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Abstract. Business process re-engineering (or optimization) has been attracting a
lot of interest, and it is considered as a core element of business process manage-
ment (BPM). One of its most effective mechanisms is task re-sequencing with a
view to decreasing process duration and costs, whereas duration (aka cycle time)
can be reduced using task parallelism as well. In this work, we propose a novel
combination of these two mechanisms, which is resource allocation-aware. Start-
ing from a solution where a given resource allocation in business processes can
drive optimizations in an underlying BPMN diagram, our proposal considers re-
source allocation and model modifications in a combined manner, where an initially
suboptimal resource allocation can lead to better overall process executions. More
specifically, the main contribution is twofold: (i) to present a proposal that lever-
ages a variant of representation of processes as Refined Process Structure Trees
(RPSTs) with a view to enabling novel resource allocation-driven task re-ordering
and parallelisation in a principled manner, and (ii) to introduce a resource allocation
paradigm that assigns tasks to resources taking into account the re-sequencing op-
portunities that can arise. The results show that we can yield improvements in a very
high proportion of our experimental cases, while these improvements can reach a
45% decrease in cycle time.

Keywords: business process optimization, process models, resequencing, paral-
lelism, resource allocation

1. Introduction

Business Processes (BPs) have nowadays become quite complex as the business require-
ments are increasing, e.g. to accommodate multiple and evolving customer needs. This
situation renders the significance of Business Process Management (BPM) even higher.
BP optimization, also covered by terms such as BP reengineering and redesign, has per-
sisted as a key aspect in BPM since the emergence of BPM as a scientific area.

In general, automated solutions for BP optimization have not been explored as deeply
as process modelling, as discussed in several places, e.g., [19],[27],[4]. In such a con-
text, this work is motivated by the more specific observation that, up to date, there is
no automated optimization technique for BPs that can benefit from the overlapping task
execution in order to improve latency (a.k.a. cycle time or duration) and is generally ap-
plicable. Moreover, concurrent task execution is typically addressed separately from task

⋆ An early version of this work has appeared in [26].
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resequencing, whereas the latter tends to focus solely on cases where there are tasks that
may lead to immediate process termination [11],[4]. In addition, task allocation is also
considered independently of task parallelisation and re-sequencing, both of which modify
the structure of the business model whereas task allocation does not impact the model
structure.

We aim to address the afore-mentioned limitations and more specifically, we target
scenarios where a BP is modelled with the help of a procedural approach, such as BPMN1,
and the optimizations on which we focus fall under the BP behavior heuristics according
to the taxonomy in [4]. This category of heuristics includes activity resequencing and par-
allelism, and the impact of their application is reflected on the model diagram. In other
words, the optimized model’s structure is different than the initial one. The latter is modi-
fied so that certain objectives, such as cycle time or total cost, are improved and our main
novelty is that we apply these heuristics, not only in a resource-aware manner, but through
leveraging resource allocation so that opportunities to enhance the model structure arise.
To date, resequencing has been explored in a manner that it is tightly coupled with the
existence of knock-out activities either directly or indirectly [1],[11],[25]; knock-out ac-
tivities are the activities that can lead to immediate process termination, such as automat-
ically rejecting an application if it does not meet certain criteria. Here, we depart from
such a narrow consideration of resequencing. In addition, principled parallelism, where
different activities overlap in the time domain and are executed concurrently, is an over-
looked area in BP in the sense that although it is a well-recognized heuristic, to date, no
algorithmic technique has been proposed to leverage it.

In our previous work[26], we have introduced a novel combination of re-sequencing
and parallelism enforcement, with the aim of reducing the cycle time of the process in
question. To this end, we leverage the task-based variant [6] of representation of pro-
cesses as Refined Process Structure Trees (RPST) [24]. This representation allows us to
check valid resequencing actions systematically, while it is more amenable to cycle time
computations. A key aspect in our solution is that we annotate the tree vertices with the
resource allocated, i.e., we take into account both the control flow and the resource per-
spective of the process. This part of our solution has appeared in [26].

The main novelty in this more complete proposal is that we extend the initial confer-
ence version in [26] by combining the cost-based task resequencing and parallelism with a
reorderability-aware resource allocation mechanism that may take suboptimal task assign-
ments decisions in order to create room for resequencing. Our rationale is not tightly cou-
pled with a specific resource allocation technique, provided that such a technique assigns
a suitability score for each resource-task pair. In our proof-of-concept implementation,
the Realistic, Investigative, Artistic, Social, Enterprising and Conventional (RIASEC) di-
mensions are specified to quantify the suitability of the resources to execute specific tasks
in line with the proposal [14].

Reorderability potential has already been discussed in [22]. In this work, we depart
from simply assessing the reorderability based on model complexity measures and we do
perform process redesign. However, another major difference between our work and the
work in [22] is that we take into account resource allocation rather than model features in
order to reason about the applicability of reordering tasks and putting branches in parallel.

1 https://www.bpmn.org/
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The results of this work are particularly encouraging. We show that we can improve a
very high proportion of cases with the maximum improvements in cycle time being 45%.
Moreover, we explain that our proposals can be combined so that the best performing
flavor in each case can be selected.

The remainder of this work is structured as follows. Next, we present an exemplary use
case. In Section 3, we provide the background regarding RPST and its task-based variant
along with cost modeling. In Section 4, present a cost-based task-ordering algorithm that
is extended in Section 5 by the proposal of an innovative resource allocation algorithm
that is reorderability-aware. We continue with the experimental evaluation results of the
discussed techniques that shows their benefits in Section 6. Finally, in Sections 7 and 8
the related work and conclusions are discussed, respectively.

2. Our Case Study

Our case study is shown in Figure 1 and refers to a common real-world BP regarding
an employee expense reimbursement request2. Briefly, the BP consists of 8 activities that
are required to analyse, approve and pay an expense statement submitted by an employee
of a business, while accounting for essential steps, such as money transfer, notifications
and validation that an account exists. Despite its simplicity, this process is amenable to
optimizations, where the relative order of some parts can change, e.g., the initial check
regarding the account existence can be performed in parallel with other activities. Fur-
thermore, the activities are performed by different actors (automated services, ordinary
employees and supervisors), which may result in configurable execution ordering and
therefore, lower waiting times at the expense of higher human effort cost. As such, this
type of business process forms an excellent candidate to benefit from the advances in
automated cost-based flow optimization that we aim to introduce.

