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Abstract. IoT devices and applications are growing rapidly as a result of the ad-
vancement of IoT technology. In the case of smart hotels with many IoT devices,
the majority of the data generated by those devices contains the private information
of users, which is susceptible to being changed and leaked during transmission and
storage. To overcome it, this paper proposes a blockchain-IoT based Framework
for securing smart hotels(BI-FERH) to enhance the security of hotel information
systems. The high performance BI-FERH architecture takes advantage of real-time
data transmission capabilities offered by IoT devices. Sensitive data generated by
IoT devices is protected in BI-FERH, enhancing tamper-proof capabilities. The re-
sults of the experiment demonstrate that BI-FERH can increase the security of smart
hotel systems while preserving operational efficacy. An innovative and safe solution
for the information management system of smart hotels is offered by the BI-FERH
framework.

Keywords: Blockchain, Smart Hotel, IoT, Privacy Protection, Hyperledger Fabric,
Data Security.

1. Introduction

IoT devices and blockchain technology are increasingly mature, enhancing people’s qual-
ity of life. Smart hotels leverage modern technologies like IoT, cloud computing, smart
devices, and big data to enhance guest experiences [1]. Over time, IoT devices have el-
evated the hotel industry’s service levels with innovations like Smart Speakers, Social
Robots [2], and Hotel intelligent guidance [3]. However, the use of IoT devices in ho-
tels introduces security risks, as they handle sensitive personal information. Protecting
this data effectively is challenging, as it faces threats like data leakage and manipulation
during service enhancement [4]. Unfortunately, scant literature exists on hotel informa-
tion security despite its significance, as hotels harbor private data that, if misused, could
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lead to cybercrimes. The term ”cybercrime” denotes illegal activities employing computer
technology to compromise systems or data. Cybercrime has surged globally, resulting in
substantial financial losses, with data breaches causing losses to rise from 3.8 million in
2021 to 4 million in 2022 [5]. Notably, small businesses, including hospitality, face cy-
berattacks that compromise customer data [6]. Such businesses often lack the means to
safeguard data, which, if misused, can facilitate crimes like fraud. Enhancing information
systems’ security is imperative to protect user data, which entails improving the informa-
tion management system of smart hotels to utilize guest data effectively and withstand
cyberattacks.

Presently, hotel information management systems typically adopt a centralized data
storage strategy, which poses challenges in ensuring data integrity due to potential tamper-
ing and lack of traceability. Furthermore, central databases become vulnerable to hacking
attacks, compromising data availability. Data reliability issues are inherent in this model,
with limited security improvement options such as key replacement and enhanced man-
agement. The proliferation of data in smart hotels amplifies data protection complexi-
ties, necessitating an effective and secure information management system to safeguard
guest data. Unfortunately, comprehensive security solutions for hotel information systems
against various attackers are lacking.

This paper introduces the Blockchain-IoT-based Framework for sEcuring smaRt Ho-
tel (BI-FERH), aiming to provide a secure and reliable data management solution for
the hospitality sector. This framework addresses data integrity compromise and enhances
information systems’ resilience against malicious attackers. Combining real-time data
transmission of IoT devices with blockchain’s tamper-evident and traceable character-
istics, the BI-FERH framework promises efficient and secure information systems. By
leveraging blockchain, the framework elevates data security and trustworthiness in hotels,
contributing to enhanced smart hotel data security.

The paper’s main contributions are as follows:

(1) Introducing the novel BI-FERH framework, combining blockchain and IoT to
secure hotel data while enhancing customer service.

(2) Employing edge computing and edge servers to establish blockchain network
nodes at the IoT device layer, enhancing data redundancy and decentralizing resources
in the hotel industry.

(3) Designing and implementing the BI-FERH framework, coupled with an Autoen-
coder + TCN machine learning model to create an Intrusion Detection System (IDS). The
IDS identifies 8 types of attack traffic with 97% accuracy, benefiting from the distributed
structure’s tamper-evident and traceable data attributes.

(4) Conducting experimental tests on the BI-FERH framework, revealing 30% greater
efficiency compared to similar blockchain applications, with 10% lower memory con-
sumption and 7% lower CPU consumption. The study delves into usability, performance,
and security aspects of the experimental results.

The paper is organized as follows: Section II presents related work, Section III de-
tails the BI-FERH solution, Section IV discusses experimental tests, Section V analyzes
experimental results, and Section VI concludes the paper. Some parts of this article were
first presented in Guan et al. [7].
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2. Related Work

The blockchain, introduced by Satoshi Nakamoto [8], presents a peer-to-peer payment
and electronic cash system. As Bitcoin’s underlying technology, it has immense poten-
tial for applications and development, impacting services reliant on trusted third parties.
Blockchain finds utility in data structures, verification methods, communication protocols,
and information storage [9]. Its hashing algorithm converts variable-length input data to
fixed-length digests irreversibly [10]. Public key cryptography, an asymmetric encryption
algorithm, verifies identities within blockchain networks [11], enhancing security for data
transmission [12]. Consensus mechanisms foster trust among blockchain nodes and en-
sure transaction consistency [13], spawning diverse algorithms like Proof of Work (POW),
Proof of Stake (POS), and Practical Byzantine Fault Tolerance (PBFT).

The Internet of Things (IoT) has seen widespread adoption, necessitating secure, ac-
cessible, and reliable infrastructure to process and store data. Blockchain addresses chal-
lenges in traditional IoT security protocols [14], especially as a centralized model for IoT
data communications introduces privacy and security issues [15].

Studies like Donet, Pérez-Solà, and Herrera-Joancomartı́’s [16] analyze bitcoin net-
work attributes, while the Bitcoin system prioritizes user privacy and anonymity through
public key concealment [17]. Smart contracts elevate blockchain interactivity [18], with
Ethereum showcasing blockchain and smart contract synergy, albeit hindered by proof-
of-work’s inefficiency [19]. Hyperledger Fabric, a Linux Foundation-backed project, em-
ploys the Practical Byzantine Fault Tolerance (PBFT) mechanism, enabling transaction
validation [20]. Hao et al. [21] determined PBFT’s superiority over proof-of-work (PoW)
regarding latency and throughput. Fabric’s chaincode enables application interaction [22],
granting high throughput (>20,000 tps) without proof-of-work [23]. Comparative evalu-
ations of Ether and Hyperledger Fabric address aspects such as throughput, latency, secu-
rity, and scalability [24] [25].

