
Computer Science and Information Systems 21(1):203–221 https://doi.org/10.2298/CSIS230819005R

SPC5: an efficient SpMV framework vectorized using
ARM SVE and x86 AVX-512

Evann Regnault1 and Bérenger Bramas2,3
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Abstract. The sparse matrix/vector product (SpMV) is a fundamental operation in
scientific computing. Having access to an efficient SpMV implementation is there-
fore critical, if not mandatory, to solve challenging numerical problems. The ARM-
based AFX64 CPU is a modern hardware component that equips one of the fastest
supercomputers in the world. This CPU supports the Scalable Vector Extension
(SVE) vectorization technology, which has been less investigated than the classic
x86 instruction set architectures. In this paper, we describe how we ported the SPC5
SpMV framework on AFX64 by converting AVX512 kernels to SVE. In addition,
we present performance results by comparing our kernels against a standard CSR
kernel for both Intel-AVX512 and Fujitsu-ARM-SVE architectures.
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1. Introduction

The sparse matrix/vector product (SpMV) is a fundamental operation in scientific comput-
ing. It is the most important component of iterative linear solvers, which are widely used
in finite element solvers. This is why SpMV has been and remains studied and improved.

Most of the studies work on the storage of sparse matrices, the implementation of
SpMV kernels for novel hardware, or the combination of both.

In a previous work [7], we proposed a new sparse matrix storage format and its cor-
responding SpMV kernel in a framework called SPC5. The implementation was for x86
CPUs using the AVX512 instruction set architectures, and it was efficient for various types
of data distribution.

In the current work, we are interested in porting this implementation on ARM SVE
[21,4,3] architecture. In other words, we aim at keeping the SPC5 storage format but
create computational kernels that are efficient on ARM CPUs with SVE.

AVX512 and SVE instruction set architectures are different in their philosophies and
features. Consequently, as it is usually the case with vectorization, providing a new com-
putational kernel is like solving a puzzle: we have the operation we want to perform on
one side and the existing hardware instructions on the other side.
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The contribution of the paper is to depict a new SpMV kernel for ARM SVE, and to
demonstrate its performance on several sparse matrices of different shapes. A secondary
contribution is the description of our new AVX512 implementation, which is much sim-
pler than the previous assembly implementation, while still delivering the same perfor-
mance.

This paper is organized as follows. In Section 2, we start by describing the vectoriza-
tion principle, then the SpMV operation and the challenges of its efficient implementation,
and finally provide the specificities of SPC5. Then, in Section 2.4, we present our SPC5
implementation with SVE. Finally, we study the performance of our implementation in
Section 4.

2. Background

2.1. Vectorization

Vectorization, also named SIMD for single instruction multiple data [11], is a key mecha-
nism of modern processing units to increase the performance despite the clock frequency
stagnation. As its name suggests, the idea consists in working on several elements stored
in vectors instead of scalar distinct elements. As such, instead of performing operations on
one element at a time, we perform the operations on vectors of elements using a vector in-
struction set architecture (ISA) that supports vector instructions. We provide a schematic
view of the concept in Figure 1.
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Fig. 1. Illustration of a scalar operation, a vectorial operation and a vectorial operation
with predicate. Each of the three instructions is performed with a single instruction

Vectorization is straightforward when we aim to apply the same operation on all the
elements of a vector. However, the principle is challenging when we have divergence,
i.e., we do not apply the exact same operations on all the elements, or when we need
to perform data layout transformations, i.e., the input/output data blocks from the main
memory that are loaded from (stored to) vectors are not contiguous, or we need to shuffle
the data inside the vectors.

Moreover, not all instruction sets support the same operations, making each imple-
mentation specific to a given hardware. Consequently, what could be done with a single
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instruction in a given instruction set, might need several instructions in another. For exam-
ple, non-contiguous stores (scatter), non-contiguous loads (gathers), or internal permuta-
tion/merging of vectors are not available in all existing instruction sets and not necessarily
similar when they are supported.

Many computational algorithms use conditional statements, therefore several solu-
tions have been proposed to manage vector divergences. The first one is the single in-
struction multiple thread (SIMT) programming model, as used in CUDA and OpenCL.
While the programmer expresses its parallel algorithm as if independent execution threads
would be used, it is actually large vector units that will perform the execution, where each
thread will be an element of the vector. The hardware takes care of the coherency during
the execution.