More specifically, we handle the example case study as follows. In our approach,
we start with the modelling quality and we consider only well-structured models. It is
out of our scope to advocate specific automated transformations, but there exist several
proposals in the literature, e.g. [17]. Therefore, the model we process is transformed to
the well-structured form as shown in Figure 2.

Next, a closer examination of the activities reveals that the review and approval of
claims above $200 can be seen as a knock-out activity because one of its outcome can
lead to immediate process termination under an additional assumption that the task of
advising employees of the rejection has zero cost and can be replaced by a message.
Therefore, it makes sense to move the knock-out activity as early as possible using a
rank formula that considers both activity cycle time and cost. This is already covered
by previous works, e.g., [1],[11]. Our approach can encapsulate these proposals, but, to
better show the novelty of this work, in our case study, we treat every activity, including
this specific one, as not being a knock-out one, i.e., as if all claims are approved. So, the
question that arises is: “If there are no knock-out activities, what type of resequencing is
beneficial?”.

Our answer to this question is to move the block with the review and approval of
claims above $200, which is performed by the supervisor, in parallel with the early blocks

2 https://www.businessprocessincubator.com/



1664 Konstantinos Varvoutas et al.

Fig. 1. The process model of an Employee Expense Reimbursement Request

Fig. 2. The well-structured process model of an Employee Expense Reimbursement Request
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Table 1. Case Study Activity Cycle Times and Costs

ID Path Activity Name Cost Time
1 1 Send Email to Employee - Treatment in Progress 1 1 Minute
2 1 Send Email to Employee - Notice of Re-Submission 1 1 Minute
3 2 Validate if Employee Account Exists 2 1 Day
4 2 Create Employee Account 4 1 Day
5 2 Analyze the Request for Automatic Authorization 3 1 Hour
6 2 Review and Approve Request (Supervisor) 8 1 Day
7 2 Transfer the Money to the Employee Account 2 2 Days
8 2 Advise Employee of the rejection of the request 0.1 1 Hour

Table 2. Case Study Path Probabilities

Name of Gate Path Probability

XOR block1 Path Account 0.8
XOR block1 Path No Account 0.2
XOR block2 Path Amount 0.8
XOR block2 Path Otherwise 0.2
XOR block3 Path Transfer 0.6
XOR block3 Path Advise 0.4

of account existence validation and possible creation of an employee account. This allows
two distinct types of resources, namely both the supervisor and the supervisee employee,
to operate in parallel, so that their cycle times are overlapped. However, it is valid to claim
that such resequencing modifications cannot happen because the activity performed by
the supervisor should follow the activity for the analysis of the request for the automatic
authorization. Therefore, the latter task needs to be moved earlier as well. In our solution,
we deal with these issues and in a nutshell, we propose a principled technique that puts
blocks of activities in parallel. This movement of activities in the diagram leads to lower
cycle times, and entails the incorporation of AND gateways in the model, while ensuring
that precedence constraints are met through also moving the necessary activities upstream.
I.e., the validity of the optimized model is always guaranteed.

2.1. Statistical Metadata

The solution that we propose is principled in two senses: (i) we follow a cost-based ap-
proach, according to which the alternative models are quantitatively annotated in terms of
their cycle time and cost; and (ii) we cast our solution as an algorithm that can be easily
followed (and re-implemented) by third parties in arbitrary scenarios.

To support the first point above, it is necessary to obtain statistical metadata for the
activities that are present in the model. If we are interested in cycle time and cost, there are
at least three types of statistical metadata required, namely (a) the activity cycle times; (b)
the activity costs and (c) the probability to follow a specific path after (X)OR gateways.
These are adequate to compute the process cycle time, as is recorded in several textbooks,
e.g., [4]. Tables 1 and 2 present such example metadata for our case study.
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3. Process Model Decomposition

We employ a convenient representation of a process, where convenience means that the
representation should naturally lend itself to resequencing operations, and process total
cycle time and cost can be easily computed. The cost (resp. cycle time) of the entire pro-
cess is calculated by combining the costs (resp. cycle times) of the individual fragments
using appropriate cost functions, e.g., sums, minimum, maximum and so on. We advo-
cate the usage of the Refined Process Structure Tree (RPST) [24] and more specifically a
specific variant of RPST, called Task Based Process Structure Tree (TPST) [6]. Both can
be deemed as decomposition techniques separating a business process into its individual
fragments exactly as we desire.

3.1. Task Based Process Structure Tree (TPST)

The construction of TPST entails a decomposition approach that is based on RPST [6],
where a business process model is separated into blocks, which are organised in a hierar-
chical way. The main differences between TPST and RPST are the following:

– The leaf nodes of a TPST represent a node (i.e., a BPMN activity) of its corresponding
process model instead of an edge. This allows us to compute total times and costs
based on the activity times and costs, respectively, and also to reorder (blocks of)
activities.

– There are multiple types of process fragments into which a process may be separated
instead of one generic type. These types include Sequence, Loop, XOR and AND.
These are the same types that are typically employed in flow analysis-based cost
computation.

– The leaf nodes of a TPST are ordered, thus making the TPST a semi-ordered tree.
– The internal (i.e., non-leaf) nodes of a TPST represent the control flow.

A subtle point regarding the model in Figure 2 is that, although it is well-structured,
an AND split gateway is paired with an XOR merge gateway. Normally, such a situation
may lead to erroneous lack of synchronization, but in our case, only a single token is
guaranteed to arrive at the merge XOR gateway, as required in valid BPMN models.
However, we need to employ a specific AND/XOR fragment type to cover this case. In the
appendix in [26], we present an alternative modelling of the same process, which employs
boundary events in a sub-process in order to show that our approach is not specific model-
dependent as long as the model to be optimized is in a well-structured form.