Table 1 summarizes differences between these blockchain platforms.

Table 1. Platform comparison

Name Type Consensus Smart contract language Cost Security

Bitcoin Public PoW Stack based script Extremely high Extremely high
Ethereum Public PoW/PoS Solidity High High
Hyperledger

Fabric
Consortium Solo/Kafka/PBFT Go/Java low Higher

IoT devices have navigated various challenges, as highlighted by Da Xu, He, and
Li in 2014 [26], who outlined the IoT industry’s development and dilemmas at that time.
Edge computing meets low-latency requirements for compute or data-intensive tasks [27],
aligning well with efficient IoT operation. Combining edge architectures with blockchain
is viable [28]. Expanding edge computing, Du et al. explored a blockchain-enhanced EC
market, where data service operators rent edge nodes, leasing them to user terminals for
computation offloading [29]. The advent of blockchain facilitated IoT and blockchain in-
tegration [30]. Kshetri [31] proposed blockchain’s use in supply chains to mitigate cost
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and risk. Blockchain elevates IoT interactivity, data security, reliability, and scalability
[30]. Khan and Salah [32] surveyed IoT security issues, suggesting blockchain solutions.
Blockchain’s impact extends beyond finance to non-monetary domains like smart fac-
tories [33], traceable supply chains [34], fake news detection [35], smart homes [36],
medical records [37], smart hospitals [38], secure transportation [39], decentralized vot-
ing [40], and more. The IoT-blockchain combination streamlines data transactions [41].
Evaluating merged systems challenges researchers, with Lao et al. using throughput and
consensus security to assess IoT ecosystems and blockchain platforms [42]. Alshudukhi
et al. introduced a blockchain-microservices security framework for IoT federated cloud
systems [43].

Inspired by Daidone et al. [44] who used blockchain to protect IoT privacy, this paper
addresses IoT devices’ role in enhancing hotel service quality. Privacy concerns persist
due to the sensitive data inherent in the hotel industry. Sahu and Gutub [5] highlighted per-
sonal information leakage risks in hotels and proposed grayscale steganography for pro-
tection. Presently, hotel data is centralized, risking tampering and leakage. A blockchain-
based privacy scheme for IoT is feasible [45]. To elevate hotel services and data security,
this paper proposes a blockchain-integrated smart hotel framework. Martinez-Rendon et
al. [46] merged blockchain with edge IoT architecture for heightened security. Edge com-
puting efficiently transfers IoT data, while blockchain safeguards guest data in hotels.

3. Blockchain-IoT based Framework for securing smart
Hotel(BI-FERH)

To improve the quality of hotel services and data security, Blockchain-IoT based Frame-
work for securing smart Hotel(BI-FERH) is proposed and shown by Figure 1 with three
parts. The first part is made up of IoT devices and artificial intelligence for quality service.
The second part consists of blockchain for data reliability and security. And the last part
is connected by the Internet between users, devices, and databases. Hotel guests and staff
request different services from the server through their respective Internet API interfaces.
For example, the booking of various hotel services, the setting of IoT devices, and the
viewing of hotel guests’ private data, etc. The privacy data generated by the IoT devices
is stored in the Hyperledger Fabric blockchain network. The confidentiality, integrity, and
availability of the system data are improved by using blockchain data security and tamper-
evident features. Through the use of channels in Fabric, data interoperability of multiple
hotels can be achieved, while hotels outside the channels can achieve data confidentiality.

3.1. System Framework

As shown in Figure 2, the BI-FERH framework consists of five independent modules,
which are the application layer, edge IoT layer, IDS layer, edge server layer, and blockchain
layer. The functions of each layer in the framework are described below.

– Application Layer: Hotel guests and staff access specific services through this layer,
like check-in, information management, and remote control of smart devices. It serves
as the interface for interacting with the hotel system. It links to the next layer through
human-machine interaction and network connections.
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Fig. 2. System framework

– Edge IoT Layer: This layer provides hardware support for smart hotels. Given the
limited computing power of IoT devices, edge computing architecture is adopted to
efficiently process operations. Complex tasks are sent to edge servers for processing.

– IDS Layer: This layer aims to prevent malicious attacks on the information system. It
collects network data via traffic monitoring for attack identification and classification.
Malicious traffic is intercepted, and attacker information is traced.

– Edge Server Layer: This layer has two primary functions: processing edge device data
and interacting with the blockchain layer. Edge devices send data for processing and
receive processed data. It manages the blockchain network using the SDK, storing
necessary data in the blockchain.

– Blockchain Layer: Hyperledger Fabric is chosen as the platform. It includes three
key modules: the member service module, consensus service module, and chaincode
module. Secure communication among these modules relies on security and cryp-
tographic services, protected by public-private key pairs and TLS protocols. The
member service module handles member vetting, registration, and authentication.



1546 Quanlong Guan et al.

The Consensus Service module ensures secure ledger booking and data agreement
among nodes. The chaincode service module automates business logic calculations.

3.2. Edge IoT Architecture

In the BI-FERH framework, IoT devices employ an edge IoT architecture. Edge comput-
ing is utilized to reduce latency and bandwidth by processing data closer to its source. This
architecture comprises edge servers and edge devices. Edge devices collect data and send
it to the edge server. The edge server processes data, provides computational resources,
and returns results to edge devices. Figure 3 illustrates the fusion of blockchain and edge
IoT architecture. Edge devices deliver intelligent services and data processing occurs on
the edge server. The edge server, doubling as a blockchain network node, broadcasts and
stores data. This harnesses blockchain features to enhance data reliability and security.