The second mechanism is the use of a vector of predicates, where each predicate tells
if an operation should be applied on an element of the vector. When the elements of a
vector should follow different execution paths (branches), all paths will be executed but
predicate vectors will ensure to apply the correct operations. The ARM SVE technology
uses this mechanism, and most instructions can be used with a predicate vector. Simi-
lar behavior can be obtained with classic x86 instruction sets using, for example, binary
operations to merge several vectors obtained through different execution branches.

2.2. Related Work on Vectorized with SVE

Developing optimized kernels with SVE is a recent research topic [18,14,2,25,10]. A
previous study [1] has focused on the modelling and tuning of the A64FX CPU. The
authors implemented the SELL-C-σ SpMV kernels and tuned it for this hardware. This
kernel was originally made for GPUs but works well on CPUs too. However, the format
is very different from the CSR format and requires a costly conversion step, which we
aim to avoid. Additionally, the authors have performed important tuning for each matrix,
by permuting the matrix or performing costly parameter optimization, where we want to
provide a unique solution.

2.3. SpMV

The SpMV operation has been widely studied. This operation is memory bound in most
cases with a low arithmetic intensity. Consequently, a naive vectorization usually does not
provide significant benefits if the arithmetic intensity remains unchanged. This is why the
storage of the sparse matrix is usually the central point of improvement.

Each new ISA can potentially help to create new storage formats that take less memory
and/or that can be vectorized more efficiently.

For example, consider the more simple storage format called coordinates (COO) or
IJV, where each non-zero value (NNZ) is stored with a triple row index, column index
and floating point value. In this case, for each NNZ we need two integers and one floating
point value. Not only this format is heavy but it is difficult to vectorized its corresponding
SpMV kernel.

Another well-known storage format is the compressed sparse row (CSR), where the
values of the same row are stored contiguously such that there is no need to store an
individual row index per value. With the CSR, each NNZ needs a single integer, which is
the column index, decreasing the memory footprint up to 33% compared to COO/IJV.
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Following this idea, plenty of storage formats have been proposed. Many of them also
tried to obtain a format that can be computed efficiently for a given architecture.

Some of the first block-based formats are the block compressed sparse row storage
(BCSR) [20] and its extensions to larger blocks of variable dimension [24,13] or to
unaligned block compressed sparse row (UBCSR) [23]. However, in these formats, the
blocks have to be filled with zeros to be full. For these formats, the blocks were aligned
(the upper-left corner of the blocks start at a position multiple of the block size). While
the blocks are well suited for vectorization, the extra zeros can dramatically decrease the
performance.

More recent work has focused on GPUs and manycore architectures. Among them,
the references are the ELLAPACK format [17], SELL-C-σ [15] defined as a variant of
Sliced ELLPACK, and the CSR5 [16] format that we used as reference in our previous
study.

The Cuthill-McKee method from [8] is a well-known technique for improving the
bandwidth of a matrix to have good properties for LU decomposition. It does so by apply-
ing a breadth-first algorithm on a graph which represents the matrix structure. While the
aim of this algorithm is not to improve the SpMV performance, the generated matrices
may have better data locality.

Another method [20] has been specifically designed to increase the number of contigu-
ous values in rows and/or columns. This method works by creating a graph from a matrix,
where each column (or row) is a vertex and all the vertices are connected with weighted
edges. The weights represent the interest of putting two columns (or rows) contiguously.
By solving the traveling salesman problem (TSP) to obtain a path that goes through all
the nodes but only once and that minimizes the total weight of the path, we can find a
permutation of the sparse matrix that should be better divided into blocks. This means
that we should have fewer blocks and the blocks should contain more NNZ elements.

Several updates to the method have been presented in [23,19,5] using different for-
mulas. While the current study does not focus on the permutation of matrices, it is worth
noting that enhancing the matrix’s shape, as in other approaches, would likely lead to
improved kernel efficiency by reducing the number of blocks.

2.4. SPC5

The SPC5 format consists in using a block scheme without adding additional zeros. SPC5
can be seen as an extension of the CSR format, but where the values of each row are
split into blocks. Each block starts with a NNZ at column c and includes the next NNZ
values until column c+VEC SIZE-1 if they exist. Consequently, in the worst case a block
contains a single value, and in the best case VEC SIZE values. Then, for each block, we
use a mask of bits to indicate which of the NNZ values in the block exist. As a result,
in a poor configuration, SPC5 will have the same memory footprint as the CSR plus one
bit mask per NNZ. On the other hand, in the other extreme scenario, SPC5 will save one
integer for each value added to a block since we can retrieve the corresponding column
index from c and the position of the NNZ in the block.

