on the alarm when the movement sensor detects someone). In our discovery
model, InteractionAffordances are used by the API for syntactic search and by
the recommender system capability for extracting the basic information of each device to
train the AI model and recommending devices or services that the user may look for. For
instance, searching for temperature sensors or asking for a command to turn on a light.

Pull and push discovery. Apart from adapting the Internet of Things devices into the
Web of Things technology [25], the Web of Things requires finding and allowing the
secure usage of devices deployed worldwide. Discovery Services solve this problem by
facilitating the search for suitable services that meet certain users’ requests to solve the
problem of the increase in the number of services. Services were increasing, and tech-
niques were needed to perform more efficient queries in the search process [35]. As CPSs
are also increasing, there is a need for techniques to facilitate searching for devices. There-
fore, Discovery Services can help in the search process for finding devices.

Discovery Services are developed to facilitate searching for services; they can register,
unregister and search for services in a directory. Services are inserted into the directory
after being registered into the Discovery Service [32]. For registering services, traditional
Discovery Services use a push model. The push model follows a reactive behavior, i.e.,
services or external users register the service; for instance, a user registers a new light bulb
in the directory. However, services can also be registered proactively using a pull model,
following a more intrusive behavior. This paper proposes a discovery model architecture
capable of registering CPSs reactively (push) and proactively (pull). Using a pull model,
the Discovery Service looks for deployed services to register them into the directory. To
identify available services, the Discovery service, using special bots, crawls the net for
services and registers them in the directory. In this sense, the Discovery Service can scan
the network or do a DNS-SD search to register all the devices that match specific criteria.

Recommender systems. Recommender systems aim to recommend the products or ser-
vices that best suit the user’s requirements. They are developed to reduce information
overload, limiting the information the user gets, thus facilitating the product or service se-
lection. For this reason, recommender systems try to return the most relevant information
for the user as the first solution [28].

The recommendation process involves techniques influencing how the recommender
system works [29]. Some of the techniques most used for the recommendation process
are: (a) Content-based recommendation: Based on products or services similar to those
previously selected by the user; (b) Collaborative recommendation: Based on products or
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services related to those previously selected by users with similar preferences; (c) Compu-
tational intelligence-based recommendation: Focused on building the recommender sys-
tem using Artificial Intelligence, Bayesian techniques, fuzzy systems, etc.

One of the capabilities of the discovery model architecture is a recommender system
based on AI for supporting the search process of CPSs. The reason for using a recom-
mender system is to aid in smart decision-making in large-scale IoT environments, where
multiple devices can be the solution, the system may not differentiate between two similar
devices, or the user may need help selecting the CPS that best suits the request.

3. Discovery Model Architecture

This paper extends the discovery model proposed in The 14th International Conference
on Management of Digital EcoSystems [27] by adding a set of capabilities to support the
discovery process. As explained in Section 2.1, the proposed discovery model is based on
the W3C recommendation of Discovery Service [10] but extended with new features for
adapting the Discovery Service to the continuous changes of CPSs.

Figure 1 shows the architecture of the discovery model. The discovery model has
four layers for interacting, recommending, processing and storing CPSs. The first layer
is the interaction layer, used for interacting with the different layers of the discovery
model. The interaction layer has a RESTful API deployed using Express.js. The API
manages the connections between the discovery model and external agents, working as
a security layer. The API has a set of endpoints for communication with the directory to
facilitate information retrieval. The new endpoints added to the API implementation are:
(a) #/search, (b) #/td/:affordance/:name, (c) #created-last-week, (d)
#updated-last-day, (e) #updated-last-week, and (f) #user-interface.
In addition, the API has endpoints for interacting with the other three layers. For instance,
the API can interact with the processing layer with an endpoint for triggering the proac-
tive discovery capability. Finally, the interaction layer has been extended by including a
GraphQL system to help create queries for searching CPS devices. GraphQL allows users
to build their queries, increasing the range of queries the API can perform, thus facilitating
the search process [34].

The second layer is the recommender layer, used for supporting the discovery of
CPSs by integrating AI techniques with the discovery model to process natural language
queries. This layer is deployed offline using the Transformer algorithm [41] as the base

Fig. 1. Discovery model architecture
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of the recommender model. In the architecture, this layer is outside the main part of the
discovery model architecture to extend it with new features. For instance, a future feature
of the recommender layer will be a recommender of Discovery Services to support the
federation capability when looking for other Discovery Services in the search process.
More in depth-details of the recommender system are explained in Section 3.1.