3.2. Decomposition of Our Scenario

The TPST of the model in Figure 2 is depicted in Figure 3. All the leaf nodes of the TPST
correspond to BP activities and the waiting events. The root of the TPST represents the
complete BP of Figure 2 and it is a Sequence. The children of this sequence are (i) a
starting event, (ii) an AND/XOR gateway node and (iii) an end event. At the next level,
there are two other sequences that are children of the AND/XOR gateway node. The left
sequence represents the top path of the BPMN model, while the right sequence represents
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Fig. 3. The TPST of our case study BP model.

the bottom path. Similarly, each of these sequences is connected with its children activities
and/or XOR blocks comprising activities.

After the decomposition of the BP model to its fragments using the TPST approach,
the total cost and cycle time of the process can be calculated in a straightforward manner.
When a token arrives at the AND/XOR gateway, both upper and bottom paths are initiated.
In the upper path, due to the timer activities, the token proceeds when each timer runs out.
The two parallel paths are executed independently and the cycle time of the AND/XOR
subprocess block is the minimum of the two paths, while the cost is the cost of the path
with the minimum cycle time plus the costs of all TPST nodes that have completed in the
other path.

Based on the metadata in Tables 1 and 2, assuming that a day is equal to 8 hours, we
can easily compute that the cycle time of the first sequence in Figure 3 is 30 days and 2 min-
utes, while, for the second sequence it is 2 days and 6.2 hours. The total cycle time is
the minimum of these two values. Details are provided in [26]. Using classical formulas
in textbooks, such as [4], can help as to compute the cycle time and cost directly from the
BPMN diagram, but the TPST representation renders this computation trivial.

However, this cost model is limited to reflect the cost of the execution paths without
considering the available resources and the advantage of executing in parallel independent
paths. For example, in our case study, if there were more reimbursement requests than
request handlers, there would be resource contention that leads to increases in the cycle
time. Under such conditions, some instances and their corresponding tasks are put on
hold until the required resources become available. Also, the statistics in Table 1 reflect
expected times, which lead to a situation that the cycle time computations for all instances
will always consider that Sequence2 is the fastest one for all instances. Obviously, it
would be more realistic to consider time variations; however these improvements in the
cost modelling do not affect our solution.
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Table 3. Behavioral constraints considered

Activity constraints Description
precedence(a1, a2) Whenever activity a2 is executed, the execution of a1 must precede

not co-existence(a1, a2) Either activity a1 or a2 can be executed, but not both
chain succession(a1, a2) Activity a2 directly follows a1

Essentially, our resequencing technique is independent of any model to compute the
process cycle time and cost. During resequencing, several alternative models are implic-
itly generated and checked as to whether they lead to cycle time improvements. Instead
of using the technique described above for cycle time computation, advanced simulators,
e.g., BIMP3 or digital twins [3], can be also employed.

4. TPST-based Task Re-ordering with Fixed Resource Allocation

Our methodology accepts as input the TPST representation of the BPMN model and aims
to produce an optimized model. To this end, it takes into account (i) the metadata of the
input model’s tasks, (ii) any behavioral constraints that may apply; and (iii) the given
resource allocation. The former item has already been introduced (see also Tables 1 and
2), thus, in this section we focus on the constraints and the resource allocation.

4.1. Notation and Cycle Time Computation Considerations

The main notation required to explain our optimization approach is summarized below.

– A = {a1, . . . , an} defines a set of n activities that appear in the BPMN business
process model. The cycle time (resp. cost) of each activity ai, i = 1n is denoted as
ct(ai) (resp. cost(ai))

– R = {r1, . . . , rm} denotes a set of m resources, where the set of activities A are
allocated to.

– A → R defines the mapping of activities to resources; aji denotes that ai is mapped
to rj , where i ∈ 1 . . . n and j ∈ 1 . . .m.

In addition, we consider a subset of the constraints defined by DECLARE [15], as
depicted in Table 3. Without loss of generality, we assume that the precedence constraint
subsumes the chain succession one, and their existence prohibits the existence of the not
co-existence constraint. These constraints are used in many works, e.g., [2], and can be ac-
companied by additional ones, such as existence of alternating ordering, which, however,
add no further knowledge in our case and thus are not required by our technique.

The main implication of the resource allocation regarding the computation of the pro-
cess cycle time is when considering AND blocks: instead of returning the maximum of
all branches always, we do so only if the resources are different. Activities belonging to

3 https://bimp.cs.ut.ee/simulator/
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Algorithm 1 TPST-based re-ordering
1: Annotate TPST with resource allocation info
2: Perform BFS on TPST
3: if node.type is “Sequence” then
4: for each node pair in the sequence do
5: check pair validity for parallel execution
6: assess impact on cycle time
7: resolve additional constraint violations
8: end for
9: end if

different branches but executed by the same resource are treated as executing sequentially
in terms of their cycle time. Note that the resource-oriented notation is kept as simple as
possible at this stage and in the next section, we will include extensions and provide full
details.

4.2. Cost-based Task-reordering Algorithm

We annotate each leaf node of the TPST with the resource allocated. Each parent node
with all its children annotated with the same resource is annotated accordingly as well;
if there are multiple different resource annotations among the node children, the resource
annotation of the parent is the union of all children resources. The resequencing algorithm
is applied to such a resource-annotated TPST representation of the input model. The next
step of the algorithm is to traverse the TPST through performing Breadth-First-Search
(BFS). For each Sequence node encountered, every possible node pair in the specific se-
quence is considered as a candidate for parallel execution through the following procedure
(see also Algorithm 1).

1. First, it is checked whether any precedence constraints are violated. I.e., for any two
activities a1 and a2 that are considered to be placed in a parallel (AND) block, behav-
ioral constraints must not include both Precedence(a1, a2) and Precedence(a2, a1). If
a node is not an activity one but a complete fragment, e.g., a XOR block, then this
check is performed for all activities in the block. In essence, the absence of these two
constraints suggests the existence of the relation of potential parallelism [4].

2. The impact on the cycle time and execution cost is examined when moving the down-
stream node in parallel with the upstream one in the sequence. If the downstream node
has already been moved in parallel with another node in an earlier pair consideration,
it is checked whether the upstream node in the initial sequence should be added to the
branch of the AND block that does not contain the downstream node. Basically, the
cycle time is improved if the nodes considered for parallel execution are assigned to
different resources, i.e., the intersection of their resource annotations is null. The total
cost remains unaffected unless a knock-out activity is executed in parallel instead of
as early as possible. If there is no improvement, this pair is not further considered.