The SPC5 format has been extended so that a block is mapped to several rows. This is
helpful if there are NNZ values closed (NNZ of consecutive rows that have closed column
index) such that the values loaded from the vector x can be used more than once and that
the column index of the block is reused for more NNZ.
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Fig. 2. Illustration of the CSR and SPC5 formats. In this figure, we use the β(1,4) format,
which means that each block is on a single row and of length 4. In the CSR format, the
original row idx array is compacted to have a single index per block instead of an index
per NNZ. The mask array indicates the positions of the next NNZ in the block, and the
corresponding column index can be obtained by summing the block’s column index with
the corresponding bit position in the mask

In the rest of the document, we refer to β(r, VEC SIZE) when the blocks are over
r rows and of length VEC SIZE. In the original study, we were also using blocks of
V EC SIZE/2 but not in the current study. We give an example of CSR and SPC5 in
Figure 2.

3. SPC5 Implementation

We provide the SPC5 SpMV pseudocode in Algorithm 1.
First, we initialize an index to progress in the array of NNZ values, at line 3. Since we

have no way to know where the values of a given block are located in the array, we have
to increase the index with the number of values of each block that has been computed.
This is visible at line 16 for the scalar version, line 21 for AVX512, and line 28 for SVE.

At line 5, we iterate over the rows with a step r. For each row segment, we iterate over
the blocks at line 8. For each block, we load its column index at line 9.

Then, we process each row of the block. We start by getting the mask, at line 11,
that tells us what are the NNZ that exist in the row of the block. A naive implementation
consists in testing the existence of each possible value, at line 14, and performing the
computation if needed, at line 15. However, this loop over the NNZ can be done with a
few instructions in AVX512, at line 20. In this case, we load a vector from x that matches
the column index, and expand the NNZ from the value array into a vector.

The expand operation does not exist in SVE. Consequently, the same behavior is ob-
tained using different instructions. First, we need a filter vector that contains 2i at position
i, see line 4. Then, we compute a binary and operation between the filter vector and the
mask, such that only the position for which a NNZ exist will not be zero. We do this
operation at line 23 and get the active elements at line 24. Second, instead of expanding
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the NNZ values, as with AVX512, we compact the values from x, at line 26. Doing so,
we can simply load the right number of NNZ and leave them contiguous in the resulting
vector, before performing the computation. A schematic view of the two approaches is
provided in Figure 3.
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Fig. 3. Illustration of the loading and computation of one row of a block. The mask is
represented from the most significant bit (MSB) to the least significant bit (LSB),
whereas the vector elements are represented from the first element to the last element.
Hence, the 1s in the mask 1101 correspond to the elements N, M, and L (in this order)

Finally, we update y at the end of the algorithm (at line 32) for each of the rows that
have been proceeded.

3.1. Optimizing the Loading of x

In AVX512, the values from x are loaded into a SIMD vector without pruning. This means
that no matter how many NNZ are in the block or how many values we need from x,
VEC SIZE values will be loaded from memory. It is possible to prune/filter the values,
but this will imply an extra cost (i.e., using a more expensive instruction like gather) and
would certainly have no benefit as the AVX512 SIMD load instruction is translated into an
efficient memory transaction. Consequently, in AVX512, the main optimization consists
in loading the values from x once for all the rows of a block, which allows accessing the
memory once and using the resulting vector r times.
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ALGORITHM 1: SpMV for a matrix mat in format β(r, c). The lines in blue • are to
compute in scalar and have to be replaced by the line in green • to have the vectorized
equivalent in SVE or in red • with AVX

Input: x : vector to multiply with the matrix. mat : a matrix in the block format β(r, c). r, c
: the size of the blocks.