The third layer is the processing layer, which manages the functionality of the archi-
tecture. The processing layer uses Node.js and performs all the operations of the discovery
model. For instance, creating a paginated list of requested CPSs. These operations are lo-
cated in the Core of the architecture and are supported by a set of subsystems that extends
it; adaptation, proactive discovery, and validation. The adaptation and the proactive dis-
covery subsystems aim to discover WoT devices using a pull model. Furthermore, the
adaptation subsystem can also discover CPSs compatible with the TD. In-depth details of
these subsystems are described in Section 3.2. Finally, the validation subsystem validates
the TD of the CPSs. This subsystem is used to validate the TDs before inserting them into
the directory and for validating the dataset used by the recommender system. The TD is
validated using the JSON template provided by the W3C.

The fourth layer is the storage layer, which stores the CPS information in a Mon-
goDB database following a JSON schema proposed by the W3C. CPSs are stored using
the TD and accessed using the identifier of the TD, an immutable field. The stored infor-
mation is validated by the validation subsystem before inserting them into the directory,
thus ensuring that all devices are defined following the same structure. The storage layer
can be located outside the main part of the discovery model architecture. Locating the di-
rectory outside the main part led to an Edge Computing approach. In an Edge Computing
approach, the processing layer is separated from the processing layer, thus adapting the
discovery service architecture to federation approaches where directories are located in
different subsystems and to topologies in which, for security or network reasons, users
cannot access directly the subsystem where devices and the directory are located.

The four layers include a set of capabilities for extending and supporting the discovery
model in the discovery process of CPSs. The four proposed capabilities are: (1) a recom-
mender system for matching user queries in natural language with CPSs, (2) proactive
discovery for automatically locating CPSs deployed in the same network, (3) a federation
for connecting Discovery Services located in different subsystems, and (4) query expan-
sion for improving user queries with additional information which can help in the search
process. These four capabilities are described below.

3.1. Recommender system

Discovery Services focus on searching for services using queries. Since natural language
is not used in the context of service search, Discovery Services use syntactic and seman-
tic search. However, in the context of CPSs and IoT, natural language may need to be
included. For instance, in a smart home scenario, the user may be using both hands, thus
needing to interact with CPSs using voice commands. Furthermore, the natural language
includes syntactic and semantic, thus allowing more complex searches.

The recommender system capability was presented in a previous paper [26], and it
uses natural language for matching user queries in the form of natural language sentences
with CPSs. This capability was added to the discovery model to adapt it to the new sce-
narios of CPSs that were not contemplated in the context of the services. As CPSs can be
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deployed in scenarios where users without computer engineering knowledge can interact
with them, the system must be adapted to be used by that kind of user. Furthermore, using
natural language allows interaction by text or voice, facilitating the use of the system for
users with disabilities that may need to interact with the system. In addition, as natural
language includes syntactic and semantic techniques, queries for searching devices can
be sent to the Discovery Service or the recommender, thus having two ways of searching
for devices in the Discovery Service.

The recommender system is proposed as a support system because it needs to be
trained when new CPSs are added to the scenario. Therefore, it cannot be used for search-
ing for new CPSs. While the recommender learns from the new CPSs, the Discovery Ser-
vice API is used together with GraphQL as the search system. The recommender system
is built using deep learning through a Transformer approach, a novel sequence transduc-
tion model based on multi-head self-attention [41] that presents good results in natural
language problems. A user sends a natural language sentence, and the recommender re-
turns the four devices that best suit the user’s request. The returned list is sorted by the
recommender’s confidence about each device being the solution to the user’s request.

This capability is being improved to recommend CPSs services, e.g., return the com-
mand needed to turn on the light bulb in the kitchen. In addition, this capability will be
extended to support recommendations in a Discovery Service federation for CPSs.

3.2. Proactive discovery

Discovering services includes searching for them in a directory and registering the avail-
able services in the directory. For registering, services must be inserted manually into the
directory, either by the services registering themselves or by an external user registering
them. Therefore, services must be adapted to know the presence of the Discovery Service,
or an external user has to spend time registering the services.

In the context of CPSs, one of the features of IoT devices is their ability to be dynamic
regarding the location where they are deployed. A car, a scooter, or a bike can be CPSs
with mobile capabilities that change their location continuously. Regarding less complex
scenarios, a laboratory where devices are added and removed every day can also be an ex-
ample of the non-static feature of CPSs. Therefore, Discovery Services have to be adapted
to discover dynamic cyber-physical devices.

