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Abstract. In the shadow detection task, the shadow model is usually consistent
with the approximate contour of ontology semantics, it is difficult to extract the
features of land covered objects or ground pixels, and easy to be confused into fore-
ground objects in gray scale. Therefore, we present to formulate and apply one new
threshold segmentation method based on information fusion for object shadow de-
tection in remote sensing images. Firstly, object shadow pixels are screened using
intensity and chromaticity information in HSI color space. Secondly, the remote
sensing image is carried out by principal component analysis (PCA) to obtain the
first principal component. A new shadow index is constructed using the results ob-
tained from HSI and the first principal component. Thirdly, based on the results of
the above two information fusion, a threshold segmentation model is established us-
ing the improved threshold segmentation algorithm between the maximum and the
minimum threshold segmentation algorithm, so as to obtain the final object shadow
detection results. Finally, affluent experiments are conducted on the datasets col-
lected from Google Earth. The results show that the proposed object shadow de-
tection algorithm in remote sensing images can achieve better segmentation and
detection (more than 95%) effect compared with state-of-the-art methods.

Keywords: object shadow detection, threshold segmentation, information fusion,
remote sensing images, HSI color space, PCA.

1. Introduction

With the rapid development of space remote sensing technology, remote sensing image
is more and more widely used in urban planning, digital agriculture and resource explo-
ration. Shadow, which reflects the spatial structure characteristics of ground objects, has
always been a hot spot in the research of ground objects recognition. According to the
length and irradiation Angle of the profile, the height and shape of the ground objects
can be calculated, which is conducive to urban construction, remote sensing mapping and
other applications [1,2]. However, shadow will also cover the ground objects, resulting
in attenuation or loss of the effective information of the ground objects, which brings
difficulties to the interpretation of remote sensing image target recognition, feature ex-
traction and image matching. With the continuous development of sensor technology,
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sub-meter high resolution image has been more widely used in urban planning, road map-
ping and other fields [3-5]. In high-resolution images, the categories of objects are more
precise, and the objects are easily affected by shaded areas, which makes the extraction
and recognition of objects difficult. Therefore, further improving the precision and accu-
racy of shadow detection of high-resolution images has important application value and
significance for urban planning and natural disaster assessment.

In the early days, people mainly used color transformation to detect shadow in color
remote sensing images. Kumar et al. [6] used color and geometric position of image to
extract shadow region. Srikantha et al. [7] carried out shadow extraction through image
color region segmentation and image reproduction, combining with dynamic range com-
pression. Zhang et al. [8] designed a shadow detection algorithm by analyzing the differ-
ence in pixel brightness values of RGB channels in shaded areas and non-shaded areas
and combining the idea of seed filling with difference operators and covariance operators.
Using color feature to extract shadow had certain application value, but it was not good
for high-resolution image with higher complexity of features.

Because of the different characteristics of the shadow in different bands, the algebraic
operation of the band can extract the shadow. Abd-El et al. [9] constructed a normalized
blue-red band index to distinguish vegetation and shadow according to the difference in
the decline amplitude of radiation brightness of blue and red bands in the shadow area,
but this method was difficult to distinguish shadow from red and blue ground objects.
Shi et al. [10] calculated the difference ratio of green and blue wave segments and ex-
tracted shadows by combining with histogram threshold segmentation of near infrared
band. This method could not extract shadows effectively in complex atmospheric and
ground conditions. Wang et al. [11] carried out shadow extraction through linear calcula-
tion and nonlinear calculation between bands and combined with digital elevation model.
This method would cause loss of data accuracy, and the accuracy of shadow extraction
was easily affected by image quality.

Ward et al. [12] proposed a radiation model based on direct light and reflected light,
and used the difference of direct light and reflected light to extract shadow regions. How-
ever, this method required the height and Angle attributes of the sun, which had obvious
limitations and high cost, it was not conducive to its implementation. Du et al. [13] pro-
posed a shadow segmentation algorithm that could make use of histogram threshold, but
this method had the problem of poor threshold segmentation effect. Fu et al. [14] proposed
a shadow detection model using HIS changes, which used shadow index to distinguish
shaded areas from non-shaded areas, but this method had a high misjudgment rate.

Therefore, we propose a novel object shadow detection threshold segmentation method
based on information fusion in remote sensing images. Our main contributions are as fol-
lows.

