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Abstract. Static source code analysis techniques are gaining relevance in auto-
mated assessment of programming assignments as they can provide less rigorous
evaluation and more comprehensive and formative feedback. These techniques fo-
cus on source code aspects rather than requiring effective code execution. To this
end, syntactic and semantic information encoded in textual data is typically rep-
resented internally as graphs, after parsing and other preprocessing stages. Static
automated assessment techniques, therefore, draw inferences from intermediate rep-
resentations to determine the correctness of a solution and derive feedback. Conse-
quently, achieving the most effective semantic graph representation of source code
for the specific task is critical, impacting both techniques’ accuracy, outcome, and
execution time. This paper aims to provide a thorough comparison of the most
widespread semantic graph representations for the automated assessment of pro-
gramming assignments, including usage examples, facets, and costs for each of
these representations. A benchmark has been conducted to assess their cost using
the Abstract Syntax Tree (AST) as a baseline. The results demonstrate that the Code
Property Graph (CPG) is the most feature-rich representation, but also the largest
and most space-consuming (about 33% more than AST).

Keywords: semantic representation, source code, graph, source code analysis, au-
tomated assessment, programming.

1. Introduction

Reasoning over graph representations of source code has innumerous applications in a
wide variety of areas, ranging from software security (e.g., for detecting bugs [48, 15]
and vulnerabilities [25, 80], and de-obfuscating code [52, 4, 64]) to coding assistance and
computer science education (e.g., predicting variable and method names [1, 4], inferring
types [36, 47], detecting similar code [74, 34, 68, 50], inferring specifications [13], and
automated program repairing [14, 24]). Automated assessment has also been driving ef-
forts into such techniques [43], as “looking” directly at the source code can enable less
rigid assessment as well as richer and more formative-driven feedback than considering
the result of its execution.
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Achieving an effective representation for inference is a critical step in these techniques
because it is an important determinant of accuracy, performance, and cost. On the one
hand, encoding too much information leads to higher complexity. On the other hand, less
information can reduce the accuracy of the technique. As far as the authors are aware,
there is no comparison of these representations in the literature from a practical point of
view, let alone for our purpose of automatically generating feedback for programming
tasks. The goal of this work is to provide a detailed comparison of the most relevant
semantic graph representations of source code to find out which is the most adequate for
automatic feedback generation on programming assignments. Such a comparison should
not only reveal which aspects of the source code each representation captures and which
is the simpler representation that answers the questions at hand, but also suggest possible
new ways to explore some semantic graph representations for the purpose here intended.

This work constitutes an intermediate step to building ground to the decision of which
representation(s) to use in each phase of our novel automated feedback mechanism, that
given an incorrect attempt (1) selects the closest correct solution from the dataset of past
solutions and (2) identifies the differences between the wrong attempt and the correct one
selected. To this end, we briefly describe each representation and present some recent
work that uses them. We also perform feature coverage and a practical comparison of the
presented semantic graph representations. The results are shown and discussed.

The remainder of this paper is organized as follows. Section 2 presents the most rel-
evant semantic graph representations of source code. Section 3 compares the presented
representations according to several aspects, using some typical program samples found
in introductory programming classes. Section 4 reviews and discusses results. Finally,
Section 5 summarizes the main contributions of this study. Relevant literature work is
combined with the presentation of the representations and the discussion of results.

2. Intermediate Representations of Source Code

Research in the fields of program analysis and compiler design has developed a num-
ber of semantic graph representations of source code to reason about different aspects
of programs. This section presents the most relevant semantic graph representations of
source code for assessing submissions to programming assignments. Firstly, it introduces
the AST, i.e., the “mother” of all representations. After the AST, five flow-based repre-
sentations are introduced, namely the Control Flow Graph (CFG) and its interprocedural
variant, the Evaluation Order Graph (EOG), the Data Flow Graph (DFG), and the Call
Graph (CG). The two following subsections present two dependency-based representa-
tions, namely the Program Dependence Graph (PDG) and the System Dependence Graph
(SDG). Finally, the Code Property Graph (CPG), which combines syntax, flow, and de-
pendence information, is described.

Fig. 1 depicts the relationships between the selected semantic graph representations.
The nodes illustrate the semantic graph representations, whereas the edges denote the
relationships among them. There is a relationship between two representations if one is
“based” (i.e., captures information from) on the other. The edge direction indicates the
source of information. Syntax-based, flow-based, dependence-based, and mixed informa-
tion representations are highlighted in different grey levels.



Comparing Semantic Graph Representations of Source Code... 119

AST

DFG CFGEOG CG

PDG

SDG CPG

Syntax-based Flow-based Dependence-based Mixed

Fig. 1. Diagram view of the relationships between semantic graph representations

During the introduction of the representations, some exemplary graphs extracted from
the Python programs presented in Listing 1.1, 1.2, and 1.3 are depicted. These programs
are solutions to the following tasks

T1: enumerate even numbers from 1 to X (X = 10),
T2: calculate the factorial of Y using a recursive approach (Y = 10),
T3: sort an unordered array of Z numbers using QuickSort algorithm (Z = 10).