3. A final check whether creating an AND block leads to violation of precedence con-
straints involving one activity other than a1 or a2 is performed. If this the case, we
need to consider if the violation can be resolved by reordering the other activity just
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Fig. 4. The result of applying our proposed methodology to the case study BPMN.

before the AND block. If such a reordering is not feasible due to the constraints of
the model, then the changes under consideration are rejected and we continue with
the next pair.

Complexity Analysis: The complexity of the above solution in O(n3), where n is the
total number of activities. The maximum number of pairs is O(n2) while each node can
participate in O(n) behavioral constraints. Actually, the complexity is lower, since it is
cubic in the length of the longest sequence. Apart from the polynomial complexity, it
is important to stress that even in large processes, n does not typically grow very large.
Finally, due to the same reasoning as in [10],[9], we can characterize the problem in
question as NP-hard, thus the polynomial algorithm presented does not aim to find the
optimal solution but just to improve the BPMN diagram considered.

4.3. Application in Our Example Case Study

As a proof of concept, we present the application of our proposed methodology to the
example case study that was presented in Section 24. The algorithm accepts as input the
TPST representation of the input model as shown in Figure 3. The resource annotation
(not shown) is based on the activity names: all activities but one are executed by a single
resource, while the remaining activity is executed by a different resource named supervi-
sor. The constraints are presented in Table 4. The first sequence Sequence1 has no valid
candidate node pairs due to the behavioral constraints in place. However, when applying
the algorithm on Sequence2, the result is that activity Validate if Employee Account Exists
and block XOR Block 2 are reordered for parallel execution, and then XOR Block 1 is
placed in the same branch as the former activity5. The resulting BPMN is presented in
Figure 4.

4 The prototype implementation can be found at https://github.com/kmvarvou/bpmn_tpst_
optimization

5 According to the example metadata, actually this last movement does not lead to improvements (the cycle
time remains the same) but we include it for completeness, since it may yields lower times if the cycle time
of the supervisor task was longer.
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Table 4. Case Study Behavioral Constraints

Constraint Activity1 Activity2
Precedence 7 Days Send Email to Employee - Treatment In Progress
Precedence 7 Days 23 Days
Precedence 7 Days Send Email to Employee - Notice of Resubmission
Precedence Send Email to Employee - Treatment In Progress 23 Days
Precedence Send Email to Employee - Treatment In Progress Send Email to Employee - Notice of Resubmission
Precedence 23 Days Send Email to Employee - Notice of Resubmission
Precedence Review and Approve Request (Supervisor) Transfer the Money to the Employee Account
Precedence Review and Approve Request (Supervisor) Advise the Employee of the Rejection of the Request
Precedence Validate if Employee Account Exists Create Employee Account
Precedence Create Employee Account Transfer the Money to the Employee Account
Precedence Create Employee Account Advise the Employee of the Rejection of the Request
Precedence Validate if Employee Account Exists Transfer the Money to the Employee Account
Precedence Validate if Employee Account Exists Advise Employee of the rejection of the request
Precedence Analyze the Request for Automatic Authorization Review and Approve Request (Supervisor)
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Fig. 5. Process cycle times for different values in terms of cycle time of the Review and Approve Re-
quest (Supervisor) activity (left) and the probability of the activity being executed in XOR block 2
(right). The blue bars refer to the original model and the orange bars to the optimized one.

In the optimized model, the average total cycle time becomes 2 days and 4.6 hours.
In other words, the introduction of parallelism leads to a decrease of 7.3 % in terms of
cycle time. In Figure 5, we present the results of applying our methodology for a variety
of values in terms of cycle time (of the activity Review and Approve Request (Supervisor))
and XOR branch probability; all the other values remain the same as the example ones
already provided in Section 2. In the two plots in the figure, the improvements are up to
13.5% and 23.8%, respectively.

5. Blending Resource Allocation with Reordering

In the previous section, our approach to task reordering relied on the existence of a re-
source allocation for a business process model. In this section, we extend our approach to
conduct also resource allocation. The components of task reordering and resource alloca-
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tion are loosely coupled and the exact resource allocation proposal can be substituted by
more sophisticated ones, since the reorderability-aware resource allocation rationale that
we propose is easy to be incorporated to additional resource allocation techniques.

5.1. Rationale and Further Notation

We begin with extending the resource modeling specifications, presented in Section 4.1,
upon which we build our work. A lot of work has focused on the importance of captur-
ing the differentiated performance of distinct resources when trying to build an accurate
process simulation [13],[12]. In this context, we assume a scenario where, to drive the
final mapping, there is also a quantified suitability measure when assigning an activity to
a resource. More specifically, activities and resources both feature a psychological profile
that aims to classify the resource performance per task according to a set of personal-
ity traits [14]. These attributes correspond to the Realistic, Investigative, Artistic, Social,
Enterprising and Conventional (RIASEC) dimensions of resources and tasks. The psy-
chological profile of an activity ai is defined as a sextuple, one attribute for each RIASEC
dimension, denoted as:

Pai =< Pai.1, Pai.2, . . . , Pai.6 >

A similar profile characterizes the suitability of each resource as well. Therefore,
while a set of resources may be eligible for the execution of a specific activity, each one
of them may demonstrate different levels of suitability, depending on its profile, denoted
as:

Prj =< Prj .1, Prj .2, . . . , Prj .6 >

Furthermore, the cost and duration of the activity execution are differentiated, depend-
ing on the allocated resource. In other words, instead of a single cycle time for each activ-
ity for all resources, ct(ai), the cycle time is dependent on the resource rj executing ai,
and is denoted as ct(aji ). Similarly, for each activity, we assume the existence, apart of the
average duration (cycle time), of the cost of execution, cost(ai), which may be provided
by domain experts or through past execution logs. Both these resource allocation-agnostic
metrics, namely ct(ai) and cost(ai), are indicative of the performance of each activity,
without taking into account the resource allocated. When allocating a specific resource
for the execution of an activity, these metrics are differentiated according to how suitable
this resource is. To this end, the suitability of a resource for a specific activity is quantified
using the term performance coefficient, denoted as pc.