Output: y : the result of the product.
1 function spmv(x, mat, r, c, y)
2 // Index to access the array’s values
3 idxVal← 0
4 filter← [1 << 0, ...., 1 << VS-1]
5 for idxRow← 0 to mat.numberOfRows-1 inc by r do
6 sum[r]← init scalar array(r, 0)
7 sum[r]← init simd array(r, 0)
8 for idxBlock← mat.block rowptr[idxRow/r] to mat.block rowptr[idxRow/r+1]-1

do
9 idxCol← mat.block colidx[idxBlock]

10 for idxRowBlock← 0 to r do
11 valMask← mat.block masks[idxBlock × r + idxRowBlock]
12 // The next loop can be vectorized with vexpand

13 for k← 0 to c do
14 if bit shift(1 , k) BIT AND valMask then
15 sum[idxRowBlock] += x[idxCol+k] * mat.values[idxVal]
16 idxVal += 1
17 end
18 end
19 // To replace the k-loop AVX512

20 sum[idxRowBlock] += simd load(x[idxCol]) *
simd vexpand(mat.values[idxVal], valMask)

21 idxVal += popcount(valMask)
22 // To replace the k-loop SVE

23 mask vec = svand(svdup(valMask), filter)
24 active elts = svcmpne(mask vec, 0)
25 increment = count(active elts)
26 xvals = svcompact(active elts, simd load(active elts, x[idxCol]))
27 block = simd load(svwhile(0, increment), mat.values[idxVal])
28 idxVal += increment
29 sum[idxRowBlock] += block * xvals
30 end
31 end
32 for idxRowBlock← idxRow to r+idxRow do
33 y[idxRowBlock] += sum[r]
34 y[idxRowBlock] += simd hsum(sum[r])
35 end
36 end
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With SVE, it is different and we have mainly three alternatives:

– Loading the values from x without pruning, as with AVX512, and then compacting
the obtained vector for each row of the block. We refer to this strategy as single x
load.

– Loading a different vector for each row of the block, as shown in Algorithm 1. We
refer to this strategy as partial x load.

– Combining the predicates of several rows of the block by merging their predicates/masks
to load all the values that are needed by the block, but not more. In our study, we left
this approach aside, as different tests we have conducted have shown poor perfor-
mance.

The performance gains we can expect from the different strategies depend on the
way the load is actually performed by the hardware. In fact, the main point is to know if
the hardware can make faster memory transactions when some elements of the predicate
vector used in the load are false. If the hardware actually loads VEC SIZE values from
the memory but then only copies the ones that have their corresponding predicate value
true to the SIMD vector, we should not expect any benefit. Moreover, ARM SVE can be
seen as an interface, hence it can be implemented by the hardware differently such that
the behavior can also change from one vendor to another.

3.2. Optimizing the Writing of the Result in y

In the SIMD implementation, we have to perform the reduction (i.e., the horizontal sum)
of r vectors to add them to y and store the result.

A straightforward approach is to call a single reduction instruction per vector, as both
AVX512 and SVE support such an operation. However, this means that we will perform
r individual summations between the reduced values and the values from y, and that we
will also access the memory r times (actually 2× r, since we load values from y, perform
the summation, and write back to y).

To avoid this, we propose a possible optimization that consists in performing the re-
duction of all the vectors manually to obtain a single vector as output, and then performing
a vectorial summation with y.

With AVX512, this manual multi-reduction can be implemented by playing with AVX
and SSE registers and using the horizontally add adjacent pairs instruction (hadd). The
operation is done without any loop.

With SVE, we do this using odd/even interleave instructions (svuzp1 and svuzp2). In
this case, we need a loop because the length of the vectors is unknown at compile time.

4. Performance Study

4.1. Configuration

We assess our method on two configurations:

– Fujitsu-SVE: it is an ARMv8.2 A64FX - Fujitsu with 48 cores at 1.8 GHz and 512-
bit SVE [12], i.e. a vector can contain 16 single precision floating-point values or 8
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double precision floating-point values. The node has 32 GB HBM2 memory arranged
in four core memory groups (CMGs) with 12 cores and 8GB each, 64KB private L1
cache, and 8MB shared L2 cache per CMG. We use the GNU compiler 10.3.0.

– Intel-AVX512: it is a 2 × 18-core Cascade Lake Intel Xeon Gold 6240 at 2.6 GHz
with AVX-512 (Advanced Vector 512-bit, Foundation, Conflict Detection, Byte and
Word, Doubleword and Quadword Instructions, and Vector Length). The main mem-
ory consists of 190 GB DRAM memory arranged in two NUMA nodes. Each CPU
has 18 cores with 32KB private L1 cache, 1024KB private L2 cache, and 25MB
shared L3 cache. We use the GNU compiler 11.2.0 and the MKL 2022.0.2.