Listing 1.1. Python program to print even numbers from 1 to 10 (task T1)
1 X = 10
2 for i in range(1, X + 1):
3 if (i % 2) == 0:
4 print(i, end=" ")
5 print()

2.1. Abstract Syntax Tree (AST)

An AST is a finite, labeled, directed tree that models the syntactical structure of a pro-
gram. Its internal nodes correspond to operators, whereas leaves are the operands (sym-
bols) of the parent operator (e.g., variables, arguments, and constants). The AST preserves
information regarding types and locations of variable declarations, order and components
of statements, terms, operators, and their positioning in expressions, and the names and
assigned values of identifiers.

Differently from parse trees, the AST omits nodes and edges from syntax rules that
have no effect on the semantics of the program. For instance, grouping parentheses are
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Listing 1.2. Python program to calculate the factorial of 10 using a recursive ap-
proach (task S2)

1 def factorial(Y):
2 if Y == 0:
3 return 1
4 return Y * factorial(Y - 1)
5

6 Y = 10
7 factorial(Y)

Listing 1.3. Python program to sort an unordered array of 10 numbers using Quick-
sort algorithm (task S3)

1 def partition(arr, l, h):
2 pivot = arr[h]
3 i = l - 1
4 for j in range(l, h):
5 if arr[j] <= pivot:
6 i = i + 1
7 (arr[i], arr[j]) = (arr[j], arr[i])
8 (arr[i + 1], arr[h]) = (arr[h], arr[i + 1])
9 return i + 1

10

11 def quickSort(arr, l, h):
12 if l < h:
13 pi = partition(arr, l, h)
14 quickSort(arr, l, pi - 1)
15 quickSort(arr, pi + 1, h)
16

17 data = [8, 7, 6, 1, 0, 9, 2, 11, 10, 3]
18 Z = len(data)
19 quickSort(data, 0, Z - 1)
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not part of the AST as their grouping is already implicit in the structure of the AST.
Therefore, one way to build the AST is by performing a post-pass over the parse tree,
removing nodes and edges which do not belong to the abstract syntax. An alternative
way for programming languages described by context free grammars is to create the AST
in the parser. In this regard, rules that contribute to the AST insert a node in the AST,
whereas the symbols of the rule form edges. Figure 2 presents an AST extracted from
the Python program in Listing 1.2 (note that no particular order, other than the authors’
opinion, has been adopted while using the code listings in examples).

Fig. 2. Abstract syntax tree of the Python program in Listing 1.2

As ASTs are capable of maintaining a great amount of syntactic information from
the original source-code, they are ideal for tasks requiring regeneration of source code,
such as programming language translation [77], automatic parallelization tools [6], and
program rewriting [67].

2.2. Control Flow Graph (CFG)

The Control Flow Graph (CFG) [3] models the flow of control between the basic blocks
(i.e., maximal-length sequences of branch-free instructions) of a program. It consists of
a directed graph, whose nodes correspond to basic blocks and edges represent control
dependencies. The graph has two additional nodes, namely the entry block ENTRY –
which is the node through which the control enters the graph – and the exit block EXIT
– which is the node through which the control exits the graph –, such that each node has
at most two successors. For instance, Figure 3 depicts the CFG extracted from the Python
program in Listing 1.1.

Furthermore, two important concepts for a number of compiler optimizations and
detection techniques are related to the CFG, namely post-domination and control de-
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Fig. 3. Control flow graph of the Python program in Listing 1.1

pendency. The former is defined in Statement 1. For instance, in the CFG of Figure 3,
node for i in range(1, X + 1) and node X = 10 are post-dominated by node
print().

Statement 1 Consider the CFG G of a program. Let v1 and v2 be two nodes of G. Then,
v1 is post-dominated by a node v2 in G, if and only if every directed path from v1 to
EXIT contains v2.

The latter is defined in terms of post-domination relationship as in Statement 2. For
instance, in the CFG of Figure 3, node print(i, end=‘‘’’ is control-dependent on
node if (i % 2) == 0.

Statement 2 Consider the CFG G of a program and the nodes v3, v4 ∈ G. Then, v4 is
control-dependent on v3 if and only if

1. there is a directed path P from v3 to v4 with any v5 in P (excluding v3 and v4)
post-dominated by v4 and

2. v3 is not post-dominated by v4.

Therefore, the CFG is an essential structure for many optimization techniques and
static analysis tools, particularly because it facilitates locating inaccessible code and syn-
tactic structures of a program such as loops. There are many recent examples of such
techniques/tools in various areas of Computer Science, ranging from bug localization and
vulnerability detection [12, 18, 29] to code optimization [64].

2.3. Interprocedural Control Flow Graph (ICFG)

A CFG can handle only a single procedure. For investigating the control-flow in complete
programs, the Interprocedural Control Flow Graph (ICFG) is the representation to use.
The ICFG connects the multiple CFGs of a program into a single graph as follows.

– For every call instruction to a function F , insert a new edge from the call to the first
instruction of F , and
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– from every return statement of F , insert a new edge from the return to the instruction
following the call to F .