More specifically, for each activity ai ∈ A and for each resource rj ∈ R that feature
performance psychological profiles Pai

and Prj respectively, and assuming rj being a
resource that is eligible to be selected for the execution of activity ai, we calculate the
performance coefficient pcji using the following equation:

pcji = 1 +

6∑
k=1

|Pai.k − Prj .k|

Then, we can derive the resource-aware cycle time and cost metadata as follows:
ct(aji ) = ct(ai)× pcij , while cost(aji ) = cost(ai)× pcij
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Additionally, as implied above, we take into account the eligibility e of the available
resources to execute the corresponding activities. The eligibility is defined as follows:

e : A×R → {0, 1}

As such, the eligibility of each resource rj with regards to activity ai is denoted as eji
and is a binary variable.

Another factor that affects the resource allocation decisions is the availability, denoted
as av(rj). This metric reflects the capacity constraint in the terms of defining the number
of activities that can be allocated to a single resource rj ∈ R.

Finally, a key metric for computing total cycle time closer to reality is the overhead of
intercommunicating between two different resources in terms of transition cost when ac-
tivities executed by different resources are connected in the BPMN diagram (ric, standing
for resource intercommunication cost):

ric(ri, rj) : R×R → R≥0

5.2. Baseline Allocation

In summary, the allocation approach that is introduced in the following requires as input:

– a TPST structure that consists of a set of activities (A) along with their profiles
(Pai , ∀ai ∈ A),

– a set of resources (R) along with their profiles (Prj , ∀rj ∈ R),
– an eligibility mapping of activities to resources (e),
– the baseline cycle time ct(ai) and cost cost(ai) of the activity ai execution, based on

which the ct(aji ) and cost(aji ) metadata can be derived, and
– the capacity of each resource rj

Based on the key metadata input defined above, the baseline allocation technique is
briefly presented as follows.

The first step of this optimization approach is to identify and rank all the activity nodes
of the TPST input in terms of their average duration of execution ct(ai). Then, according
to their ranking, each activity is allocated to the most suitable available resource. More
specifically, the resource selection depends on the lowest performance coefficient and the
resource availability based on the existing resource’s capacity constraint. In the case that
there is an activity, for which no allocation can be found, this activity is re-ranked and
pushed to the top of the ranking. This process is repeated until a valid allocation is found
for all activities.

The steps of the technique are presented in Algorithm 2. Basically, after ranking the
activities, we choose for an activity ai the resource rj with the minimum pcji value, pro-
vided that e(aji ) = 1 and av(rj) ≥ 1. After each allocation, the av(rj) metric is decreased
by one. In practice, the re-ranking allows activities that can be executed only by scarce
resources to be considered earlier, so that such resources have not reached their capacity.
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Algorithm 2 Baseline Resource Allocation Approach
1: Rank activity nodes based on average duration of execution
2: for each activity node ai do
3: for each resource rj that is eligible and available for its execution do
4: calculate performance coefficient pcji
5: allocate resource with lowest performance coefficient
6: if there are is no possible allocation for this activity ai then then
7: push ai to the top of the ranking
8: go to line 2
9: end if

10: end for
11: end for

5.3. Reorderability-aware Resource Allocation

In this section, we propose a resource allocation approach, which aims to produce an al-
location that promotes/enables the parallelization of activities. To this end, our approach
entails a pre-processing step where activities, which may be executed parallel, are iden-
tified. This is achieved, by taking into account the resource mapping and the behavioral
constraints of the input process model.

More specifically, our approach takes as input a process model represented in TPST
form, along with the set of execution-related metadata that was outlined in Section 5.1.
The input TPST is traversed using DFS in order to identify sequence nodes/blocks. Then,
for each sequence block identified, every node pairing is checked on whether it is eligible
for parallel execution.

The check entails the following step. The behavioral constraints that apply to the in-
put model are checked, to identify which nodes may be executed in parallel. As already
mentioned in Section 4, for each pair of activities a1 and a2, the behavioral constraints
must not include both precedence(a1, a2) and precedence(a2, a1). The absence of these
two constraints suggests the existence of the relation of potential parallelism [4]. A sub-
sequent step is to ensure that there is at least one possible assignment of resources to
tasks so that the two activities are executed by different resources. We also note that in
the generic case, a node in the tree is not a leaf, thus it covers a set of activities.

Through these steps, activity pairings which may be placed in parallel are identified
and are referred to as prioritized activities. Then these node pairings are pushed to the top
of the ranking, so that an allocation for them is prioritized. Our approach aims to provide a
resource allocation which, by taking into account the prioritized pairings, performs such
a resource allocation that enables the parallelization of the aforementioend nodes, even
though the initial allocation may be deemed as a suboptimal one.

Our approach comes in two different flavors, with regard to how the allocation is
produced for these nodes. In the first flavor, the node pairings are directly assigned to
resources, in a way that ensures that nodes of a single pairing are executed by different
resources. In the second flavor, the allocation of different resources to each pairing is
produced indirectly.

More specifically, in the first flavor, the prioritized activities are assigned resources in
a direct manner in a way that allows for their placement in parallel. For each activity pair
included in the prioritized set, their resource mappings are scanned to identify all possi-
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ble allocations. The first allocation that satisfies the condition for parallel placement of the
two activities, i.e. the intersection of the allocations of the two is null, is chosen. The re-
maining, non-prioritized activities are allocated using the baseline approach presented in
Section 5.1. This flavor is termed as Advanced Enforced, since it enforces parallelization.

In the second flavor, termed as Advanced Promoted, the allocation of resources facili-
tates the placement of eligible activities in parallel in an indirect and configurable manner.
For each activity pair a1, a2 included in the prioritized set, each resource that is present
in the resource mapping of only one of the pair’s activities has its performance coeffi-
cient (for that respective activity) reduced by a factor of p. Then, activities are allocated
to resources using the approach presented in Section 5.1. 6

5.4. Discussion

As implied by the description of the advanced flavors above, their coupling with the base-
line resource allocation techniques is a loose one. In other words, the baseline technique,
which is a list scheduling one, is replaceable and the reorderability-aware rationale is
more generically applicable. The prerequisite is that any base resource allocation tech-
nique to be capable of assigning suitability values for each (eligible) resource-activity
pair. Overall, the technique is loosely coupled with both the cost model and the base
resource allocation technique employed.