Blockchain Layer

Edge Server 
Layer

Edge IoT 
Device Layer

Router RouterRouter

Fig. 3. Edge IoT Architecture

3.3. Intrusion Detection System

Traditional security tools are inadequate against sophisticated network attacks. Machine
learning, especially in intrusion detection, is on the rise. In the BI-FERH framework (Fig-
ure 4), an autoencoder + TCN hybrid model is used for identifying and classifying attack
traffic in network data.Network traffic’s feature values enter the autoencoder (AE). Unlike
manual feature engineering, AE automatically transforms input into suitable training data.
Encoded data then goes into a temporal convolutional network (TCN), excelling in pro-
cessing time-series data.After TCN’s convolutional operation, data is flattened and sent to
a fully connected layer for attack classification training. This hybrid approach strengthens
BI-FERH’s ability to detect and classify network attacks.



BI-FERH: Blockchain-IoT Based... 1547

x1

Source IP
Source Port
Destination IP
Destination Port
Protocol
Duration
Packet Length
...

Network traffic 
characteristics

h1x2

x3

x4

h2

x'1

x'2

x'3

x'4

Input Layer Hidden Layers Output Layer

Encoding Decoding
TCN Block

TCN Block

TCN Block

TCN Block

TCN Block

TCN Block

Autoencoder TCN Structure Flattening Fully Connected Layer

x1

x2

x3

x4

...

Output LayerHidden LayersInput Layer

Attack
Classification

TCN

Dilater Causal 
Convolution

Weight 
Normalization Relu Dropout Dilater Causal 

Convolution
Weight 

Normalization Relu Dropout

Fig. 4. Autoencoder + TCN Architecture

3.4. Workflow

As shown in Figure 5, the workflow of the BI-FERH solution consists of five main parts.
The details of the steps in the workflow will be described in this section. The symbols
used are explained in Table 2.
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Fig. 5. Workflow of BI-FERH

Part 1 The main purpose of this part is the construction of the Hyperledger Fabric
blockchain, which requires the admin to design and configure the network structure and
finally build the basic network architecture. The first part mainly includes 4 steps.

Step 1 In order to secure communication and identity, certificates need to be issued
for all members such as peers, orderers, channels, users, and devices. The certificate is
generated and issued by the CA authority.

CA → {Certuser, Certorderer, Certpeer, Certchannel, Certdevice} (1)
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Table 2. Symbol descriptions

Symbol Meaning
CA Certificate Authority
Cert Certificates and digital signature files
user Hotel guests and staff
device IoT devices
channel Hyperledger Fabric channel
confnet Blockchain network configuration file
confnode Blockchain node docker configuration file
Filechannel Channel files for blockchain networks
FileAnchor Anchor node files for building blockchain networks
FileGenesis The first block data of the blockchain
Image Docker Image
Container Docker Container
Ledger A ledger for recording information in the Hyperledger Fabric
CC Chaincode in Hyperledger Fabric
Code(business) Code corresponding chaincode for business logic requirements
SDKGo SDK written in golang in Hyperledger Fabric
TxId Transaction id in blockchain
IDS Intrusion Detection System
Traffic Network traffic of users and IoT
Invoke(CCInit) Invoke chaincode to initialize node information
CCIdentify(Request) Chaincode for identity authentication of HTTP request packets
Response Response package processed by chaincode
Install(CC) Install chaincode for blockchain
Trafficattatck Attack traffic in the network
Request HTTP business request package
Response Response information for data processing.

Step 2 The admin designs the network structure to generate the configuration file
confnet. According to the configuration file, the relevant files needed for the blockchain
network are generated, including the channel, anchor node and creation block files.

Generate (confnet) → {Filechannel, F ileAnchor, F ileGenesis} (2)

Step 3 According to the node configuration file confnode written by the admin, build
docker images for peer and orderer nodes, and then store them in the docker container to
run. The respective certificates also need to be packed into the image.

Build (confnode, Cert) → Image
run−−→ Container (3)

Step 4 After the container is started, the container, ledger, and related files are added
to the channel together to build out a complete blockchain environment.

{Container, F ilechannel,Anchor,Genesis, Ledger}
join−−−→ Channel (4)

Part 2 After the blockchain base environment is constructed, the admin needs to de-
sign the corresponding chaincode for the actual application and deploy it to the blockchain.
This part is completed in three steps.

Step 1 The admin writes the chaincode for the blockchain application according to
different business logic.

Code(business) → CC (5)

Step 2 Install the chaincode into all peer nodes via the SDKGo.

Install(CC)
SDKGo−−−−−→ Peer (6)
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Step 3 Initialize the chaincode of the peer node by invoking the initialization function
of chaincode through SDKGo.

Invoke(CCInit)
SDKGo−−−−−→ Peer (7)

Part 3 This section focuses on the process of hotel guests and staff interacting with
the system as users. The interaction between the user and the system can be divided into
three steps.

Step 1 The user generates a request package Request with userId, certificate, target url
and data packaged together.

{userId, data, Certuser, url} → Request (8)

Step 2 After receiving the user request, the server determines whether the request has
permission based on the user’s identity and the requested data. If the user has permission,
the request is accepted, and if not, the request is rejected.

CCIdentify (Request) →

{
1 Accept

0 Reject
(9)

Step 3 After accepting the request, the SDKGo invokes the chaincode according to
the url and data to complete the corresponding operations, and finally returns the response
to the user.

CC(url, data)
SDKGo−−−−−→ Response (10)

Part 4 The fourth part is the process of IoT devices interacting with the blockchain
network. It is mainly for the data processing of IoT devices. This part can be divided into
three steps.

Step 1 Send the deviceId, certificate, target url and data of the IoT device packaged as
Request to the blockchain.

{deviceId, data, Certdevice, url} → Request (11)

Step 2 Authenticate the IoT device, based on the deviceId and certificate of the device.
If the authentication is passed, the access request is accepted, otherwise it is rejected.

CCIdentify (Request) →

{
1 Accept

0 Reject
(12)

Step 3 After receiving the request from the device, it can be divided into two types
depending on the url of the request. One is to store the device data, first encrypt the
privacy data, then call the chaincode through the SDKGo to store it in the blockchain,
and finally get the new ledger data and transaction id. The other is to execute the request
from the device and return the corresponding result.