The proactive discovery subsystem was initially presented in [27], and extended in
this paper. To adapt to the non-static feature of CPSs, the proactive discovery subsystem
allows the discovery of CPSs by following a pull model. The Discovery Service scans the
subnet, searching for WoT devices. As WoT devices that use the HTTP communication
protocol deploy their Thing Description document in port 80, the subsystem searches for
systems with port 80 opened and a TD deployed in the root path. After devices are located,
TDs are registered in the directory.

The proposed proactive discovery subsystem facilitated the discovery of WoT devices
using the HTTP protocol and deployed them in the same subnetwork as the discovery.
However, this solution cannot discover IoT or WoT devices that use other communication
protocols, such as MQTT, Zigbee, or KNX. In [25], the discovery model was extended
with a new subsystem for adapting IoT devices to the WoT technology, thus proactive
discovering IoT and WoT devices. As adapting IoT devices to WoT technology can be
difficult, the adapt feature was developed to work with a more structural communication
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protocol than HTTP, the MQTT protocol. Therefore, the adaptation subsystem can only
adapt IoT devices using the MQTT communication protocol to the WoT technology. Fur-
ther information about the adaptation process is described in [25]. Finally, the proactive
discovery subsystem was extended to discover WoT devices using MQTT. The proactive
discovery subsystem can discover WoT devices using HTTP or MQTT and IoT devices
using MQTT. For discovering devices using MQTT, the subsystem looks for devices de-
ployed in the same network with the ports 1883, and 8883 opened.

The adaptation subsystem is linked with the proactive discovery subsystem, i.e., the
only way to execute the adaptation operation is by triggering the proactive discovery. The
proactive discovery can be executed manually or automatically. The automatic approach
executes the proactive discovery operation, triggering the network scan when an event
happens. For instance, a timed event triggers the network scan each hour.

The manual approach executes the proactive discovery when an external user triggers
the operation. The API has an endpoint for interacting with the proactive subsystem, thus
allowing external users to trigger it. When a user executes the proactive discovery, the new
CPSs detected are not registered in the directory. The CPSs discovered are returned to the
user using three subsets, one subset for the new CPSs, one subset for the CPSs already
registered in the directory, and one subset for CPSs that have changed since they were
discovered. Therefore, users can decide what to do which each subset. For instance, users
can be interested only in CPSs that have changed since the last time they were discovered.

This capability is currently being investigated to support more communication pro-
tocols. In addition, because the subnetwork scanning works in a broadcast form, it will
be improved to avoid overloading the network, thus being less intrusive, and to solve se-
curity problems found when deploying the experimental scenario. Finally, the proactive
discovery will be improved to adapt IoT devices using other communication protocols
and solve the problem when searching for sleeping devices, i.e., devices that deactivate
features that, after some time without being used, reduce energy consumption and limit
incoming connections.

3.3. Federation

In the context of Cyber-Physical Systems, users must interact with devices in different
subsystems. For instance, using devices located on different floors inside the same build-
ing. In some situations, Discovery Services can be deployed to discover all these devices.
However, the connection range and security may not allow a single Discovery Service to
discover all the available CPSs. Therefore, a set of Discovery Services must work together
to discover CPSs deployed in different subsystems.

The federation capability is proposed to connect CPSs in different subsystems, mak-
ing it easier to discover them. Discovery Services know other Discovery Services, thus
looking for CPS devices in other directories when not located locally.

Discovery Services have maximum hops in a federated discovery process to limit the
search and reduce the waiting time. For instance, Figure 2 shows a federated Discovery
Service; If the hop limit is set to one for the Discovery Service #1, it will only search in
those Discovery Services located in Level 1, i.e., #2 and #3.

Another feature of the federation capability is the confidence level of each Discovery
Service. Discovery Services have a list of other Discovery Services to delegate queries
to them when the CPS is not in their directory. To sort that list, the Discovery Service
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gives a confidence value to each Discovery Service based on features such as the number
of times the Discovery Service returns the correct device, the security, or reliance, among
others. The delegation of queries inside a federation is a feature that could become another
capability if it is developed enough to be used as a separate system.

Finally, the recommendation capability works with the federation capability to allow
the recommendation of CPS inside each Discovery Service and to extend this feature with
the recommendation of Discovery Services in the federation. The recommender works
with the confidence value given to each Discovery Service to recommend a Discovery
Service over others. For instance, in Figure 2, the recommendation system may recom-
mend to the Discovery Service #1 the query delegation to Discovery Services #2 and #5.