Rather than gathering information from each predecessor as usual during the analy-
sis, the first statement of a procedure loses all data-flow information about local variables
from the caller and adds details for parameters in the callee, initializing their values ac-
cording to the arguments provided in the call. For instructions immediately after a call,
they inherit the data-flow information from the previous instruction regarding local vari-
ables. Additionally, global variables are taken from the return instruction of the called
function, whereas the variable to which the result of the function call was assigned comes
from the data-flow about the returned value.

The ICFG is particularly useful for interprocedural optimizations, such as constant
folding, caller-site inlining, or elimination of dead code [53, 9, 40].

2.4. Evaluation Order Graph (EOG)

An Evaluation Order Graph (EOG) – primarily introduced in Fraunhofer’s implementa-
tion of the Code Property Graph (CPG) [21] – is an intraprocedural directed graph whose
vertices correspond to nodes from the AST and edges connect them in the order they
would be executed when running the program, similar to the CFG. The EOG is a variant
of the CFG with some subtle differences: (1) a procedure header is a node in the EOG,
while the CFG only considers the first executable statement of the procedure as a node;
(2) the beginning of a compound statement is a separate node in the EOG, while the CFG
does not consider it; (3) the EOG represents the “if” keyword and the condition as separate
nodes, while the CFG uses a single node; and (4) the EOG always ends in one (virtual) or
multiple return statements (i.e., a virtual return statement is created, if the actual source
code does not have an explicit one).

Therefore, comparing to the CFG in semantic terms, the EOG models the evaluation
order within expressions and has operator-level precision, which enables finer granular-
ity (more precision) in analysis. Figure 4 presents the EOG extracted from the Python
program in Listing 1.2. The interprocedural version of the EOG also follows a similar
approach to that of the ICFG (see Subsection 2.3), but for every call instruction to a func-
tion F , insert a new edge from the call to the F function declaration rather than the first
instruction of F .

2.5. Data Flow Graph (DFG)

A Data Flow Graph (DFG) is a directed labeled graph that models the program without
conditionals, i.e., using basic blocks. Edges of the graph represent paths over which data
is passed, whereas nodes are the producers and consumers of such data. Dynamically, a
node of the DFG accepts multiple data items from its inputs, performs some computation
with them, and passes the resulting items to its outputs. For instance, Figure 5 depicts the
DFG extracted from the Python program in Listing 1.1.

The DFG allows several analysis such as dead code detection, liveness analysis, and
variable misuse identification [2, 26] as well as performance optimizations through paral-
lelization [33].
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Fig. 4. Evaluation order graph of the Python program in Listing 1.2

2.6. Call Graph (CG)

The Call Graph (CG) [57] is a directed graph that connects nodes representing procedure
calls to procedure start nodes. The set of nodes consists of procedure calls and starts
only, whereas the edges are established between them from the start node of each routine
to the call nodes. Formally, a CG can be defined, from the set of control flow graphs
corresponding to the procedures of a program, as follows.

Statement 3 Consider the call graph G = (V,E) and the set of control flow graphs
F (so, Vf is the set of vertices of f ∈ F and Ef its set of edges) of a program. Then,
V = VC ∪ VS , where VC is the set of call instructions and VS is the set of procedure
starts in the source code, and the edge set E ⊆ V × V is defined as

E = {(c, s) : c ∈ VC , s ∈ VS(c)}∪
∪

(Vf ,Ef )∈F
{(s, c) : s ∈ VS , c ∈ VC : ∃s → c ∈ Vf} (1)

Assuming also that VS(c) is the procedure called by c ∈ VC . The call nodes should
have exactly one incoming edge in the CFG (i.e., from the procedure it belongs to), which
can be achieved by adding an empty node for nodes not meeting this requirement. Hence,
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Fig. 5. Data flow graph of the Python program in Listing 1.1

each call node also has only one outgoing edge in the CFG. Concerning the CG, a call
node also has exactly one incoming edge (from the start node). An example CG for the
Python program in Listing 1.3 is presented in Figure 6.

Fig. 6. Call graph of the Python program in Listing 1.3

Call graphs are widely explored in the literature as they encode symbolic and topolog-
ical features of software that can be important in several different areas such as malware
detection [59, 17, 23], measuring software complexity [58, 49], bug detection [69, 61], and
unreachable code detection [56].

2.7. Program Dependence Graph (PDG)

A Program Dependence Graph (PDG) is a directed attributed graph that approximates
program semantics, explicitly encoding control and data dependence information of the
program [20]. Each node of the graph indicates a statement of the program such as an
assignment, an assertion, a method call, or a return, whereas an edge represents a depen-
dence, either regarding control or data, between two statements. For instance, given two
statements s1 and s2, there is a control dependence edge from s1 to s2 if and only if the
execution of s2 depends upon s1, and a data dependence edge if and only if a component
assigned at s1 is used in the execution of s2. Figure 7 depicts the PDG extracted from the
Python program in Listing 1.1. Dashed edges represent data dependencies, whereas solid
edges encode control dependencies.
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Fig. 7. Program Dependence Graph of the Python program in Listing 1.1

These graphs resort to control- and data-flow analysis to determine control and data
dependencies, respectively. The former are defined in terms of the CFG (see Subsec-
tion 2.2), while the latter can be formally defined in terms of the DFG as:

Statement 4 Consider G, a DFG of a program, then nodes s1, s2 ∈ G are data-dependent
if and only if there is a variable v such that

– s1 is an assignment to v,
– s2 uses v, and
– there is a path between s1 and s2 without an assignment to v.