Request →

{
CCInsert(Encrypt(data), deciveId, url)

SDKGo−−−−−→ {Ledger, TxId}
CC(url, data)

SDKGo−−−−−→ Response
(13)

Part 5 The last part is the IDS used to resist malicious attackers by monitoring the
access traffic of users and IoT devices, identifying malicious access data and blocking it.
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Step 1 All network traffic entering the edge server must be inspected by the IDS, and
packets that are judged to be malicious traffic will be discarded, and only legitimate traffic
can pass through.

IDS(Traffic) →

{
Attack −→ Reject

Legal −→ Accpet
(14)

Step 2 When illegal traffic is denied, the type of attack is identified and the attack
event is written to the security log.

IDS(TrafficAttack) → Log(IPsrc, Portsrc, IPdst, Portdst, T ypeAttack) (15)

3.5. Chaincode Design

The most important parts of BI-FERH are identity verification, data insertion and query-
ing of data. The pseudo-code of the identity chaincode is verified by algorithm 1, and
its time complexity is O(n). The certificate(cert) and Id value of the user or IoT device
are as input parameters. The output value Pass of the algorithm is a Boolean value, True
means the authentication is passed and belongs to a legitimate account in the blockchain,
and False means the verification fails. The function CheckCA(Cert) returns the CA of the
user’s certificate as MyCA variable. Then this MyCA would be checked whether it belongs
to the trusted root CA(RootCAlist) or intermediate CA(IntermediateCAlist). After that,
CheckId(Cert) function is used to check if the user is the MSP licensed user(MSPlist)
and to determine if the Id value is the same as the one entered. Finally, the certificate is
checked within the validity period by TimeOut(Cert) function. if all judgments have been
passed, it means the authentication is passed.

Algorithm 2 pseudocode inserts data into the blockchain, with a time complexity of
O(n). Inputs include IoT device certificate (Cert), device ID (deviceId), and access data
(AccessData). Output is transaction ID (TxId) or error message (error).

Verify device identity using CC.Identify(Cert,deviceId). If authentication fails, return
−1. Check device permission with CheckPermission(deviceId). If not permitted, return
−1. Parse incoming AccessData into Day, Room, Time, and Operator using Split(AccessData).
Encrypt Time for user privacy using AES encryption and Base64 encoding. Package in-
formation and invoke stub.PutState(Day,data) to store data in blockchain. Returns trans-
action ID or error message. Output error if message not empty, else return TxId.

Storage key is Day, used as primary key. Using room number as key leads to ineffi-
ciencies during retrieval due to data volume growth over time.
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Algorithm 1 CC.Identify(Cert, Id): Verify the legitimacy of identity
Input: Cert, Id(userId or deviceId)
Output: Pass (bool)

1: Pass← True
2: MyCA← CheckCA(Cert)
3: if MyCA /∈ RootCAlist and MyCA /∈ IntermediateCAlist then
4: Pass← False
5: end if
6: if CheckId(Cert) /∈ MSPlist then
7: Pass← False
8: end if
9: if CheckId(Cert)! = userId then

10: Pass← False
11: end if
12: if TimeOut(Cert)← True then
13: Pass← False
14: end if
15:
16: return Pass

Algorithm 2 CC.Insert(Cert, deviceId, AccessData): Insert data into the blockchain
Input: Cert, deviceId, AccessData
Output: TxId or error

1: TxId← -1
2: Legal← CC.Identify(Cert, deviceId)
3: if Legal == False then
4: return TxId
5: end if
6: if CheckPermission(deviceId) == False then
7: return TxId
8: end if
9: Day,Room,Time,Operator← Split(AccessData)

10: encryptedT ← AESEncrypt(Time)
11: encodedT ← Base64Encode(aes-encrypted)
12: data← {Day, Room, encodedT, Operator}
13: Txid,err← stub.PutState(Day, data)
14: if error ! = null then
15: return error
16: end if
17:
18: return Txid

Algorithm 3 pseudocode queries blockchain data with time complexity O(n). Inputs:
user’s credentials (Cert), userId, and Request. Output: hotel room access record (Room-
Record) or error message (error).
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Call Identify(Cert,userId) to verify identity, return null if successful. If verified, match
userId to admin (AdminList), staff (StaffList), or guest (GuestList). Admins can view all
data, staff can view staff data within chosen time range, guests can view own room data
from check-in to present. Use CheckInTime(roomNum) to query target room’s latest
check-in time. Use NowTime() for current time. Call GetHistoryForKey(day) to query
modification records (raw) for key. Extract required data by roomNum. Decode and de-
crypt time info for data restoration. If data extraction produces error, return error; else
return RoomRecord based on user’s identity.

Algorithm 3 CC.Query(Cert, userId, Request)
Query the history of blocks in the blockchain
Input: Cert, userId, Request
Output: RoomRecord or error

1: Legal← CC.Identify(Cert, userId)
2: tmpList← []
3: if Legal == False then
4: return null
5: end if
6: if userId ∈ AdminList then
7: StartTime, EndTime, roomNum← Request
8: for day in range(StartTime, EndTime) do
9: raw, error← GetHistoryForKey(day)

10: if error ! = null then
11: return error
12: end if
13: for d in raw do
14: if d[room] == roomNum then
15: tempList.append(d)
16: end if
17: end for
18: end for
19: else if userId ∈ StaffList then
20: StartTime, EndTime,roomNum← Request
21: for day in range(StartTime, EndTime) do
22: raw, error← GetHistoryForKey(day)
23: if error ! = null then
24: return error
25: end if
26: for d in raw do
27: if d[room] == roomNum and

d[operator] == Staff then

28: tempList.append(d)
29: end if
30: end for
31: end for
32: else if userId ∈ GuestList then
33: roomNum← Request
34: StartTime← CheckInTime(roomNum)
35: EndTime← NowTime()
36: for day in range(StartTime, EndTime) do
37: raw, err← GetHistoryForKey(day)
38: if error ! = null then
39: return null
40: end if
41: for d in raw do
42: if d[room] == roomNum then
43: tempList.append(d)
44: end if
45: end for
46: end for
47: end if
48: for t in tempList do
49: tmp←AESDecrypt(Base64Decode(t[time]))

50: t[time]← tmp
51: end for
52: RoomRecord← tempList
53: return RoomRecord

4. Experiment

The system integrates IoT electronic door locks with blockchain, as shown in Figure 6.
When the electronic door lock in the smart hotel activates, it wirelessly transmits details
like room number, operator, and timestamp to the server. Network traffic undergoes at-
tack identification via IDS, eliminating malicious traffic. The server encrypts and stores
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data in the blockchain using Hyperledger Fabric. The experimental part adopts the same
configuration and experimental test method as the paper[7].
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Fig. 6. Framework of this experimental system

4.1. Environment Configuration

The configuration information of the experimental environment is consistent with our
previous work on the paper[7]. Refer to Table 3 for a detailed test environment overview.