The federation capability is currently an ongoing research. One of the difficulties in
finishing this proposal is to propose a discovery model federation that can delegate queries
while minimizing the waiting times. For instance, if a query is delegated by sending it one
by one to each Discovery Service, the waiting time is the sum of all waiting times. How-
ever, if the query is delegated by sending it to all the Discovery Services simultaneously,
the waiting time will be the waiting time of the slowest Discovery Service.

Fig. 2. Federation of Discovery Services

3.4. Query expansion

Searching for CPSs may differ from searching services in the way of the kind of users
that interact with the system and how they interact with it. In the research process of the
recommender system, we detected that users might not know how to ask for what they
need or not include all the required information in the query. For instance, a user wants
to turn on the light bulb in the living room and sends a query in the form of a natural
language sentence that says: Turn on the light. Therefore, the system cannot know which
light bulb has to be turned on.

The last proposed capability for the discovery model is query expansion, a tech-
nique for extending user queries with additional information or reformulating the query
to enhance the information retrieval effectiveness [2], [6]. This capability is proposed to
support the recommender system by improving the user queries to include information
that can help the recommendation process. As natural language sentences can be abstract,
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the query expansion system extracts information such as the user’s location to extend the
query. With abstract sentences, we mean sentences that are not built correctly or sentences
that do not specify the user’s desired device. For instance, Turn on the light can mean il-
luminating a whole room, but the system does not know the location of the lights, and the
room may have more than one light. This sentence can be modified into Turn on the lights
in the living room, thus improving the recommendations of the recommender system.

Finally, the query expansion capability may be useful for searching devices by re-
formulating users’ queries. After a query is resolved without results, the query is refor-
mulated to get any device in the search result that may suit the user’s request. The query
expansion capability is being developed. As it may interact with the recommender and the
Discovery Service search process and it has to extract information from the user, it will be
located in the main Discovery Model as a subsystem. The challenges for this capability
are about what information to extract, how to do it, and how to reformulate queries to
improve the result without returning devices that the user may not need.

4. Experimental Scenario

In IoT, no public scenarios exist to experiment and interact with CPS. The existing sce-
narios, such as FIT IoT Lab [1], are limited or with restricted access. Regarding the WoT,
there are three available scenarios, Remote Lab from the Technical University of Mu-
nich [33], a public scenario from the book Building Web of Things [18], and IoTLab [3].
This WoT scenario does not follow the W3C recommendation. However, these labora-
tories require access rights or are very limited. For instance, IoTLab only uses CoAP
devices and does not use the TD, and [18] has only two devices available.

For the experimental scenario, a Discovery Service implementation of the discovery
model is deployed in a public laboratory. The laboratory has three rooms connected to
a local network inside one of the subnetworks of the institution. This scenario helps re-
searchers experiment with WoT devices of different smart environments and providers.
Furthermore, other scenarios can link to our laboratory, thus helping create a federation
of Discovery Services.

In this section, first, the public laboratory, the WoT Lab3, is described. After describ-
ing the WoT Lab, a scenario of experimentation and how users interact with the scenario
using the Discovery Service is explained.

4.1. WoT Lab

WoT Lab is a public environment where users can experiment with CPSs in different smart
scenarios. Users can interact with devices using the user interface or by asking directly to
the Discovery Service. Each device has a Thing Description and the endpoints required
for interacting with them. For instance, a smart suitcase simulates devices from a Smart
Home; the website publishes the Thing Description of the suitcase, and the endpoints for
interacting with each device from the suitcase are available on the Thing Description.

Figure 3 shows the architecture of the WoT Lab. Devices are deployed in three dif-
ferent rooms connected to the same local network. Some devices use different commu-
nication protocols, including KNX, HTTP, MQTT, and Zigbee. Furthermore, devices are

3 WoT Lab website: https://acg.ual.es/projects/cosmart/wot-lab/



A Faceted Discovery Model Architecture for... 1651

from different brands to experiment with interoperability. For instance, there are motion
sensors from Bosch, KNX, and Philips; and light bulbs from Philips and Ikea.

The website, the Discovery Service, and the directory of the Discovery Service are
deployed inside a docker container to facilitate their management and deployment of a
federation of Discovery Services. Discovery Services can be deployed in containers in
different networks and connected to allow the discovery of CPSs in different subsystems.