Also, this work aims to pave the way for a new line of research work that revisits
cost-based activity reordering and the parallelism redesign heuristic in BPMN diagrams.
Apart from the aspects discussed above, we focus also on two additional one.

Firstly, the proposed technique, similarly to any cost-based technique, relies on accu-
rate quantitative and qualitative metadata. We expect that the base activity cycle times,
possibly allowing for uncertainty, can be provided by process mining techniques applied
on previous logs or domain experts or both. This also applies to constraint derivation,
which is a topic already considered in depth in process mining. In addition, our claim is
that we do not neglect but extend task resequencing techniques considering knock-out ac-
tivities, as these are discussed in [11]. More specifically, in the algorithm provided, before
examining each pair in the sequencing, we can apply node reordering and then to proceed
to parallelism investigation. Moving knock out activities upstream is guaranteed to yield
lower cycle times and execution costs. Whereas, our parallilized resequencing reduces
the cycle times at the expense of an increase in the cost in the generic case. This increase
is due to the deliberate suboptimal resource assignment. As shown in the experiments in
the next section though, the increase is insignificant compared to the benefits in terms of
cycle time.

6. Evaluation

We begin this section by outlining the experimental setting that was used to evaluate our
proposal. Then, we proceed to the results’ presentation and discussion.

6 The prototype implementation can be found at https://github.com/kmvarvou/bpmn_tpst_
allocation_optimization
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Table 5. Experimental settings parameters regarding TPSTs

Setting Nodes Tree Depth Tree Breadth
1 18 9 3
2 17 4 8
3 20 5 4

6.1. Experimental Setting

Our software prototype generates process models in the form of TPST trees, and also
generates the required metadata. To allow for a comprehensive and wide-scope evaluation,
we explore numerous random metadata values. These values cover psychological profiles,
behavioral constraints, eligibility and performance metadata, i.e. base cost and duration
of execution for each process activity. For each activity, the cost and duration of execution
attributes was assigned (integer) values in the [1,10] range. This allows for differences on
the order of a magnitude. Additionally, the psychological profiles were assigned random
values for each of their RIASEC dimension in the [0,1] range.

Regarding resource eligibility, each activity may be executed by a subset of the full
set of resources. We cover two scenarios regarding the eligibility of resources: in the first
scenario there are 4 resources: Clerk, Supervisor, Administrator, Intern, while in the sec-
ond scenario there are 8, which are : Clerk, Supervisor, Administrator, Intern, Automated,
Manager, Consultant, Temp. In the first scenario, all resources have a capacity of 6, while
in the second one, they feature a capacity of 3. In other words, both scenarios feature the
same amount of distinct resource allocation slots, but in the second scenario, paralleliza-
tion is inherently easier to achieve due to the larger number of distinct types available.
The probability that a node pair features a precedence constraint is 50%. An exception is
made for node pairings in the form of start,a or a,end where start is the starting event of
the process and end is the ending event of the process, where a constraint must always
be featured. Lastly, regarding the ric values, we again experiment with two scenarios. In
the first scenario there is no ric overhead. In the second one, ric is set to 1 when two
consecutive activities are allocated to different resources.

Regarding the process model types, we conducted our experiments by focusing on
three distinct TPST cases, with each model featuring different characteristics in terms
of depth and breadth. As a reference point, the TPST of the second setting is presented
in Figure 6 while the others are in the appendix. The parameters of the experimental
evaluation are presented in Table 5 and they cover cases where the tree is (i) narrow and
deep, thus leaving little room for reordering improvements; (ii) wide and shallow; and
(iii) balanced, with moderate width and depth.

For each of the three TPST designs, we generated 1000 random cases, each one entail-
ing different quantitative and qualitative metadata as described above. We applied all three
allocation approaches for each TPST case. Then, our cost-based resequencing approach
was applied to each TPST for each of the three allocation approaches. For each approach,
we present the number of cases where parallelization was achieved, and also the average
and maximum improvement achieved in terms of percentage. The improvements are over
the baseline approach without any resequencing.
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Fig. 6. The TPST of the second experimental setting

Table 6. Results for the 3 experimental settings in terms of the number of cases improved (out of
1000), and the average and maximum improvement in these cases (no ric, 4 resources, capacity
equal to 6 each)

Setting Resequencing only Advanced Enforced Advanced Promoted (p = 1.0) Advanced Promoted (p= 0.5)
Cases Average Maximum Cases Average Maximum Cases Average Maximum Cases Average Maximum

1 248 4.2% 19.9% 502 4.1% 17.35% 556 4.1% 22.76% 510 4.0% 18.3%
2 514 10.7% 29.0% 722 8.7% 35.38% 756 8.5% 36.42% 770 8.4% 31.6%
3 438 12.7% 37% 631 8.8% 44.8% 691 8.2% 39.8% 648 8.4% 36.02%

6.2. Results

We start from the scenario with fewer resources and no ric overhead. The results are sum-
marized in Table 6. For each of the three settings (aka TPST types) summarized in Table
5, there is a different row. We compare the effect of resequencing on top of the baseline,
the Advanced Enforced proposal and the Advanced Promoted one. For the latter, we in-
vestigate two flavors, one with p = 1 and another one with p = 0.5. For each solution, we
mention the number of cases that they lead to improvements in each random set of 1000
instances and the average and maximum improvements in cycle time compared against
the cycle time of the baseline resource allocation solution without any resequencing. Note
that in terms of total cost, there might be some degradation, but is negligible, i.e., less than
2% at most.

At first glance, the three allocation approaches appear to have complementary benefits
with no solution dominating each other in all dimensions. More specifically, in all three
settings, applying resequencing on top of the baseline allocation yields higher improve-
ments on average albeit in fewer cases. Advanced Enforced manages to improve more
cases than resequencing only, but Advanced Promoted improves even more. Also, there
is a trend the more the improvements the less the average improvement.
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Fig. 9. Results for the third setting

Also, on average the third setting, which corresponds to moderately wide and deep
trees, benefits from our solutions the most. This is important, because such trees are en-
countered more frequently in practice. Another remark is that Advanced Promoted ap-
proach is capable of consistently outperforming the other two approaches in all three
TPST settings in terms of the cases improved. Compared to the resequencing approach,
it was able to yield improvements in 40% more cases (and over 120% in the case of
narrow and deep TPSTs). Overall, we can improve more than 75% of the cases for the
wide TPSTs and 69.1% of the moderately wide and deep trees, for which the maximum
improvements can reach 44.8%.