In PDGs, dependencies connect the computationally relevant parts of the program
without requiring the unnecessary control sequencing present in the CFGs (see Subsec-
tion 2.2), which means they are immune to syntactic modifications such as renaming vari-
ables, reordering statements, among others. Hence, these graphs are adequate representa-
tions to measure semantic similarity between two codes and detect semantic clones [28,
46, 38].

2.8. System Dependence Graph (SDG)

A System Dependence Graph (SDG) [27] is an extension to the PDG (see Subsection 2.7)
to handle programs with multiple procedures and interprocedural calls. It models a lan-
guage in which a program consists of a main procedure and a set of auxiliary procedures,
to which parameters are passed by value. More formally, the SDG is a directed graph
G = (N,E), where N contains the nodes representing statements and predicates of the
program, and E is the set of edges depicting the dependencies between them.
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The SDG can be built from the PDGs of the several procedures, by connecting them
at call sites. This consists of linking the call node c to the entry node e of the called
procedure, through an edge from c to e, if there are no procedure parameters and returned
values. Procedure parameters and returned values, as well as potential side effects of the
called procedure, are modeled through artificial parameter nodes and edges created as
follows:

– For every passed parameter pi there exist two nodes, actual-in ai and formal-in fi,
connected via an edge ai →pi fi.

– For every modified parameter and returned value po there exist two nodes, an actual-
out ao and formal-out fo, connected via an edge fo →po ao.

– Nodes fi and fo nodes are control dependent on the entry node e of the called proce-
dure.

– Nodes ai and ao nodes are control dependent on the call node c.

In this way, it guarantees that any interprocedural effect of a procedure is propagated
through the call sites, enabling the computation of summary information about the impact
of all procedures directly or indirectly invoked. Figure 8 presents the SDG extracted from
the Python program in Listing 1.2.

Fig. 8. System Dependence Graph of the Python program in Listing 1.2

SDGs are the basis for several applications in program analysis, ranging from program
understanding [63, 45] and testing [31] to program slicing [79, 22].

2.9. Code Property Graph (CPG)

Code Property Graphs (CPGs) [76] combine three other intermediate representations, par-
ticularly ASTs, CFGs, and PDGs, into a joint data structure using the concept of property
graphs – a type of graph in which edges not only connect nodes, but also carry information
(e.g., a name, type, or other properties). To this end, each of the three graphs is, firstly,
converted into a property graph and then combined. The AST, which provides a detailed
decomposition of source code into language constructs, is expressed as a property graph
GA = (VA, EA, λA, µA), where VA is the set of AST nodes, EA are the corresponding
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edges of the tree which are labelled as such (i.e., AST nodes) by the labelling function
λA, and µA which assigns two properties, code and order, to each node. The value of
the former consist of the operator or operand the node represents, whereas the latter is the
index of the node in the ordered form of the tree.

Following the AST, we need to depict the CFG as a property graph GC = (VC , EC , λC , ·),
where VC relates to statements and predicates in the AST (i.e., all nodes in VA whose
property code corresponds to either a statement or a predicate). Moreover, the edge
labeling function λC assigns to each edge of the property graph a label from the set∑

C = {true, false, ϵ}, according to the condition of the source node.
The next step is to transform the PDG into a property graph. As described in Sub-

section 2.7, the PDG represents data and control dependencies between statements and
predicates and, thus, its nodes are the same as those from the CFG. In this sense, the PDG
can be depicted as a property graph GP = (VC , EP , λP , µP ), where EP is a new set of
edges and λP : EP −→ {C,D} is the corresponding edge labeling function that assigns
either label C or D if it matches control and data dependencies, respectively. The former
dependencies have an additional property condition indicating the state of the origi-
nal predicate (i.e., true or false), whereas the latter dependencies have an additional
property symbol holding the corresponding symbol.

Finally, the three property graphs are merged into a new graph G = (V,E, λ, µ).
The set of nodes V has the same elements of VA, whereas the set of edges E includes
all edges in the three graphs. Similarly, the labeling and the property function, λ and µ
respectively, are the combination of the homonymous functions of the three graphs (if they
exist there). As an example, Figure 9 presents the CPG extracted from the Python program
in Listing 1.2. Edges of the AST are traced in black, data dependencies are dashed, and
control dependencies are in red. Property edges are omitted.

Fig. 9. Code property graph of the Python program in Listing 1.2.
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The CPG was initially designed for finding vulnerabilities and detecting performance
and efficiency weaknesses in source code, having already been widely and successfully
applied in these tasks [76, 75, 80, 16]. The unique characteristics of this graph such as
the ability to encode both syntactic and semantic value while being language-agnostic,
make it attractive to other tasks (e.g., predicting names and repairing code). However,
primarily due to its recency, the potential of this representation in other scenarios is yet to
be explored.