The Discovery Service and the website must access the deployed devices’ network to
interact with the devices. As external users have to access the website without access to
the internal network and the website must have access to the internal network, it could
cause security problems described in the next subsection. Users ask the website for CPSs;
the website asks the Discovery Service for the CPSs, and the Discovery Service looks for
them in the internal network and the directory.

4.2. Scenario

The experimental scenario describes the interaction of the Discovery Service and its ca-
pabilities with the IoT ecosystem. In addition, it shows how users can access and interact
with the CPSs through the Discovery Service.

The experimental scenario is based on the WoT Lab approach and has devices in
three rooms connected to a local network deployed in one of the rooms (Figure 4). In the
local network (LN1), devices can communicate between them, and the Discovery Service
can use the proactive capability to search for them by scanning the network. The available
devices are (a) a smart suitcase that simulates a Smart Home, (b) three light bulbs, (c) three
motion sensors, (d) four contact sensors deployed in two windows and two doors, (e) a
video camera, (f) three temperature and humidity sensors, (g) three CO2 and temperature
sensors, and (h) two servos for interacting with the system. All these devices are registered
in the Discovery Service directory and are available in the WoT Lab.

To access the Discovery Service, thus interacting with devices, users must connect to
the subnetwork N1 of the rooms’ building. As N1 can access to LN1, and the Discovery
Service must be in LN1 to discover the devices, the Discovery Service is deployed in LN1.
The Discovery Service scans the local network once each hour by triggering the proactive
discovery capability and registers the new devices deployed. Figure 5 shows a sequence
diagram of the interaction of the Discovery Service when making a proactive discovery
of two new devices, a smart mailbox that uses MQTT and a smart blind that uses HTTP
under the WoT technology. First, the Discovery Service scans the network looking for

Fig. 3. WoT Lab architecture
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HTTP devices; it can discover devices already registered, devices registered whose TD
has been modified, and new devices. In this scenario, a new device, the smart blind, is
discovered. After detecting HTTP devices, the Discovery Service scans the network for
MQTT devices. In this example, one IoT device, the mailbox, is detected. Before register-
ing both devices into the directory, the Discovery Service calls the adaptation subsystem
to generate a TD for the mailbox. Finally, the Discovery Service calls the validation sub-
system to validate the TD of the smart blind and registers both devices into the directory.
In the case of an error when validating the smart blind’s TD, the blind is not registered.

The average time of the proactive discovery to scan and register devices in the network
of the experimental scenario is 138 seconds. In contrast, the average time for resolving
the queries for discovering and registering the devices of the example is 207 milliseconds.
The proactive discovery time is higher than it would take to register a device manually.
However, proactive discovery does not require human intervention. Therefore, it is lower
than the time required to adapt IoT devices to WoT technology or to the time required to
register a large number of IoT devices. Furthermore, suppose the network cannot handle a
continuous broadcast. In that case, the proactive discovery subsystem can be disconnected
and only triggered by querying an endpoint available in the API of the Discovery Service,
e.g., calling the endpoint when more than ten new devices have been deployed. This ca-
pability can help in scenarios where the user does not know how the devices work or the
number of features of the device. For instance, the CO2 sensors in the three rooms have
additional features that were not documented. Using the proactive discovery and adapta-
tion subsystem to discover and register these devices helped to identify their features.

The Discovery Service must be connected to the directory to search for devices. In
this scenario, the directory and the Discovery Service are deployed on LN1, thus having
bidirectional communication. Users can search for devices using the website, which calls
some of the endpoints of the API, or they can directly send the queries to the Discovery
Service. For instance, users can see the current online devices on the website and main
page. For showing the online devices, the website queries the Discovery Service to list all
the devices with the status online in the Thing Description. In addition, users can build
their queries using the GraphQL server deployed in the Discovery Service4. GraphQL
uses the JSON schema file of the Thing Description for structuring the information and
helping users in the building process of the queries. However, these search techniques

4 GraphQL subsystem: https://acg.ual.es/projects/cosmart/wot-lab/ds/graphql/

Fig. 4. Experimental scenario
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Fig. 5. Sequence diagram of the proactive discovery

cannot process natural language sentences and cannot sort the result of the search query
by a value that can help the user make decisions. A user may not know which device
wants when searching for it. For instance, in our scenario, a user may want to increase
the illumination in the room, but the user may not know that one of the light bulbs is
broken and that by opening the blind, the illumination can be increased. Therefore, a
recommendation in the query result may help the user decide by returning the blind at the
top and the broken light bulb at the bottom of the list.