4.2. Test Cases

We evaluated the performance of our proposed SPC5 SpMV kernels 4 on a set of sparse
matrices taken from the University of Florida sparse matrix collection (UF Collection) [9].
It includes a dense matrix of dimension 2048. The results of the dense matrix are expected
to provide an upper bound on the performance of the kernels, as all blocks will be full. Of
course, our kernels are not well-designed or optimized for a dense matrix-vector product.
The properties of the matrices are given in Table 1.

We evaluated the performance of four kernels: β(1, VS), β(2, VS), β(4, VS), and β(8,
VS), where VS is the vector size. We also provide the filling of the blocks when we format
the matrices to the corresponding block sizes. The filling can be up to 80% for nd6k but
as low as 1% for wikipedia-20060925. (It is obviously 100% for the dense matrix.)

We performed the computation in single precision (float/f32) and double precision
(double/f64).

The original AVX implementation was written in assembly language, while our cur-
rent implementation is written in C++ with intrinsic functions. Consequently, the AVX
and SVE kernels have very similar structures.

4.3. Results

The results are organized as follows. In the first part, we evaluate the difference of using
the manual multi-reduction (described in Section 3.2) vs. the native SIMD horizontal
summation in Figures 2 (a) and 2 (b), for Fujitsu-SVE and Intel-AVX respectively. For
Fujitsu-SVE, we also evaluate the use of full vector load of x (described in Section 3.2).
Then, we provide the detailed results for all the matrices and the selected configuration
in Figures 5 and 7. Finally, we provide an overview of the parallel performance when the
computation is naively divided among the threads in Figure 8.

Comparisons of the Different Optimizations. We provide the performance results of the
different implementations in Table 2.

In Table 2 (a), we evaluate the use of manual multi-reduction and the single load of the
x vector for the Fujitsu-SVE architecture. There is no difference in most cases, and it is
always meaningless for β(2,VS). The β(4,VS) and β(8,VS) kernels react differently with
the optimizations and improve slightly. The small change in using the multi-reduction
comes from the small difference in latencies between the two approaches. The reduce

4 The code is available at https://gitlab.inria.fr/bramas/spc5

https://gitlab.inria.fr/bramas/spc5
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Table 1. Matrix set for computation and performance analysis. We provide the
percentage of filling of the blocks for double (left) and single (right) precision

Name Dim NNZ NNZ
Nrows

β(1, V S) β(2, V S) β(4, V S) β(8, V S)

bundle 513351 20208051 39.365 72% | 55% 70% | 54% 64% | 50% 51% | 46%
CO 221119 7666057 34.6694 18% | 9% 18% | 9% 17% | 9% 16% | 8%
crankseg 63838 14148858 221.637 66% | 49% 59% | 44% 49% | 37% 38% | 29%
dense 2048 4194304 2048 100% | 100%100% | 100%100% | 100%100% | 100%
dielFilterV2real 1157456 48538952 41.9359 31% | 20% 22% | 14% 15% | 10% 11% | 7%
Emilia 923136 41005206 44.4195 50% | 31% 43% | 28% 34% | 24% 24% | 18%
FullChip 2987012 26621990 8.91258 24% | 13% 17% | 10% 13% | 7% 8% | 5%
Hook 1498023 60917445 40.6652 51% | 34% 43% | 29% 33% | 23% 24% | 17%
in-2004 1382908 16917053 12.233 48% | 31% 38% | 25% 30% | 19% 21% | 14%
ldoor 952203 46522475 48.8577 87% | 55% 79% | 51% 67% | 44% 51% | 34%
mixtank 29957 1995041 66.5968 31% | 20% 24% | 16% 17% | 11% 12% | 8%
nd6k 18000 6897316 383.184 80% | 71% 76% | 68% 71% | 64% 64% | 58%
ns3Da 20414 1679599 82.2768 14% | 7% 8% | 4% 4% | 2% 2% | 1%
pdb1HYS 36417 4344765 119.306 77% | 65% 72% | 60% 63% | 54% 54% | 46%
pwtk 217918 11634424 53.389 74% | 56% 74% | 55% 73% | 54% 65% | 53%
RM07R 381689 37464962 98.1557 61% | 41% 51% | 34% 40% | 28% 31% | 25%
Serena 1391349 64531701 46.3807 51% | 34% 43% | 29% 33% | 23% 24% | 17%
Si41Ge41H72 185639 15011265 80.8627 32% | 18% 31% | 17% 28% | 15% 22% | 13%
Si87H76 240369 10661631 44.3553 21% | 11% 21% | 11% 20% | 10% 17% | 9%
spal 10203 46168124 4524.96 74% | 69% 45% | 37% 25% | 23% 13% | 12%
torso1 116158 8516500 73.3182 81% | 63% 80% | 62% 77% | 59% 58% | 55%
TSOPF 38120 16171169 424.217 94% | 88% 93% | 87% 92% | 85% 89% | 82%
wikipedia-20060925 2983494 37269096 12.4918 13% | 6% 6% | 3% 3% | 1% 1% | 0%