3. Comparison

Determining the most effective semantic graph representation of source code for a spe-
cific task is a critical step of designing any source code analysis-dependent technique.
On the one hand, the more information is encoded, the more rich and accurate can be
the approach. On the other hand, too much information means higher costs, in particular,
regarding execution time and memory usage. Finding the right balance between expres-
siveness and cost is the challenge. To this end, both the expressiveness and cost of the
various semantic graph representations of source code have been compared. The follow-
ing subsections present the result of each comparison.

Table 1. Comparative analysis of the expressiveness of semantic graph representations of source
code.

Facet
Syntax Flow Dependence Mixed
AST CFG ICFG DFG EOG CG PDG SDG CPG

Control Dependency Y Y Y N Y N Y Y Y
Data Dependency Y N N Y N N Y Y Y
Multiple Procedures Y N Y Y N Y N Y Y
Interprocedural Calls Y N Y N N Y N Y Y
Multiple Types of Edges N N N N N N Y Y Y
Slicing Y N N Y N N Y Y Y
Flow-Sensitive Y Y Y Y Y Y Y N Y
Context-Sensitive Y N N N N N N Y Y
Inheritance & Polymorphism Y N N N N N N Y** [51] Y
Exception Handling Y N N N N N Y Y Y
Parameter Passing Y N Y N N N N Y Y
Reversibility Y* N N N N N N N Y*
* - cannot reverse to exact original source code
** - extended version

3.1. Expressiveness

From the literature and Section 2, it has been made clear that each semantic graph rep-
resentation of source code described has unique capabilities. To better understand them,
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Table 1 summarizes the expressiveness of the previously presented representations, in-
cluding: whether it encodes control and data dependencies, if it is limited to a single
procedure or captures multiple procedures, whether it can represent interprocedural calls,
whether it supports multiple types of edges, whether program slicing (i.e., a reduction
technique for capturing the statements that could affect the value of a variable at a spe-
cific point of interest) and flow- and context-sensitive analysis techniques can be applied,
whether it can describe inheritance and polymorphism, whether it correctly deals with
exception-handling constructs, whether parameter-passing information is represented, and
if the source code can be recovered.

Naturally, syntax-based representations are the the most feature rich, as Table 1 demon-
strates for the covered facets. They represent the program with all original language con-
structs as well as the order between statements, typically losing only ambiguous grammar
(e.g., white spaces, semicolons, trailing commas, etc) and comments. Therefore, they can
even be reverted to a source code equivalent (not exactly equal) to the original. Concern-
ing flow-based representations, these are sensitive to flow changes. They focus on either
the flow of control (e.g., CFG and EOG), in which case they contain information that
allows to infer control dependencies (except for the CG, which only captures procedures
and interprocedural calls), or the data flow, in which case they encode details about data
dependencies. Dependence-based representations, such as the PDG and the SDG, encode
program dependencies, both control, and data. The SDG can represent multiple proce-
dures, interprocedural calls, parameter passing, inheritance, and polymorphism. Both the
PDG and the SDG support program slicing and exception-handling constructs. While the
SDG is sensitive to the context, the PDG is flow-sensitive.

3.2. Benchmark

The extraction of semantic graph representations has been evaluated against the three
sample Python programs introduced in Section 2. To this end, an existing library – Fraun-
hofer’s CPG library [21] –, initially designed to extract the Code Property Graph (CPG)
out of source code in C/C++ (C17) and Java (Java 13), with experimental support for
several other programming languages such as Python, Golang, and TypeScript, has been
adapted. The changes were twofold: (1) extend the analysis with multiple passes to build
the different representations that were missing (e.g., CG and CFG); and (2) develop func-
tionality to export the representations into Comma-Separated Values (CSV), JavaScript
Object Notation (JSON), and DOT [65] formats.

The JSON serialization encodes all data into a single .json file, containing a list of
nodes, each having an ID, a list of their outgoing edges, and a key-value pair for each
node property. CSV serialization stores edge and node data in separate .csv files. The
CSV file with edges has a source and a target column, plus a column per edge property.
The node descriptor file contains an ID column and an additional column for each node
property being stored. DOT has been specifically designed to describe graphs and, thus,
its serialization adheres to the language. For the sake of this analysis, we have used the
CSV-based serialization.

Table 2 presents the results of the comparison of the semantic graph representations
of source code presented in Section 2 (ICFG has been omitted as it is easily obtained
from the CFG). It includes aspects such as the number of nodes, edges, and connected
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components, the size of the export (in kilobytes), the build complexity (n-pass means n
iterations over the AST), and whether it has edge properties.

Table 2. Results of the comparison of semantic graph representations of source code.

Nodes Edges Components Export Size (kB) Build
Compl.

Edge
Prop.IR T1 T2 T3 T1 T2 T3 T1 T2 T3 T1 T2 T3

AST 30 23 99 29 22 98 1.7 1.5 7.1 - 0
DFG 4 5 27 4 3 42 2 3 0.2 0.2 7.1 1-pass 1
CFG 7 8 14 8 7 14 2 3 0.3 0.3 0.3 1-pass 1
EOG 20 17 67 21 15 67 2 3 0.7 0.6 2.7 1-pass 1
CG 1 2 3 0 2 3 0.1 0.1 0.1 1-pass 0

PDG 7 9 27 10 10 72 2 3 2.1 1.6 6.6 2-pass 1
SDG 7 13 43 10 16 96 2.2 1.7 6.9 2-pass 1
CPG 30 23 99 66 52 226 2.3 2.0 9.2 3-pass 4

The most expensive representation is the CPG, as Table 2 demonstrates. In the worst
case, the CPG has, in most implementations and in the one used here, the same amount
of nodes as the AST, which is roughly one intermediate node for each used programming
language construct plus the leaf nodes containing any parameters of these constructs. The
number of edges is always less or equal to the sum of the edges in the AST, the EOG (or
CFG, as in its original implementation), and the control and data dependencies between
the AST nodes.