Based on the observations above, in case we have an efficient simulator at our dis-
posal, we can employ in practice a hybrid solution that first checks the estimates (predic-
tions) if we perform just resequencing over the baseline allocation. Then, if there are no
or not satisfactory improvements, to check Advanced Enforced, and finally, to check Ad-
vanced Promoted. If we follow this approach, we can combine the highest improvements
with the highest number of cases improved.
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Fig. 10. The result of applying our re-sequencing approach to the TPST of the third experimental
setting.

In Table 6, we have presented coarser-grained statistics. In Figures 7,8 and 9, we
present the boxplots of improvements for each setting, respectively. We can see that a
significant portion of the cases are improved significantly more than the average improve-
ment.

To demonstrate in greater detail the benefits of our proposed approach, we focus in a
particular case of the TPST presented in Figure 6. In this specific scenario, nodes E and
B do not feature any precedence constraints, meaning that they may be placed in par-
allel. Additionally, node E has a resource mapping of {Clerk, Supervisor}. For node
B, the resource mapping of its two children nodes, F and M is: {Supervisor} and
{Clerk, Intern,Administrator}, respectively. Based on these parameters, the alloca-
tions produced by the Baseline Allocation approach and Advanced Enforced approach
are:

1. Baseline : E ⇒ Supervisor, F ⇒ Supervisor,M ⇒ Clerk
2. Advanced Enforced : E ⇒, Clerk, F ⇒ Supervisor,M ⇒ Intern.

The allocation produced by the Advanced Enforced approach, enables the placement
of nodes E and B in parallel, after applying our resequencing approach, the result of
which is presented in Figure 10, leading to a reduction of duration of execution of about
10%. On the contrary, the allocation produced by the baseline allocation approach pre-
vents the placement of the two nodes in parallel.

6.3. Sensitivity Analysis

Next, we aim to discuss the impact that each of the different parameters of the experimen-
tal setting has on the performance of the presented allocation approaches. To this end,
we continue our experiments testing with ric enabled (see Table 7). Then, we repeat both
experiments when we increase the resources to 8 (see Tables 8 and 9, respectively). We
also assess the impact of the volume of precedence constraints.
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Table 7. Results with ric, 4 resources, capacity equal to 6 each)

Setting Resequencing only Advanced Enforced Advanced Promoted (p = 1.0) Advanced Promoted (p= 0.5)
Cases Average Maximum Cases Average Maximum Cases Average Maximum Cases Average Maximum

1 279 4.4% 23.95% 504 4.4% 25.89% 558 4.36% 26.76% 518 4.31% 25.84%
2 525 10.6% 32.2% 725 8.35% 29.3% 742 8.45% 35.3% 746 8.45% 31.6%
3 431 12.5% 35.8% 665 9.2% 43.4% 680 8.9% 40.8% 662 8.6% 39.8%

Table 8. Results with no ric, 8 resources, capacity equal to 3 each)

Setting Resequencing only Advanced Enforced Advanced Promoted (p = 1.0) Advanced Promoted (p= 0.5)
Cases Average Maximum Cases Average Maximum Cases Average Maximum Cases Average Maximum

1 347 4.8% 34.8% 494 5.0% 31.7% 580 4.27% 25.8% 532 4.18% 21.2%
2 682 11.58% 31.7% 800 9.73% 32.16% 791 10.22% 36.59% 817 9.78% 32.37%
3 515 13.16% 44.4% 687 9.78% 41.19% 720 9.44% 38.57% 685 9.79% 43.17%

Table 9. Results with ric, 8 resources, capacity equal to 3 each)

Setting Resequencing only Advanced Enforced Advanced Promoted (p = 1.0) Advanced Promoted (p= 0.5)
Cases Average Maximum Cases Average Maximum Cases Average Maximum Cases Average Maximum

1 337 4.7% 23.1% 482 4.66% 30.0% 585 4.66% 28.4% 531 4.5% 29.5%
2 663 12.24% 35.4% 791 9.87% 41.60% 827 10.24% 35.54% 828 10.39% 36.33%
3 525 13.20% 40.4% 705 10.5% 42.2% 728 9.9% 45.7% 708 10.17% 38.58%

Impact of resource pool size. We begin our discussion with the impact of the size of the
resource pool, i.e., the amount of distinct types of resources. Comparing the results of Ta-
bles 6 and 7 with the results of Tables 8 and 9, we can observe an increase in the number
of cases where parallelization was achieved in all allocation approaches. More specifi-
cally, the resequencing approach on top of the baseline allocation exhibited an increase of
34.5% in the number of cases, while the advanced approaches exhibit an average increase
of 5.6%, 6.3% and 6.4%, respectively. It should be noted that despite this increase in per-
formance, the simple resequencing approach still trails all advanced approaches by more
than 29%. As shown, the advanced allocation approaches exhibit resilient performance,
while the resequencing approach with baseline allocation was heavily impacted by the
less favorable for parallelization parameters in the first scenario with fewer resources.
Overall, the improvements are similar with the highest improvement exceeding 45%, but
for wide TPSTs more than 80% of the cases can now be improved; for the 3rd setting, the
proportion of improved cases was increased to over 72%.