As the recommender system is a capability that supports the search process of CPSs,
it must be connected to the Discovery Service, thus being deployed in LN1. The rec-
ommender is deployed in a docker container with the Discovery Service and the website.
The dataset used to train the recommender to recommend the deployed CPSs is the dataset
from [26]. The dataset was adapted to return the name of each device instead of the generic
names of the dataset. For instance, when searching for light bulbs, the available light bulbs
are WoTColorLight1, WoTColorLight3, and WoTColorLight4. Since the dataset is limited
in the data used for training it, the recommender cannot differentiate between devices of
the same type, thus returning all the lights of each room when searching for them. For in-
stance, if the user searches for a specific light bulb in room1, the recommender system will
return the three light bulbs deployed in room1. For the training process, the recommender
system accesses the Discovery Service validation subsystem to validate the dataset used
for training the model. However, the recommender system can not re-train itself with the
information collected when using the recommender system or with the queries sent to
the Discovery Service. After training, the recommender system is deployed in LN1, thus
allowing external access to the service5.

As explained, users may not know the device they want. Furthermore, users may not
include all the information required to find their desired CPS. The query expansion ca-

5 RS: https://acg.ual.es/projects/cosmart/wot-lab/transformer/predict/Turnonthelight
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pability supports the search and recommendation process by completing the queries with
additional information and reformulating them. Query expansion is under research, but
some experiments were carried out in this scenario as a supporter of the recommender
system. In the adaptation process of the dataset, some of the sentences were modified, and
new sentences were included. The reformulation of these sentences followed a structure
to include the required information for helping the recommender system in the recom-
mendation process (1) (2). As this is the first approach of the query expansion capability,
the structure followed for building the sentences is not complex. In the proposed structure,
a sentence is built by adding information about the type of device wanted (D), the loca-
tion of the device (L), and the action desired (A) (3). The action of the device is included
because of future Artificial Intelligence models where the recommender system returns a
CPS’s service instead of a specific device. For instance, the user wants to turn on a light
bulb, and the recommender system returns the endpoint used for turning the light bulb on.

A = {a1, a2, ..., an};D = {d1, d2, ..., dn};L = {l1, l2, ..., ln} (1)

a1 ∪ d1 ∪ l1 (2)

Turn on light bulb room 1. (3)

More complex sentences that can be built using the proposed structure involve more
than one action, device, or location (1). A simple structure is used because the recom-
mender system cannot process these kinds of sentences.

To access the experimental scenario in LN1, external users must connect to N1. How-
ever, the connection between N1 and external networks was restricted for security reasons.
Users can now only access N2, a network isolated from all the networks. Therefore, after
this change, users could not access the experimental scenario. In the new topology, N1
can still connect to LN1 and N2. However, external users cannot access N1. Furthermore,
external users can connect to N2, but N2 cannot connect to N1. To solve the problem
in the connection between external users and the experimental scenario, the Discovery
Service was deployed following a first approach of a federation of Discovery Services.

The Discovery Service deployed in LN1 continues to work in LN1 to discover the de-
vices deployed in the network. The topology modification focuses on the communication
between N1 and N2, allowing external access to the experimental scenario. The topol-
ogy modification follows a federation approach, where an additional Discovery Service
is deployed in N2. External users can access the Discovery Service to access devices in
LN1. As N1 can access N2, the Discovery Service in N1 is connected with the Discovery
Service in N2, updating the information stored in the directory of N2 with the information
of the devices in LN1. Furthermore, as there are no devices in N2, the proactive discovery
of the Discovery Service in N2 is disabled to avoid overloading.

The proposed discovery model works as a federation of Discovery Services, where
more Discovery Services can be deployed in other networks and connected to the Dis-
covery Service deployed in N2. This scenario is the first approach to the capability of the
federation. However, it is still under research, in this experimental scenario, the failure of
the Discovery Service of N2 would make all the Discovery Services to disconnect from
the external network.
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5. Discussion and Threats to validity

A discovery model is proposed and deployed in a scenario presented in [27] and extended
with more devices in three rooms. The discovery model consists of multiple capabilities
to adapt Discovery Services to the evolution of CPSs. For instance, in a Smart Home sce-
nario, the Discovery Service can facilitate the discovery of new devices deployed by auto-
matically discovering them, thus helping people without technical experience to manage
the CPSs of the Smart Home. The recommender system and query expansion capabilities
help process natural language sentences sent by the user when using the CPSs. Finally,
the federation capability helps in the search process of CPSs deployed in different sub-
networks of the Smart Home scenario.