4.2. System performance

The Fabric network is initialized using the SDK, involving steps such as channel creation,
node addition, chaincode packaging, installation, approval, submission, and initialization.
Table 4 presents time consumption for each phase in the BI-FERH system. Notably, the
endorsement strategies of organizations contribute to the time-consuming approval, sub-
mission, and initialization phases. Despite this, blockchain network setup takes under 8
seconds on average, which is remarkably swift compared to manual network creation.
SDK construction time is also rapid, and next, the performance of SDKs built with differ-
ent programming languages will be compared.

The SDK can be developed in Go, Node.js, or Java. This paper opts for Go due to its
lightweight, efficient, and parallel nature, as analyzed in [47]. The experiment compares
data update and query operations times across different SDKs.In Figure 7, time spent
by various SDKs for ledger update operations is depicted. Go (blue curve) stands out,
offering optimal performance even with a slight increase in time as node count grows. For
instance, with few nodes, Go is around 100 ms faster compared to other languages. This
performance advantage amplifies with more nodes; at 16 nodes, Go is approximately 0.5s
quicker than other languages.

Figure 8 illustrates query operation times across different SDKs. Queries involve only
Fabric’s consensus algorithm and a single-node ledger inquiry. Thus, the overall time is
minimal. Notably, Java’s query time increases with node count, unlike other SDKs. Go
and Node.js lead with the best results, both achieving around 20ms. Java, comparatively,
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Table 3. Development environment informa-
tion

Hardware
CPU AMD R7 5800H
Hard Disk 516G
Memory 16G
Software

OS
Windows 10
Unbutu 20.04

Docker v20.10.7
Docker-compose v1.29.2
Golang v1.15.5
Platform Hyperledger Fabric

Table 4. Time cost for initialization opera-
tions

Phase Time(ms)
SDK generation 26
Create channel 48
Join Channel 320
Packing chaincode 670
Install chaincode 274
Organization approval 2617
Commit chaincode 2547
Initialize chaincode 2625

takes approximately 45ms. In data updates and query efficiency, the Go SDK outperforms
other languages.

Fig. 7. Update speed of different SDK Fig. 8. Query speed of different SDK

Table 5 displays resource usage during data insertion for different nodes in the exper-
iment. It includes node names, maximum/average CPU usage, memory consumption, and
block input/output. CPU and memory consumption are highest for peer and CouchDB
nodes, essential for data processing. Peers and CouchDB have average CPU usage of
13% and 20%, and memory usage around 194.5MB and 80.4MB respectively. The Or-
derer node, vital for consensus, consumes less CPU (7.74%) and memory (96.66MB).
Chaincode and CA nodes show lower resource demands.

This system ensures efficient data processing with minimal resource utilization despite
significant block input/output. Future experiments will further compare its superiority
against other blockchain applications.

4.3. Comparison with traditional structure

In order to compare with the traditional database, a MySQL-IoT traditional database sys-
tem with exactly the same functions as the BI-FERH system is constructed in this exper-
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Table 5. Resource consumption

NAME CPU (Max) CPU (Avg) MEM USAGE BLOCK I/O
Chaincode-Peer0 1.93% 1.87% 12.05MB 9.58MB/0B
Chaincode-Peer1 2.07% 1.76% 14.18MB 9.29MB/0B
Peer0 22.76% 15.58% 171MB 16.6MB/8MB
Peer1 23.77% 10.69% 218.1MB 17.3MB/7MB
Orderer 9.87% 7.74% 94.66MB 5.8MB/8MB
Ca.Org1 0.36% 0.10% 16.56MB 20.1MB/311KB
CouchDB0 24.87% 20.01% 85.77MB 20.5MB/19.4MB
CouchDB1 25.88% 19.74% 75.14MB 5.88/20.3MB

iment. Both of them have completed the same functions, such as data encryption, per-
mission control, login management, etc., except for the different data storage structures.
The experiment compares the concurrent performance and data processing efficiency of
the two systems by sending requests for queries and inserting data in multiple threads.
Figure 9 is the content of the inserted data, which contains the packet number, date, op-
erator number, specific time, and room number. The experiment uses 100 threads to send
packets continuously for 10 minutes to two servers, containing data queries, insertions,
and updates. The total number of packets received by a single system was 289192, and
the packet loss rate was 0% for both systems. By recording the data processing time of
the two systems, the final test results were obtained as shown in Figure 10.

Fig. 9. Experimental sample data

Regarding query times (Figure 10(a)), the distributed database exhibits an average
query time of 135 ms (ranging from 123 to 142 ms). In comparison, the MySQL database
has an average query time of 23 ms (ranging from 22 to 25 ms). Despite the disparity, this
difference in response speed is minor and unlikely to significantly impact user experience,
as users can obtain desired history in a single query. In terms of data insertion operations
(Figure 10(b)), inserting data into the distributed database takes an average of 1815 ms
(ranging from 1550 to 2113 ms), whereas the MySQL database averages 45 ms (ranging
from 39 to 51 ms). The noticeable gap in data insertion time is expected, considering the
inherent complexity of blockchain data insertion steps. However, according to research
from the Encyclopedia of Software Testing Technology, most users accept response times
under 4 seconds. Thus, the 2-second insertion time remains well within acceptable limits.
Moreover, data insertion doesn’t involve active user interaction; it’s simply the IoT device
submitting data to the server for processing. Overall, the system’s feasibility is promising.
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(a) Query time comparison (b) Insert time comparsion

Fig. 10. Comparison with MySQL-IoT

Hyperledger Fabric offers quicker consensus compared to traditional blockchain sys-
tems using proof-of-work. This experiment contrasts Fabric’s speed with proof-of-work
difficulties of 15 and 20 [48]. In Figure 11, Fabric’s consensus outperforms proof-of-work
by around 20 ms at low difficulties. As nodes increase, Fabric maintains efficiency. How-
ever, with proof-of-work’s difficulty at 20, consensus time escalates significantly as nodes
grow. At 100 nodes, Fabric takes about 0.2 s while proof-of-work (difficulty 20) takes 6.3
s. Fabric’s consensus efficiency is thus prominent.