instruction (addv) has a latency of 12 cycles [12]. Our multi-reduction has a latency of
around 96 cycles for two vectors (considering the following latencies uzp1 6, uzp2 6,
whilelt 4 and full vadd 22), and it is almost the same cost for 4 or 8 vectors. Disabling
the x load optimization almost always degrades performance for the β(4,VS) kernel but
seems to improve the performance for the β(8,VS). This is surprising, as we would expect
that the larger the blocks would be, the more benefit we would have to load the vector from
x completely. From our understanding, the cost of a load depends on the location of the
data it requests but not on the fact that the data it requests could be located in different
cache lines. This explains why the optimization has a limited impact, as a partial load will
move the data to the cache and speedup the next partial loads. Since the β(4,VS) is faster
than β(8,VS), we consider the best configuration to be with both optimizations turned on.

In Table 2 (b), we evaluate the use of manual multi-reduction on Intel-AVX512 ar-
chitecture. The performance increases slightly with the use of manual multi-reduction
in some cases. For instance, the best performance on average is obtained with β(4,VS)
and for this configuration, using the manual multi-reduction has no impact (double) or
increases the speedup by 0.1 (float). The explanation is as follows: the reduce intrinsic
function ( mm512 reduce add ps) is not actually a real hardware instruction, but a call
to a function provided by the compiler [22]. Its implementation 5 is very similar to our
manual multi-reduction, with the main difference being that we try to factorize the in-

5 https://github.com/gcc-mirror/gcc/blob/9d7e19255c06e05ad791e9bf5aefc4783a12c4f9
/gcc/config/i386/avx512fintrin.h#L15928

https://github.com/gcc-mirror/gcc/blob/9d7e19255c06e05ad791e9bf5aefc4783a12c4f9/gcc/config/i386/avx512fintrin.h#L15928
https://github.com/gcc-mirror/gcc/blob/9d7e19255c06e05ad791e9bf5aefc4783a12c4f9/gcc/config/i386/avx512fintrin.h#L15928
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Fig. 4. Performance in Giga Flop per second for sequential computation in double and
single precision for our SPC5 kernels on Fujitsu-SVE architecture for all the matrices of
the test set

structions to reduce several SIMD vectors at the same time. This allows us to obtain a
SIMD vector as output, which can then be used to update y with vectorized instructions.
In the end, the performance difference between the two approaches is limited. However,
for the rest of the study, we consider that the best Intel-AVX512 configuration is to use
manual multi-reduction.
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Fig. 5. Performance in Giga Flop per second for sequential computation in double and
single precision for our SPC5 kernels on Fujitsu-SVE architecture. Speedup of SPC5 is
computed against the scalar sequential version and written above the bars
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x load / CSR β(1,VS) β(2,VS) β(4,VS) β(8,VS)
reduction f64 f32 f64 f32 f64 f32 f64 f32 f64 f32

CO

Yes/Yes 0.3 0.4 0.4 [x1.2] 0.4 [x1.2] 0.5 [x1.6] 0.6 [x1.6] 0.6 [x1.7] 0.6 [x1.8] 0.5 [x1.3] 0.5 [x1.5]
Yes/No 0.5 [x1.4]
No/Yes 0.5 [x1.5] 0.5 [x1.5] 0.6 [x1.6] 0.5 [x1.5] 0.6 [x1.6]
No/No 0.5 [x1.5] 0.5 [x1.5] 0.6 [x1.6] 0.5 [x1.5] 0.6 [x1.6]

dense

Yes/Yes 0.4 0.4 2.8 [x7.1] 5.5 [x13.9] 3.4 [x8.6] 6.8 [x17.1] 3.5 [x8.8] 7.0 [x17.7] 2.5 [x6.4] 5.7 [x14.3]
Yes/No 6.9 [x17.5] 6.5 [x16.4] 2.5 [x6.3] 6.4 [x16.0]
No/Yes 2.8 [x7.0] 3.3 [x8.5] 6.8 [x17.2] 3.0 [x7.7] 6.4 [x16.1] 3.1 [x7.9] 6.4 [x16.1]
No/No 2.8 [x7.0] 5.5 [x13.8] 3.3 [x8.5] 6.8 [x17.2] 3.0 [x7.7] 6.4 [x16.2] 3.1 [x7.9] 6.4 [x16.1]