Impact of resource intercommunication overhead. Here, we focus again on the four
same tables but in different combinations. Tables 6 and 8 are compared against Tables 7
and 9, respectively. As we can see, in both settings the incorporation of resource inter-
communication overhead did not seem to impact performance in a significant way, with
all approaches remaining unaffected in all three dimensions.
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Table 10. Results for the TPST of the first experimental setting for three different probabilities of
constraint existence with ric, 4 resources, capacity equal to 6 each

Probability Resequencing only Advanced Enforced Advanced Promoted (p = 1.0) Advanced Promoted (p= 0.5)
Cases Average Maximum Cases Average Maximum Cases Average Maximum Cases Average Maximum

40 349 4.5% 25.4% 513 5.0% 27.1% 586 4.59% 28.5% 564 4.67% 23.9%
50 272 4.2% 23.9% 485 4.15% 28.3% 564 4.3% 24.3% 529 4.4% 19.6%
60 202 3.7% 15% 461 3.8% 22.3% 544 3.83% 17.7% 486 3.9% 21.16%

Impact of precedence constraints. Finally, we would like to examine the impact of
different values of probability of a node pair featuring a precedence constraint on perfor-
mance. In theory, the higher the amount of constraints there are in a model (i.e. higher
probability) then the lower the possibility that some of its activities may be parallelized.
For this experiment, we focused on the narrow and deep TPST, using probability values of
40%. 50% and 60%. The results are presented in Table 10. As we can see, the resequenc-
ing on top of the baseline allocation approach exhibits a 26 % decrease in the number of
cases identified when the probability increases from 50% to 60%. On the other hand, it
exhibits a 28 & increase in the number of cases identified, when the probability decreases
to 40 %. Again, this approach displays a high sensitivity, being affected by the setting’s
parameters. On the contrary, both advanced allocation approaches displayed higher re-
siliency in terms of the number of cases they managed to improve. Finally, the average
improvements in the cycle time decrease as there are more constraints.

6.4. Summary of observations

Here, we provide a summary of the key observations.

– There is no clear winner between our proposals. We see that we can achieve highest
improvements with approaches that manage to improve fewer cases in general.

– The observation above is not actually a limitation. The solutions need not be consid-
ered as competitors and can be combined to form a hybrid ensemble solutions, where
all are tested at the beginning and the best performing one can be chosen.

– We also note the high insensitivity of the proposed methods in terms of resource pool
size, intercommunication overhead and extent of precedence constraints.

7. Related Work

The main cost-based techniques that perform activity reordering in BPMN diagrams lever-
age the existence of knock-out activities, as explained in [1], or utilize one of the redesign
patterns outlined in [18]. The work in [18] presents a set of redesign heuristics, includ-
ing parallelization, which is partially aligned with the focus of our work, in an attempt
to identify the best practices in the field of Business Process Redesign (BPR). In a sim-
ilar context, a subset of these heuristics have been implemented in [7] as part of an as-
sisted BPR approach. However, contrary to our work, this approach focuses mainly on the
control-flow aspect of the process. These techniques are extended with recent advances in
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dataflow and query processing optimization [10], as explained in [11]. Similar techniques
based on heuristics have been also proposed for declarative models, such as PDM (e.g.,
[23]). As already stated, we differ in that we perform cost-based resequencing without
relying on the existence of knock-outs.

Additionally, there are proposals considering issues of automatic Business Process
Redesign. The work in [5] presents an approach that aims to redesign processes in an
automatic way by utilizing insights provided by process mining. However, this approach
does not take into account the resource perspective and also does not include any eval-
uation. Furthermore, the work in[20] focuses on configurable process models. Their ap-
proach aims to simulate automatically generated variants of the input model and identify
the best-performing ones, including previously undiscovered variants.

Up to date, a plethora of objective functions and cost models have already been pro-
posed and applied both for dataflows and business processes, but there are have not been
examined in parallel and distributed environments sufficiently. Therefore, there is a need
to adopt a cost model that will take into account the parallel execution of the BP activities.
The BP execution requires to take into consideration the probability distributions of the
input data tokens, the waiting times or the cost of the occupied resources in a realistic
manner; these challenges are aligned to the effort to construct digital twins for BPs [3]
and are orthogonal to our proposal; the optimization we propose relies on a good and real-
istic cost model but is not tightly coupled with any specific one. Similarly, the authors of
[21] propose building predictive and prescriptive models. The former model estimates the
undesired case outcome probability. The latter one refers to a causal model that estimates
the impact of a given intervention. Our resequencing proposal can benefit from advances
in cost models for BPs to better assess the impact of resequencing.

A significant portion of recent research has highlighted the importance of resource
allocation in the context of BPR and BP optimization. The work in [14] presents an al-
location approach that aims to represent more accurately the unique characteristics of
workers (i.e. resources) by utilizing a personality assessment framework. The framework
used is Holland’s person–job fit theory (HPJFT) upon which we also build our work. In
a similar context, the work in [12] proposes an allocation approach that focuses on maxi-
mizing cooperation between resources. We differ in that we leverage a resource allocation
approach to raise more reorderability opportunities without being tightly coupled with a
specific resource allocation proposal.

Overall, our work also relates to resource allocation optimization proposals but dif-
fers in that it leverages an existing, potentially optimized resource allocation for activity
resequencing rather than targeting on resource allocation as its final goal. Examples of
resource allocation appear in [13], where the trade-off between cycle time and resource
cost is examined. Additionally, the proposal in [8] discusses an allocation technique to
minimize the cloud infrastructure costs in the terms of resource (CPU, RAM, Database
size) consumption when executing real-world BPs with different number of simulated
users. Other examples of resource allocation techniques achieving resource balancing can
be found in [16],[28]. All these proposals are orthogonal to our work as well.
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8. Conclusions

In this work, we deal with the problem of proposing a systematic approach to reordering
BPMN activities and putting them in parallel. We start with advocating to leverage a given
resource allocation with regards to a BPMN model in order to reorder activities so that
they can be executed in parallel. Then, we move to proposing techniques that modify the
resource allocation so that more reorderability opportunities arise. Our solutions modify
the BPMN diagram through inserting AND blocks and moving (blocks of) activities to
other places. The intermediate representation that we employ are TPSTs, while we respect
all relevant behavioral constraints. We show that we can yield improvement in a very high
number of cases examined (in some settings, exceeding 80%), while both the average and
the maximum decreases in cycle time are important. For example, the maximum observed
improvement exceeded 45%. In the future, we aim to extend our work to optimize several
process instances together rather than treating each process instance in isolation.
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A. TPSTs used in the experiments

We have already shown in Figure 6, the TPST corresponding to one of the three experi-
mental settings. In Figures 11 and 12 the remaining two settings are presented.

Fig. 11. The TPST of the first experimental setting

Fig. 12. The TPST of the third experimental setting