4. Discussion

There are not many works published in the literature comparing the different intermediate
representations of source code. Nevertheless, a few exceptions exist. Arora et al. [7] pro-
vides a comparison of flow and dependence graphs based on features such as procedural
call, slicing, sensitivity, exception handling, and test case generation. For instance, they
conclude that the SDG is a feature rich representation comparing to a flow graph, support-
ing features like control, data and transitive dependence, single and multiple procedure,
inter- and intra-procedural calls, multiple types of edges, slicing, context-sensitivity, in-
heritance and polymorphism, test case generation and parameter passing, whereas the flow
graph is insufficient in representing data and transitive dependence, multiple procedures,
inter- and intra-procedural calls, multiple types of edges, slicing, context-sensitivity, in-
heritance and polymorphism.

In this work, we conduct a more practical-driven comparison of various semantic
graph representations of source code, measuring a number of aspects of the produced
graphs. From the results presented in Section 3, it is clear that encoding more informa-
tion has great impact on the graph size and, consequently, export size. On the one hand,
the CPG, which combines syntactic and semantic information consumes on average 1.33
times the disk space of the AST and has about 2.3 edges for each edge of the AST, while
having the same number of nodes. On the other hand, the CG is a very tiny graph whose
number of nodes matches the number of subroutines of the program plus the main routine
and the number of edges between any two nodes is at most 1.
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The CPG is the only graph representation larger and heavier than the AST. Never-
theless, it has a single connected component, similarly to the SDG, whereas the others
can have multiple connected components, typically one per procedure. Furthermore, the
CPG is also the only representation (besides the AST) which can be transformed back
to the original (or a similarly working) source code, as all the others lose important syn-
tactic meaning for this transformation (e.g., EOG loses data relationships, SDG ignores
instructions order, etc).

Concerning the build time (in terms of build complexity), the CPG is again the rep-
resentation with the highest cost, requiring three passes over the AST: two needed to
obtain the PDG (and CFG) and another to “combine” the three intermediate representa-
tions, particularly AST, CFG, and PDG. The SDG is the second in this matter, requiring a
connection step after the two passes required to build the PDGs. All other representations
(except the mentioned PDG) are built from the AST in a single pass.

Furthermore, we have evaluated the impact of such representations using real student
submissions in multiple programming languages to programming exercises of different
complexities. These submissions, taken from the PROGpedia dataset [44], refer to several
years within the 2003-2020 timespan of an undergraduate Computer Science course. We
have selected three correct submissions to each of four randomly chosen assignments
from the dataset (6, 16, 18, and 19). The first assignment involves array manipulation.
Assignment 16 requires string comparison. Assignment 18 challenges students to find
the minimum cost path in a graph. Finally, assignment 19 involves depth-first search in
graphs. The selected submissions for a given programming assignment adopt a similar
algorithmic strategy.

Table 3 presents the export sizes of the semantic graph representations for such sub-
missions, including the lines of code (LoC) and size of the original source code. The re-
sults support the previous conclusions regarding export sizes, i.e., the CPG has the highest
cost (approximately 1.5 times more disk space than the AST), while the CG has the low-
est. Regarding programming languages, the syntactic weight of Java is noticeable in most
examples through a typically heavier AST. The maximum build time registered in the
processed samples was 5.5 seconds for the CPG of the Java submission to programming
assignment 18. However, the extraction took 4.6 seconds per submission on average.

4.1. Use Case: Dead Code Analysis

Dead code encompasses any code that has no effect on the program’s behavior, including
both unused and unreachable code [55]. It is considered a harmful code smell that hin-
ders source code comprehension [37] and downgrades its maintainability [19] and perfor-
mance [66]. Examples of this anti-pattern include but are not limited to: (1) code after a
return statement, in the same block; (2) variable assigned but never used; (3) methods de-
fined but never called; and (4) code inside a conditional block whose condition is always
false.

Detecting instances of the first example requires a representation that captures the
possible flows of execution of the program. Therefore, the CFG (i.e., the ICFG version)
is the most minimal of the presented representations that could be used. Regarding ex-
ample (2), a representation that could support its detection needs to encode variables’
definition/usage lifecycle, which is exactly what DFG does. The CG, which represents
the function declarations and calls between them, is the lighter representation that can
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Table 3. Export sizes of semantic graph representations on PROGpedia dataset.