In other scenarios, such as Smart City, the most relevant capability is the federation.
As a city is too large for a single Discovery Service, multiple Discovery Services must
be deployed in the areas of the city to manage all the CPSs. The Discovery Services are
connected to the federation to create a way of searching efficiently for devices in the city.

As shown in the scenarios, the proposed capabilities support the discovery model,
adapting it to different smart environments. However, the discovery model proposal is still
under research and suffers from limitations and threats to validity. Therefore, to validate
our proposal, we answer the four main validity threads discussed in the literature [13]:
Conclusion, Internal, Construct, and External validity. This ensures detection of the ob-
jectives are fulfilled and the study’s limitations.

Conclusion validity. Did the introduced treatment/change have a statistically signifi-
cant effect on the outcome we measure? Yes, the results obtained using the proposed
discovery model differ from those obtained using other Discovery Service approaches.
The federation, recommender system, and query expansion capabilities modify the re-
turned list of CPSs. The federation returns devices from the current Discovery Service
and other Discovery Services linked to it. The recommender system modifies the output
by returning the four devices that best suit the user’s request. Finally, the query expansion
reformulates the query to improve the search result.

These three capabilities make the output of our proposal differ from the output of
other Discovery Services that search in the same scenario. However, there is a lack of
comparison between our proposal and other Discovery Services in the literature. For in-
stance, comparing our discovery model with the Discovery Services implementations of
the W3C recommendation explained in the Related Work of Section 2.1.

A useful comparison between our approach and other proposals is the precision and
recall of the output when searching for devices. This can help measure the output’s im-
provement using the proposed capabilities. Furthermore, the capabilities may slow the
response time of the Discovery Service. Therefore, comparing the performance between
our Discovery Service and other approaches may be useful.

Internal validity. Did the introduced treatment/change cause an effect on the outcome?
Can other factors also have had an effect? The outcome is altered as we use the capabil-
ities to support the discovery process. The discovery result from not using the capabilities
differs from the result from using them. In addition, the proactive discovery may alter
the devices available in the directory, thus altering the outcome. However, the proactive
discovery and recommender capabilities may slow the query time.
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In the experimental scenario, we compared the average time of proactive discovery
and manually discovering and registering the devices. However, this comparison is not
enough to evaluate the capability. Furthermore, the response time between the recom-
mender and the API is not compared. Therefore, the response time of the proactive dis-
covery and the recommender should be studied in-depth. For instance, the proactive dis-
covery must be compared with the manual approach using a different amount of devices.

Construct validity. Does the treatment correspond to the actual cause we are interested
in? Does the outcome correspond to the effect we are interested in? The research aims
to: (a) propose a discovery model for the WoT that improves and complements the Dis-
covery Service proposed in the W3C recommendation; (b) propose a discovery model
that facilitates the discovery of CPSs; and (c) create a public laboratory for the WoT.

Objectives (a) and (b) are fulfilled in Section 3, compared with other approaches in
Section 2.1, and studied in Section 4; and objective (c) is fulfilled in Section 4. For ob-
jective (a), the questions related to the proposal of a discovery model that complements
the recommended by the W3C have been answered affirmatively. However, other ques-
tions related to improving the Discovery Service recommended by the W3C were not
answered affirmatively. The proposed discovery model has more features than the Dis-
covery Service proposed by the W3C. However, to assert that our approach improves
the W3C recommendation, they must be compared using metrics from the literature to
evaluate the difference between both approaches.

External validity. Is the cause-and-effect relationship we have shown valid in other situ-
ations? Can we generalize our results? Do the results apply in other contexts? The dis-
covery model is deployed in implementing a Discovery Service in the proposed scenario,
the WoT Lab. WoT Lab consists of a set of devices from different smart environments
to help research the use of CPSs in these devices. Although the number of devices has
been increased from the paper, which it extends for, the number of devices is too small for
generalizing the usage of the discovery model in all the smart environments. Therefore,
the number of devices used in the WoT Lab must be increased. The discovery model must
be validated in another scenario to compare both experiments and show that the proposal
is valid in other situations.