1. Object shadow pixels are firstly screened using intensity and chromaticity information
in HSI color space.

2. The remote sensing image is carried out by principal component analysis (PCA) to
obtain the first principal component. A new shadow index is constructed using the
results obtained from HSI and the first principal component.

3. Based on the results of the above two information fusion, a threshold segmentation
model is established using the improved threshold segmentation algorithm between
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the maximum and the minimum threshold segmentation algorithm, so as to obtain the
final object shadow detection results.

2. Related Works

At present, some scholars have summarized some shadow detection methods. For exam-
ple, Hou et al. [15] summarized and classified the existing shadow detection methods of
remote sensing images, and put forward the problems of generalization and robustness
that needed to be solved in the current shadow detection research. Liu et al. [16] mainly
introduced several cloud detection methods for common satellite data. By comparing dif-
ferent shadow detection methods, they pointed out that existing methods had problems
such as weak universality and missing judgment and misjudgment for thin and transpar-
ent clouds. Mahajan et al. [17] reviewed shadow detection methods from the aspects of
classical algorithms and machine learning methods, compared and analyzed the detection
accuracy of the two types of methods in different scenarios. Based on a large number
of domestic and foreign references, this paper summarized the existing shadow detection
methods into three categories: Threshold method, spatial change detection method and
machine learning method. Threshold method is a widely used shadow detection method,
such as the early shadow coverage extraction of single image [18], pixel level shadow
detection for a series of Landsat satellites [19], and the new Sentinel-2 satellite shadow
detection. The Fmask (Function of mask) algorithm proposed by Zhu et al. [20] had been
integrated into the basic remote sensing camera processing flow of U.S. Geological Sur-
vey (USGS). The spatial change detection method used the spatial change information of
multi-period images to achieve higher cloud detection accuracy than that of a single im-
age [21]. Machine learning methods include traditional machine learning methods, such
as Support Vector Machine (SVM), Artificial Neural Network (ANN), Random Forest
(RF), etc. It also includes the most popular methods of deep learning. Among them, tra-
ditional machine learning methods are trained through a large number of training sets,
and the trained classifier is used to separate shadow pixels and clear sky pixels [22,23].
However, the deep learning method is driven by a large number of marked samples of
shadows and adopts an algorithm framework with semantic information extraction and
learning such as convolutional neural network to achieve the purpose of shadow detection
[24].

2.1. Thresholding Method

The threshold method is to separate the cloud and the ground object by using the dif-
ferent spectral characteristics of the cloud and the underlying surface, and compare the
detected value of the pixel with the threshold value to determine whether it is the ground
object or the cloud. The key of this method lies in the determination of threshold. In the
early stage, most of them are fixed threshold method. Later, dynamic threshold, adaptive
threshold and multi-band combination threshold are developed, and different thresholds
can be selected according to different conditions. In recent years, the threshold method
has been further developed on the basis of the existing development. For example, based
on the Fmask (Function of Mask) algorithm, the Fmask 4.0 algorithm [25] is further de-
veloped to improve the cloud detection method. The improvement mainly includes three
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aspects: First, the integration of auxiliary data, in which the Global Surface Water Occur-
rence (GSWO) data is used to improve the separation of land and water, and the global
digital elevation model is used to standardize the tropical and cirrus zones. Second, a new
cloud probability is developed, which uses the cloud probability based on Haze Optimized
Transformation (HOT) to replace the temperature probability of Sentinel-2 image, and
then corrects the global optimal threshold of cloud probability for different sensors. The
Spectral Context-Contextual Snow Index (SCSI) is created to better differentiate snow/ice
and clouds in polar regions. Landsat 4-8 and Sentinel-2 data are used for training and ver-
ification, and the results show that the overall accuracy of Fmask 4.0 algorithm is higher
than that of Fmask algorithm. Different from Fmask 4.0 Algorithm, which used fixed
threshold to perform cloud detection, Chang et al. [27] proposed an improved cloud de-
tection algorithm-generating (CDAG) method based on automatic threshold. According
to the characteristics of GF-6 WFV data, the CDAG method is improved from the two as-
pects of adding bright surface pixel database and band combination. The results show that
the improved CDAG cloud detection algorithm can achieve better recognition effect in
the cloud recognition of GF-6 WFV data. However, due to the lack of short-wave infrared
band of GF-6 WFV sensor, the improved CDAG method cannot identify cloud pixels
in ice and snow regions. In summary, the threshold method is simple, high computation
speed and easy to implement. However, its disadvantage is that the setting of threshold
requires more prior knowledge and human participation, and the subjectivity is strong.
Moreover, different strategies and thresholds are required for images taken by different
sensors, different periods or places, which limits the universality of the method.