ID Prog. Lang. LoC
Size
(kB)

Export Size (kB)
AST DFG CFG EOG CG PDG SDG CPG

6
C 33 0.3 6.4 0.6 1.4 4.7 0.1 6.5 6.8 10.4
JAVA 25 0.5 7.9 0.7 1.9 5.0 0.1 6.4 6.7 12.4
PYTHON 20 0.4 7.0 0.6 1.3 4.6 0.1 6.1 6.3 11.2

16
C 46 0.6 7.8 0.6 1.9 5.5 0.2 5.9 5.9 11.9
JAVA 38 0.6 8.9 0.7 2.4 5.4 0.1 5.5 5.6 13.8
PYTHON 17 0.2 5.8 0.5 1.1 4.0 0.1 4.8 5.3 9.1

18
C 73 1.5 28.0 2.9 3.3 20.3 0.3 22.1 22.9 43.4
JAVA 107 2.1 37.6 3.0 3.9 24.2 0.5 26.5 27.8 57.4
PYTHON 47 1.4 27.3 1.9 3.1 17.7 0.3 20.8 21.5 37.6

19
C 98 1.9 39.3 4.4 4.8 25.7 0.2 28.2 28.4 63.9
JAVA 87 2.1 33.0 3.0 4.6 21.4 0.5 26.1 26.7 51.9
PYTHON 70 2.4 40.9 2.5 4.5 20.5 0.3 27.8 28.0 56.5

accurately identify instances of example (3) [42]. In this case, methods defined but never
called would not be connected to the main component. Finally, instances of the fourth
example demand knowledge about the flows of execution of the program and, in a few
cases, tracing usage/definition of variables used in the condition (note that the condition
is not evaluated, thus only obvious instances will be detected). The lighter representation
fulfilling these needs is the SDG, as the PDG cannot represent multiple procedures [8].
Furthermore, the SDG is able to capture all enumerated examples of dead code.

4.2. Use Case: Measuring Program Similarity

Measuring program similarity is a common approach in automated assessment with di-
verse applications. On the one hand, clustering programs facilitates the generation of feed-
back, as the same feedback given to a previous solution in the group likely fits the new
program. This is especially used in semi-automated assessment tools to reduce the number
of programs that the instructors need to analyze by reusing feedback given to a prior so-
lution to those marked as identical. Other techniques use a correct solution from the same
cluster as the attempt to match against and compute the differences to generate feedback
on correctness, possibly with fixes. On the other hand, plagiarism detection, which is a
must-have add-on to any automated assessment system, is also solved through similarity
measuring.

The similarity of programs is typically measured on intermediate representations of
source code. In particular, several recent works rely on semantic graph representations
due to their many advantages over textual representations, such as the ability to capture
programs’ strategy (e.g., iterative or recursive approach). This is the case of program
clustering, where it is typically intended to group programs adopting the same strategy
and/or at an identical phase of development. This is well-captured in the control flow of a
program. For instance, Naudé et al. [41] clusters programs by system dependence graph
similarity, with the goal of selecting the most similar model solution. This solution will be
compared against the attempt to measure program correctness. Zougari et al. [81] and the
prototype tool eGrader [5] follow the same approach, after a xUnit-based testing step that
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ensures incorrect submissions are not marked as correct, but using a control flow graph
and a combination of control and system dependence graphs as the graph representations,
respectively. LAV [71] also combines such approach based on the control flow graph
representation with bug finding and traditional blackbox testing techniques to estimate a
composed grade. Nevertheless, suggesting a correction to the program code as feedback
to the student, requires knowledge about the syntax [24].

In the case of plagiarism detection, these representations offer resilience against most
code obfuscation techniques such as renaming variables and classes, changing order of
independent instructions, among others [60, 10]. Even though plagiarism can be checked
using any of these representations, resilience to a specific obfuscation method as well as
the accuracy of the identified plagiarism pairs depend on the chosen representation. There-
fore, several semantic representations have been successfully explored such as control
flow graph [10], program dependence graph [60, 35], and system dependence graph [73].

4.3. Use Case: Automated Feedback on Correctness for Programming
Assignments

Automated feedback on students’ solutions to programming assignments is crucial for
them to develop practical programming skills. Even though the most widely adopted as-
sessment technique consists of executing the program with a specific input and comparing
the obtained output against the expected output [43], the feedback that can be generated
from such a technique is too limited for formative purposes [32]. Consequently, several
static analysis approaches have been introduced that reason over semantic representations
of the program’s source code to derive feedback to help learners understand and improve
their programs [43].

Evaluating the correctness of source code automatically through semantic represen-
tations cannot be done accurately, as any small modification (e.g., changing the order of
operands in a binary comparison) can affect the result of the program. Only the AST is
capable of representing such minor details, but classifying a program as correct or wrong
based on its AST requires the set of all correct AST solutions (infinite) to be known.
However, the logic behind correct solutions, greatly captured through semantic represen-
tations, is typically common to a group of solutions. The number of such groups can be
limited, e.g., solutions to calculate the factorial belong to one of two groups: recursive and
iterative. Solutions of the same group share certain characteristics such as the number of
loops, number of possible execution flows, or the variable usage/definition dependencies.