nd6k

Yes/Yes 0.4 0.4 2.0 [x5.2] 3.2 [x8.2] 2.4 [x6.3] 4.1 [x10.5] 2.5 [x6.4] 4.3 [x11.1] 1.8 [x4.6] 3.3 [x8.3]
Yes/No
No/Yes 2.2 [x5.8] 3.9 [x9.9] 2.0 [x5.2] 3.6 [x9.3]
No/No 2.2 [x5.8] 3.9 [x9.9] 2.0 [x5.2] 3.6 [x9.3]

average

Yes/Yes 0.2 0.2 0.5 [x3.0] 0.7 [x4.1] 0.6 [x3.6] 0.9 [x5.2] 0.7 [x3.7] 1.0 [x5.6] 0.5 [x2.6] 0.8 [x4.3]
Yes/No 1.0 [x5.5]
No/Yes 0.6 [x3.5] 0.9 [x5.0] 0.6 [x3.3] 0.9 [x4.8] 0.5 [x2.9] 0.8 [x4.6]
No/No 0.6 [x3.5] 0.9 [x5.0] 0.6 [x3.3] 0.9 [x4.8] 0.5 [x2.9] 0.8 [x4.6]

(a) Fujitsu-SVE

x load / CSR MKL β(1,VS) β(2,VS) β(4,VS) β(8,VS)
reduction f64 f32 f64 f32 f64 f32 f64 f32 f64 f32 f64 f32

CO No/Yes 1.4 1.9 1.9 [x1.3] 2.3 [x1.2] 1.3 [x0.9] 1.4 [x0.8] 1.6 [x1.1] 1.9 [x1.0] 1.7 [x1.2] 1.9 [x1.0] 1.6 [x1.1] 1.9 [x1.0]
No/No

dense No/Yes 1.2 1.3 2.3 [x1.9] 3.6 [x2.8] 3.7 [x3.0] 8.3 [x6.4] 4.1 [x3.4] 9.5 [x7.3] 4.3 [x3.6] 11.2 [x8.6] 4.4 [x3.6] 10.8 [x8.3]
No/No 9.4 [x7.2] 10.6 [x8.1] 4.2 [x3.4] 11.0 [x8.5] 11.0 [x8.5]

nd6k No/Yes 1.2 1.4 2.2 [x1.8] 2.8 [x2.0] 2.9 [x2.4] 6.2 [x4.5] 3.4 [x2.8] 7.3 [x5.4] 3.4 [x2.8] 7.4 [x5.4] 3.4 [x2.8] 7.4 [x5.4]
No/No 2.8 [x2.1] 6.3 [x4.6] 7.3 [x5.3] 7.6 [x5.6] 7.1 [x5.2]

average No/Yes 0.6 0.8 0.9 [x1.5] 1.2 [x1.6] 1.0 [x1.6] 1.7 [x2.3] 1.2 [x1.8] 2.0 [x2.6] 1.2 [x1.8] 2.0 [x2.7] 1.1 [x1.7] 1.9 [x2.5]
No/No 1.1 [x1.7] 1.8 [x2.4] 2.0 [x2.6] 1.8 [x2.4]

(b) Intel-AVX512

Table 2. Performance in Giga Flop per second for sequential computation in double and single precision for our SPC5 kernels on
Fujitsu-SVE and Intel-AVX512 architectures. Speedup of SPC5 is computed against the scalar sequential version, we print the values only
when there is a difference with the first version (above one digit difference in the speedup). We provide the results for the CO, dense and
nd6k matrices, and the average based on all the matrices from the test set. We compare the the loading of full x vectors per block (SVE and
AVX512), and the use of manual multi-reduction against vectorial reduction (SVE only). The scalar and β(1,VS) and MKL versions are
expected to remain unchanged, differences for these kernels are from noise.
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Best Configuration Detailed Results. We provide the complete results for Fujitsu-SVE in
Figures 5 and 4. The results for Intel-AVX are shown in Figures 7 and 6.

In Figure 5, we can see that the performance of the SPC5 kernels is clearly related to
the block filling. The performance model can be described as a constant cost per block
that seems independent of the number of blocks or the number of NNZ. This means that
the performance can be easily predicted from the block filling.