6. Conclusions

This paper proposes a discovery model architecture for Cyber-Physical systems based on
the Web of Things. In particular, the proposed mechanism is intended to store, search
and facilitate access to devices represented and controlled under the W3C Web of Things
paradigm (commonly referred to as WoT). Furthermore, the presented approach extends
previous work by including different capabilities, such as proactive discovery, recommen-
dation, and federation, to facilitate the discovery of CPSs.

A public laboratory, the WoT Lab, was deployed to analyze the discovery model. The
WoT Lab is a laboratory presented before and extended in this paper by increasing the
number of devices. In addition. a Discovery Service was implemented in the laboratory
following the discovery model architecture. As proposed in the previous work, the ex-
perimental scenario was modified to improve the security of the approach, using Edge
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Computing facilities to interact and manage CPSs. Finally, each capability was validated
in the scenario to show how they can facilitate the discovery of CPSs, thus affirmatively
answering the second research question.

Regarding the first research question, other implementations of Discovery Services in
IoT and WoT were studied in Section 2.1. Furthermore, in Section 3 and 4, the relevance
of extending the Discovery Service to adapt to the CPSs was explained and validated, thus
answering the first research question affirmatively.

Future work could improve the validation by comparing our proposal with others,
such as WoTHive and LinkSmart Thing Directory. Furthermore, the capabilities could
be compared to an approach that not uses them to evaluate the performance of a more
complex Discovery Service against more traditional ones. Finally, we intend to increase
the number of devices in the experimental scenario and include another scenario in the
validation to compare the proposal’s performance in both and generalize our solution.
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7. Charpenay, V., Käbisch, S.: On Modeling the Physical World as a Collection of Things: The
W3C Thing Description Ontology. In Proc. of ESWC’2020, 599–615. (2020)
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14. Glomb, C., Thiéblin, É., Amarger, F.: SparTDD-a SPARQL based Thing Description Directory.
In Proc. of ESWC’2022, 1-6 (2022)



1658 Juan Alberto Llopis et al.

15. Gomes, P., Cavalcante, E., et al.: A semantic-based discovery service for the Internet of Things.
Journal of Internet Services and Applications, Vol. 10, No. 10., 1–14 (2019)

16. Gomes, P., Cavalcante, E., et al.: A Federated Discovery Service for the Internet of Things. In
Proc. of M4IoT’2015, 25-30. (2015)

17. Greer, C., Burns, M., Wollman, D., Griffor, E.: Cyber-physical systems and internet of things.
NIST Special Publication 1900–202. (2019)

18. Guinard, D., Trifa, V.: Building the Web of Things. Manning Publications. (2016)
19. Guinard, D., Trifa, V., Wilde, E.: A resource oriented architecture for the web of things. In

Proc. of IoT’2010, 1–8. (2010)
20. Iggena, T., Bin Ilyas, E., et al.: IoTCrawler: Challenges and Solutions for Searching the Internet

of Things. Sensors, Vol. 21, No. 5, 1559. (2021)
21. Iribarne, L., Troya, J. M., Vallecillo, A.: A Trading Service for COTS Components. The Com-

puter Journal, 47(3), 342–357. (2004)
22. Kabalci, Y., Kabalci, E., et al.: Internet of Things Applications as Energy Internet in Smart

Grids and Smart Environments. Electronics, 8(9). (2019)
23. Kovatsch, M., Matsukura, R., et al.: Web of Things (WoT) Architecture, W3C Recommenda-

tion. (2023) https://www.w3.org/TR/2020/REC-wot-architecture-20200409/
24. Laadhar, A., Thomsen, C., Pedersen, T. B.: domOS Common Ontology: Web of Things Dis-

covery in Smart Buildings. The Semantic Web: ESWC 2022 Satellite Events, 95–100.
25. Llopis, J. A., Criado, J., Iribarne, L., Padilla, N.: A Discovery Pull Model for Devices in IoT

and WoT Environments. In Proc. of IoT’2021, 228–233. (2021)
26. Llopis, J. A., Fernández-Garcı́a, A. J., Criado, J., Iribarne, L.: Matching user queries in natural

language with Cyber-Physical Systems using deep learning through a Transformer approach.
In Proc. of INISTA’2022, 1–6. (2022)

27. Llopis, J. A., Mena, M., Criado, J., Iribarne, L., Corral, A.: Towards a Discovery Model for the
Web of Things. In Proc. MEDES’2022, 96–103. (2022)

28. Lu, J., Wu, D., Mao, M., Wang, W., Zhang, G.: Recommender system application develop-
ments: A survey. Decision Support Systems, 74, 12–32. (2015)
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