Based on that, several approaches measure the similarity of a submitted program’s
representation to that of known solutions, i.e., the more similar the program is, the better
grade it receives. In this sense, any of the representations can be used, but the CFG [70,
82] - which focuses on the structure of a program - is the most widely used. The PDG
(and its extension, the SDG) are also commonly used representations for similarity-based
grading [72], as besides structure information they also capture data dependencies. Even
though being fully similar to a solution does not guarantee the program’s correctness,
if differences are found they may contain good hints on improving both the program’s
correctness and quality (e.g., there is a nested loop, between X and Y , which could be a
simple loop).

Furthermore, after knowing the closest working solution, the ASTs of both the sub-
mitted program and the referred solution can be compared to find the minimal set of trans-
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formations that convert the submitted program into the correct solution [24]. Moreover,
the AST has also been used to learn program transformations that fixed students’ incor-
rect programs in the past, aiming to suggest fixes as feedback to students with similar
faults [54]. The CPG, even though compiles all information of the other representations
used, has not been explored yet in generating feedback on correctness for programming
assignments, due to its recency.

4.4. Summary

As these use cases demonstrate, representations may have different applications within the
same task. Hence, it is essential to thoroughly define the task requirements to choose the
representation that satisfies them at minimal cost. Table 4 summarizes the fulfillment of
the use cases’ requirements by representations. We have considered 3 levels of fulfillment:
complete (•), partial (◦), and none.

Table 4. Summary of the results of use case analysis

AST DFG CFG EOG CG PDG SDG CPG
Dead Code Analysis • ◦ ◦ ◦ ◦ ◦ • •
Measuring Program Similarity Any can be applied, depends on what one wants to compare.
Automated Feedback on Correctness • ◦ ◦ ◦ ◦ ◦ •

5. Conclusions

Reasoning about semantic representations of source code is gaining popularity as a tech-
nique in automated assessment of programming assignments, mainly for generating feed-
back. Such representations are easily manageable by a computer, encoding a set of fea-
tures of the source code without unnecessary “noise”. As feedback provided by automated
assessment tools must be real-time and meaningful, selecting or deriving an appropriate
representation that optimizes both the quality of generated feedback and resource con-
sumption is crucial. However, there is no study that summarizes what each representation
offers and compares their practical costs, much less towards our goal.

This paper provides a brief summary of how most semantic graph representations are
constructed from the original source code, some of their recent applications reported in
the literature, and examples. In addition, a benchmark of the different representations has
been conducted to evaluate their cost, in terms of size and compilation complexity, using
the AST as a baseline. The results show that, on the one hand, the CPG is the most feature-
rich representation, but also the largest, i.e., it requires more edges, more properties on
the edges, and more space. On the other hand, the CG is the lightest representation, but it
only represents the calling relationships between the subroutines of the program.

We examined three use cases to determine which representations are more appropri-
ate for each. For the most common examples of dead code, the PDG is sufficient. As for
measuring source code similarity, we can do on any representation, but to achieve a good
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balance between accuracy and resilience to obfuscation, it is common to use representa-
tions that encode control flow (CFG or EOG). The last use case refers to our main target,
i.e., the automatic generation of correctness feedback for programming assignments. Typ-
ically, this requires both syntactic and structural information. There are approaches that
use CFG, PDG, SDG, and AST, as well as some that combine multiple representations in
the same or separate phases. Therefore, we propose that our automated feedback mecha-
nism should use (1) a control flow-based representation (e.g., CFG or EOG) to select the
closest correct solution from the dataset of past solutions and (2) a representation com-
bining syntactic and structural details to find out the meaningful differences between the
wrong attempt and the correct one selected. For this, we can explore the CPG (which re-
mains unexplored behind security topics) as the EOG is already part of it and it combines
syntactic and structural data, having a cost not significantly greater than the sum of any
two other representations providing such information. Furthermore, since it is a queryable
graph, instructors can query it for bad coding patterns and identify common errors, among
other things.

With this in mind, we have already collected and published a dataset – PROGpe-
dia [44] – composed of the CPGs of the source code submitted on an automated assess-
ment system to 16 programming exercises proposed in multiple years within the 2003-
2020 time span to undergraduate Computer Science students. Considering the goal of our
project (i.e., build a novel automated feedback mechanism), this dataset (the first of its
type) is useful as it concentrates on the semantic and syntactic value of the source code
of all previous attempts to solve a set of programming problems. Therefore, for any new
attempt we can: (1) match it with the group of solutions following the same/similar strat-
egy; (2) identify the closest correct solution; and (3) derive feedback from the differences
that transform the current CPG into a correct one. Furthermore, these data can also help
understanding the students’ program development process, the relationship between the
different problem-solving strategies and difficulty in achieving a correct solution, among
other research problems.

Admittedly, some semantic graph representations, such as the Program-derived Se-
mantics Graph (PSG) [30] and the Context-Aware Parse Tree (CAPT) [78], were not
considered in this study due to a lack of both space and time to implement their extraction
algorithm. These representations, as well as those that encode the dynamic behavior of a
program, such as the Program Interaction Dependency Graph (PIDG) [11], are definitely
worthy of a new study.

Several platforms for programming education could make use of these findings. These
include not only automated assessment tools such as those described in the latest literature
review of the area [43], but also intelligent tutoring systems [39], program visualization
tools [62], among others. The improvements made to the existing CPG tool [21] are avail-
able upon request to the first author’s email.
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