Table 6 provides a visual comparison between the two frameworks. MySQL-IoT
boasts efficient data processing, especially in updates. Yet, its security is compromised.
In contrast, BI-FERH sacrifices some efficiency for vastly improved data security. Its dis-
tributed storage structure resists DDoS attacks, while blockchain storage ensures trace-
ability and tamper resistance. Hyperledger Fabric’s chaincode enhances blockchain scal-
ability. TLS secures data transmission. BI-FERH strengthens data security without harm-
ing business efficiency, offering a secure IoT storage solution.

Table 6. BI-FERH vs. MySQL-IoT

BI-FERH MySQL-IoT
Storage System Hyperledger Fabric v2.2 MySQL v5.7.26
Storage Structure Distributed Centralized
DDoS Defense Capability Strong(IDS 99.9% recognition rate) Weak
Traceability Strong(TxId) Weak
Data Redundancy Strong(Distributed Storage) Weak(Centering)
Untamperability Strong(Hash Chain) Weak
Scalability Chaincode None
Data Packet Loss Rate 0% 0%
Data Transmission Protocol TLS TCP
Data Query (average time) 135ms 23ms
Data Update (average time) 1815ms 45ms
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4.4. Comparison with blockchain applications

Comparing the BI-FERH system’s performance with similar blockchain applications is
essential. To validate its advantages over other blockchain solutions, the proposed ap-
proach is evaluated against systems from four papers: [34], [37], [38], and [39], all previ-
ously discussed in the related work section.

The experiment involved sending data insertion requests to different blockchain sys-
tems at varying rates: 50, 100, 150, 200, and 250 transactions per second. Each phase
had 1000 transaction requests over five rounds, totaling 5000 transactions. This assessed
concurrency performance and transaction processing speed. Resource consumption, in-
cluding CPU, memory, and block I/O, was recorded for system evaluation.

Table 7 displays specific data for the five systems across phases, including rates,
throughput, and processing times. Initially ranking 3rd in the first phase, the BI-FERH
approach gains ground with higher sending speeds. It secures 2nd place at 100/s. In later
phases, it consistently leads. At 250/s, BI-FERH achieves 125 tps throughput and 8 ms
processing time. This is 28.33 tps higher and 2.79 ms faster than the 2nd place, and 77.66
tps higher with 13.12 ms saved compared to the 5th place.

Table 7. Detailed experimental data with other blockchain applications

Phrase Transactions No.1 to 1000 Transactions No.1001 to 2000 Transactions No.2001 to 3000 Transactions No.3001 to 4000 Transactions No.4001 to 5000

Reference
Indicators Sending

Rate
Throughput

(TPS)
Average

Time(ms)
Sending

Rate
Throughput

(TPS)
Average

Time(ms)
Sending

Rate
Throughput

(TPS)
Average

Time(ms)
Sending
Rate

Throughput
(TPS)

Average
Time(ms)

Sending
Rate

Throughput
(TPS)

Average
Time(ms)

BI-FERH 50/s 25.0 40 100/s 50.0 20 150/s 75.24 13.29 200/s 100.0 10.0 250/s 125.0 8.0
[34] 50/s 48.07 20.8 100/s 50.76 19.7 150/s 34.21 29.23 200/s 37.89 26.39 250/s 47.34 21.12
[37] 50/s 23.25 43 100/s 40.0 25 150/s 41.2 25 200/s 37.04 27 250/s 50.0 20
[38] 50/s 19.08 52.4 100/s 37.87 26.4 150/s 56.49 17.7 200/s 74.62 13.4 250/s 92.67 10.79
[39] 50/s 25.25 39.6 100/s 42.21 23.69 150/s 54.67 18.29 200/s 63.49 15.75 250/s 70.82 14.12

Figure 12 displays a line graph illustrating the time required by the five systems to pro-
cess 5000 data points. The x-axis represents phases with increasing data sending speeds.
The blue curve, representing the BI-FERH method, completes the task in the shortest
time. Observing the graph, the blue curve initially takes the second longest time, then re-
verses this trend after 3000 transactions, outperforming other methods. Changes in slope
reflect concurrency and data processing capabilities. BI-FERH excels in handling large
data volumes and maintaining good concurrency, avoiding transaction blockages and en-
suring efficient data processing.

Figure 13 presents a bar chart depicting resource usage and block data volume for
the five blockchain systems during transaction processing. The chart illustrates CPU and
memory consumption for peer and orderer nodes. Figure 13(a) and (b) reveal CPU and
memory consumption across the five systems. The BI-FERH system (blue) exhibits lower
resource consumption than the other applications, with slightly more memory usage in
peer nodes compared to the application represented by purple. Notably, BI-FERH con-
sumes minimal CPU resources across all nodes. Efficient resource usage is crucial for
maintaining overall computer performance. Although blockchain systems inherently de-
mand additional computational resources due to distributed data storage and security-
enhancing operations, a good system should minimize resource usage while ensuring ef-
ficient performance. In this context, the BI-FERH system excels by consuming fewer
resources than other applications.
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Fig. 11. Consensus consumption for Fabric
and PoW

Fig. 12. Transaction speed comparison

Figure 13(c) and (d) display block data volume in the five blockchain networks. Larger
volumes signify more content and efficient data transmission. BI-FERH (blue) consis-
tently shows higher data volume than other apps, except in orderer node’s block output.
Overall, BI-FERH excels in block data volume, implying its network handles data effi-
ciently.

The experiment compares BI-FERH across various dimensions, emphasizing its trans-
action speed, resource usage, and block data volume advantages.