We also note that the performance increases as we increase the size of the blocks up
to 4×VS, but then it decreases for 8 × V S. This is more visible in Figure 5, where β(8,
VS) is the slowest SPC5 kernel in most cases.

The behaviors in single and double precision are similar. For some matrices, such
as ns3Da, SPC5 is even slower than a simple CSR implementation. This means that the
overhead of using vectorial instructions outweighs the benefits of vectorization since the
block filling is very low.

The computation on the matrix TSOPF, which has a very high block filling, achieves
performance almost equivalent to the dense matrix case. Finally, we can see the average
performance in Figure 5 (last bars). While the speedup against CSR is significant, the raw
performance is low compared to the peak performance of the machine.

The results for Intel-AVX are slightly different. In Figure 7, we can see that while
there is a correlation between the block filling and the performance, the relationship is
less clear than for Fujitsu-SVE.

We also note that the performance increases with the block size, such that the best
performance is achieved with β(8, VS). This is even more visible in Figure 7.

Contrary to Fujitsu-SVE, the performance obtained for TSOPF is not close to the
dense matrix case. This means that while the blocks are almost full, the fact that we have
to jump over the vector x has a negative impact on the performance.

The performance of SPC5 on Intel-AVX is higher than those obtained with Fujitsu-
SVE for almost all matrices. Finally, SPC5 is faster than the Intel MKL CSR kernel for
most matrices, but can be slower if there are less than two values per block.

Parallel Performance Overview. In Figure 8, we provide the results for the parallel exe-
cutions. For the Fujitsu-SVE hardware, Figure 8a, for some matrices the speedup is above
42 (the number of cores). This is possible because the matrices are split and allocated by
the threads such that each thread has its data on the memory nodes that correspond to its
CPU core. In addition, the split of the matrices and the use of all the cores can result in
using the cache more efficiently.

For the Intel-AVX512 hardware, Figure 8b, the executions on the dense matrix have
poor performance for small blocks. This is clear that the x vector will be fully loaded
for each row, such that the cache performance is tied to the final execution performance.
We can notice that the speedup around 15 is far from the number of CPU cores (36).
The workload balance between the threads is similar to the Fujitsu-SVE configuration,
therefore, we consider that the difference comes from the memory organization and use.

5. Conclusion

We have presented a new version of our SPC5 framework, which remains efficient on ar-
chitectures with AVX512 and is now compatible with ARM architectures with SVE. The
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Fig. 6. Performance in Giga Flop per second for sequential computation in double and
single precision for our SPC5 kernels on Intel-AVX architecture for all the matrices of
the test set

same sparse matrix format can be used to target both ISA, allowing for interoperability
and the use of a single framework on x86 and ARM-based architectures.

The SPC5’s SpMV kernels are implemented differently, as they rely on an expand
mechanism of the NNZ (AVX512) or a compaction of the x vector (SVE). The perfor-
mances we obtained are usually higher than a simple CSR kernel if there is more than a
single NNZ per block. The β(1,∗) format has a low conversion cost as it leaves the array
of NNZ unchanged compared to CSR, which makes it easy to plug in existing CSR-based
applications.

In a future work, we would like to investigate if we could use a hybrid format, i.e., a
format where we could have blocks of different sizes including blocks of scalar, to avoid
using vectorial instructions when there is no benefit.

Acknowledgments. This work used the Isambard 2 UK National Tier-2 HPC Service 6 operated
by GW4 and the UK Met Office, which is an EPSRC project (EP/T022078/1). We also used the

6 http://gw4.ac.uk/isambard/
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Fig. 7. Performance in Giga Flop per second for sequential computation in double and
single precision for our SPC5 kernels on Intel-AVX512 architecture. Speedup of SPC5 is
computed against the scalar sequential version and written above the bars
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Fig. 8. Performance in Giga Flop per second for parallel computation in double and
single precision for our SPC5 kernels on Fujitsu-SVE and Intel-AVX512 architectures.
Speedup of parallel SPC5 is computed against the same sequential version and written
above the bars. We provide the results for the CO, dense and nd6k matrices, and the
average based on all the matrices from the test set.

PlaFRIM experimental testbed, supported by Inria, CNRS (LABRI and IMB), Universite de Bor-
deaux, Bordeaux INP and Conseil Regional d’Aquitaine 7. In addition, this work used the Farm-
SVE library [6].
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