4.5. Attack traffic identification

The experiment employs the CICIDS2017 dataset [49], encompassing diverse network
attacks like DDoS, DoS, brute force, and web attacks. This dataset comprises 14 attack
types and normal access traffic, as outlined in Table 8. The data is divided into 70% train-
ing and 30% testing sets. The BI-FERH framework utilizes an Autoencoder + TCN model.
For comparison with other contemporary studies, experiments are also performed on the
CICIDS2017 dataset using Autoencoder + LSTM and Autoencoder + BRNN models.

To measure the accuracy of different models, the following four common machine
learning evaluation metrics are used for the experiments.

Accuracy: Accuracy is the ratio of correctly predicted traffic to all traffic.

Accuracy =
TP + TN

TP + FP + FN + TN
(16)

Precision (PR): the ratio of the number of correctly classified positive samples to the
number of samples determined to be positive by the classifier.

Precision =
TP

TP + FP
(17)

Recall (RE): The ratio of the number of correctly classified positive samples to the num-
ber of true positive samples.

Recall =
TP

TP + FN
(18)
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(a) Memory consumption (b) CPU consumption

(c) Block Input (d) Block Output

Fig. 13. Resource consumption and performance

Table 8. Composition of CICIDS2017 dataset

Type Total Percent Training Set Percent Test Set Percent
DoS Hulk 230124 8.14% 161087 5.70% 69037 2.44%
DDoS 128025 4.53% 89618 3.17% 38408 1.36%
DoS GoldenEye 10293 0.36% 7205 0.26% 3088 0.11%
DoS slowloris 5796 0.21% 4057 0.14% 1739 0.06%
DoS Slowhttptest 5499 0.19% 3849 0.14% 1650 0.06%
PortScan 158804 5.62% 111163 3.93% 47641 1.69%
FTP-Patator 7935 0.28% 5555 0.20% 2381 0.08%
SSH-Patator 5897 0.21% 4128 0.15% 1769 0.06%
Bot 1956 0.07% 1369 0.05% 587 0.02%
Web Attack Brute Force 1507 0.05% 1055 0.04% 452 0.02%
Web Attack XSS 652 0.02% 456 0.02% 196 0.01%
Infiltration 36 0.00% 25 0.00% 11 0.00%
Web Attack Sql Injection 21 0.00% 15 0.00% 6 0.00%
Heartbleed 11 0.00% 8 0.00% 3 0.00%
BENIGN 2271320 80.32% 1589923 56.22% 681395 24.10%
Total 2827874 100% 1979512 70% 848362 30%

F1 Score: F1 Score is the balanced average of recall and precision.
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F1 =
2 ∗ (Recall ∗ Precision)

Recall + Precision
(19)

Table 9 shows the training and the final accuracy of the three models. From the table, it
can be analyzed that the training time spent by the Autoencoder +TCN model is shorter,
but there is not much difference between the accuracy rates of the three models. The
overall results are all relatively good.

Table 9. Training situation

Train Parameters epoch Batch Size Training Time Accuracy
Autoencoder + TCN 140320 10 512 25min 99.90%
Autoencoder + LSTM 3204688 5 512 42min 99.40%
Autoencoder + BRNN 2517822 5 512 183min 99.20%

Table 10 displays attack identification results using Precision, Recall, and F1 scores
across the three models. Figure 14 visualizes F1 scores for 15 classification cases. The
Autoencoder + TCN model achieves F1 scores of 0.97 or higher in 9 cases, showing its
superior performance. All models accurately identify normal network traffic. In scenarios
with limited data like Bot and web attacks, F1 values, while not reaching 0.97, still surpass
those of other models. Increasing training data could enhance recognition capability in
these scenarios.

Table 10. Attack scenario identification

CICIDS2017 Autoencoder + TCN Autoencoder + LSTM Autoencoder + BRNN
PR RE F1 PR RE F1 PR RE F1

DoS Hulk 0.999 1.0 0.998 0.991 0.996 0.993 0.972 0.998 0.986
DDoS 1.0 0.998 0.999 0.995 0.987 0.991 0.997 0.991 0.993
DoS GoldenEye 0.985 0.991 0.988 0.965 0.736 0.835 0.804 0.867 0.834
DoS slowloris 0.971 0.971 0.971 0.772 0.347 0.479 0.816 0.656 0.727
DoS Slowhttptest 0.965 0.982 0.974 0.507 0.572 0.537 0.766 0.632 0.691
PortScan 0.994 0.998 0.996 0.992 0.997 0.994 0.992 0.995 0.994
FTP-Patator 0.998 0.993 0.996 0.937 0.995 0.965 0.876 0.958 0.915
SSH-Patator 0.975 0.988 0.981 0.665 0.988 0.795 0.912 0.474 0.624
Bot 0.979 0.726 0.834 0 0 0 0 0 0
Web Attack Brute Force 0.669 0.858 0.752 0 0 0 0 0 0
Web Attack XSS 0.500 0.015 0.30 0 0 0 0 0 0
Infiltration 0.308 0.727 0.432 0 0 0 0 0 0
Web Attack Sql Injection 0.332 0.500 0.400 0 0 0 0 0 0
Heartbleed 0 0 0 0 0 0 0 0 0
Benigh 1.0 1.0 1.0 0.996 0.998 0.997 0.997 0.998 0.998

5. Results and discussions

Table 11 offers a comparison between BI-FERH and other blockchain applications across
five categories: blockchain type, platform, IoT device, consensus algorithm, and data algo-
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Fig. 14. F1 values for different models of attack identification

rithm. BI-FERH’s choice of consortium and private blockchains aligns with non-currency
applications. Hyperledger Fabric as the platform provides scalability and performance
advantages over other platforms like Indy and Composer. Kafka consensus suits the ho-
tel application’s cluster environment, enhancing efficiency. PBFT’s node trust issues don’t
apply here. BI-FERH enhances data protection via AES encryption and Base64 encoding,
contrasting with other applications that lack data processing, except for watermarking in
one case.

Table 11. Comparison of related applications

Reference Description Blockchain type Platform IoT Consensus Data algorithms

BI-FERH Smart hotel info management system Consortium blockchains Hyperledger Fabric
√

Kafka AES128, Base64

[11] Mobility data transactions Consortium blockchains Hyperledger Indy × PBFT ×

[34] Transparent supply chain for coffee Consortium blockchains Hyperledger Fabric
√

RAFT ×

[35] Tracking sources of fake news Private blockchain BloXroute × PBFT ARX Digital Watermark

[36] Security system for smart home Private blockchains Hyperledger Composer
√

PoW ×

[37] Electronic healthcare record system Consortium blockchains Hyperledger Composer × PBFT ×

[38] Smart Hospital patient data detection Consortium blockchains Hyperledger Composer
√

Solo ×

[39] Smart city safety transportation System Consortium blockchains Hyperledger Fabric
√

Solo ×

[40] IoT decentralized voting system Public blockchains Solidity
√

PoW ×

5.1. Availability

The experiments, focusing on system performance and comparison with traditional stor-
age structures, highlight BI-FERH’s usability. The Fabric SDK plays a key role in node
operation and data processing. Network initialization and construction took just 9,127ms.
Comparison of SDKs in different languages favored Go for data updates and queries, af-
firming its suitability. Assessing traditional centralized storage versus BI-FERH’s blockchain
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approach aimed to gauge efficiency trade-offs. Results indicate that the efficiency sacri-
ficed for decentralized storage through blockchain remains acceptable for user function-
ality.

5.2. Performance

The experiment’s third segment compares the consensus algorithms’ pivotal role in achiev-
ing data consensus among nodes, contrasting Fabric and PoW. In the fourth part, BI-
FERH’s performance is gauged against other blockchain systems across five dimensions:
transaction speed, memory consumption, CPU usage, and block input/output data vol-
ume. Results indicate this system outperforms others with 1.3x faster transaction speed,
10% lower memory consumption, 7% lower CPU usage, and increased block data in-
put/output by 14MB and 3.8MB respectively. Overall, the system exhibits heightened
transaction speed, improved concurrency, reduced memory and CPU consumption, and
enhanced data transfer efficiency.

5.3. Security

Data Integrity Arthur Gervais et al.’s research on blockchain security [50] examines the
potential for data tampering. If an attacker aims to alter a block before the latest one (h-
th block), they must modify the prior block’s hash and recalculate subsequent hashes to
create a new longest chain. Assuming honest node hash computation speed as p times/s
and the attacker’s speed as q times/s, the hash’s difficulty requires the first g binary digits
to be 0. When no new node joins, an honest node’s probability of acquiring a block is
p/2g , and the attacker’s is q/2g . Initially, differing nodes between the honest node and
attacker are z0 = h. Subsequently, zi+1 possibilities are: zi+1, zi−1, zi with probabilities
P1, P2, P3, corresponding to events X1, X2, X3.

zi+1 =


zi + 1, P1 = p

2g (1−
q
2g )

zi − 1, P2 = q
2g (1−

p
2g )

zi, P3 = 1− P1 − P2

(20)

When zi+1 = −1, it means that the attacker successfully tampered with the blockchain
data. Within t seconds, there will be t times of changes in the number of nodes apart. Let n
be the number of occurrences of X1; when tampering is successful, X2 will occur at least
(n + h + 1) times, Let j be the difference between the actual number of occurrences of
event X2 and the minimum number of occurrences, then the actual number of occurrences
of X2 is (n+h+1+j), and the number of occurrences of event X3 is (t−2n−h−1−j),
where n ∈ [0, (t − 1 − h)/2], j ∈ [0, t − 2n − h − 1]. Within t seconds, the probability
of an attacker successfully tampering with blockchain data is

Pt(h) =
∑nmax

0

∑jmax

0 ( 2!
n!(h+n+1+j)!(t−2n−h−1−j)! · P

n
1 P

h+n+1+j
2 P t−2n−h−1−j

3 ) (21)

The final analysis shows that the success probability of the attacker decreases as the
depth h of the tampered block increases and the probability of successful tampering in-
creases as the attacker increases. If an attacker wants to tamper with the data of a specific
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ledger on a local node, it requires the attacker to have the ability to forge signatures and
modify the hash values of blocks on all nodes. So blockchain can prevent data tampering
and makes data integrity guaranteed.

Signature forgery The external attacker’s attempt to forge a trader’s signature in the
block involves brute force cracking to guess the private key, excluding key theft. The
ECDSA elliptic curve digital signature algorithm’s private key lengths of 160, 224, and
256 bits result in cracking times of 1012, 1024, and 1028 seconds, respectively, using a
computer with one million instructions per second. The private key utilized in this system
is 256 bits, requiring significant time and computational resources for cracking. Even with
a high-cost professional machine, it takes a month to calculate the discrete logarithm of
an elliptic curve with a prime order of 2120. Consequently, elliptic curve algorithms with
large prime orders substantially reduce the feasibility of brute force attacks, rendering
signature forgery infeasible for attackers.

DDOS Defense Distributed Denial of Service (DDOS) attacks involve multiple attackers
targeting multiple targets simultaneously, overloading servers to induce network paralysis
and disrupt regular services. Traditionally, hotel industry information systems relied on
centralized servers for data computation, storage, and business access. Any server attack
would lead to widespread operational halts. In contrast, the BI-FERH framework lever-
ages a distributed blockchain network, decentralizing computing and data resources. This
decentralized structure poses challenges for DDOS attacks, and the framework employs
an Intrusion Detection System (IDS) layer to pre-filter malicious access before processing.
Experimental findings indicate the classification model accurately detects DDOS attack
scenarios with a 99.9% accuracy rate. The IDS successfully identifies 8 distinct attack
types with over 97% probability. This enhances the resilience of hotel information sys-
tems against external attacks.

6. Conclusion

This paper introduces the BI-FERH security framework for smart hotels, leveraging
blockchain, IoT, and machine learning to establish a robust data management system.
The framework’s composition and technologies are explained, showcasing its potential
to enhance security in the hotel industry. Through experiments, an IoT-based information
management system for hotel door locks is developed, demonstrating its performance,
efficiency, and security. The machine learning-driven IDS accurately identifies various at-
tack scenarios in the CICIDS2017 dataset. In conclusion, this work provides a pioneering
solution to address security challenges in the hotel industry’s information systems.
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