In addition to the spectral information, the spatial information of the image can also
be used as the feature to set the threshold method for cloud detection. With the continu-
ous improvement of spatial resolution of remote sensing images, cloud texture presents
unique characteristics. Fractal dimension and gray co-occurrence matrix can be used to
quantitatively express texture features. Fractal dimension is used to describe the complex-
ity of fractals. In remote sensing images, the complexity of ground objects is higher than
that of clouds, so the fractal number of ground objects is greater than that of clouds, so as
to distinguish the two. The angular second order moments in the gray co-occurrence ma-
trix reflect the texture law. Clouds in the image have larger angular second order moments
than ground objects, which can distinguish them. Xu et al. [27] proposed a cloud detection
algorithm combining spectral threshold and texture features, and used this algorithm to
detect the cloud of hyperspectral remote sensing images captured by the Hyperion sensor
of EO-1 satellite, which not only greatly improved the cloud detection accuracy of remote
sensing images, but also met the requirements of fast cloud detection of space-borne hy-
perspectral images. In addition, Calin et al. [28], aiming at cloud detection in infrared
images, adopted a method combining fractal dimension and gray co-occurrence matrix
to effectively realize cloud detection in infrared images. Due to the complexity of cloud
spatial information, cloud detection methods based on cloud texture characteristics were
easy to cause a small number of clouds in the image to be missed, resulting in certain
errors.

2.2. Spatial Change Detection Method

The presence of cloud on remote sensing image will significantly affect the radiation
change of image, which is the basis of cloud detection based on spatial change. The prin-
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ciple of spatial change detection method is to detect clouds and shadows by using the
temporal characteristic changes of multi-temporal remote sensing images. For example,
Zhang et al. [29] proposed the Multi-Temporal Cloud Detection (MTCD) method. The
cloud detection results of FORMOSAT-2 and Landsat 5, 7 remote sensing images were
better than those of artificial labels. However, MTCD required time series images and
had high requirements on images, so its application in some sensors was limited. Zhang
et al. [30] proposed the Multi-Temporal mask method, an automatic detection algorithm
for cloud/cloud shadow and snow in multi-temporal landsat images. Based on the Fmask
method, the time information of cloud-free pixels in multi-temporal remote sensing im-
ages was added to improve the cloud detection accuracy. Automatic time-series Analysis
(ATSA) used the unsupervised classification method to detect clouds in time series im-
ages, and analyzed the geometric relationship between the sun’s azimuth Angle, altitude
Angle and clouds to detect cloud shadows. In the cloud detection experiment of multi-
sensor remote sensing images, the detection effect of ATSA method was superior to that
of Fmask. Sorasak etc. [31] presented Multi-temporal Cloud Masking (MCM) method, the
method was used in tropical and subtropical environment Landsat 8 cloud/cloud shadow
detection. Compared with Landsat 8 Cloud Cover Assessment (L8CCA) proposed by
Candra et al. [32], MCM method could achieve higher accuracy. In addition, Qiu et al.
[33] developed a cloud detection method with Cirrus cloud mask (Cmask), which used
cirrus band (spectrum range 1.36-1.39) to detect cirrus cloud in Landsat 8 time series
images [34].

Compared with the threshold method, on the one hand, the spatial change detection
method adds time information into the cloud detection process, which makes the method
more suitable for cloud detection of time series remote sensing images. On the other hand,
because the method relies on time information for detection, the application scenario of
this method is limited.

2.3. Temporal Substitution Method

With the rapid development of data fusion technology, cloud removal methods based
on multi-phase image replacement also have a certain development. The cloud removal
method based on multi-phase image replacement uses cloudless pixels to replace cloud-
less pixels according to certain principles to achieve the purpose of generating clear sky
images. For example, the Closest Spectral Fit (CSF) [35] cloud removal method, which
used cloud images and cloud-free images taken at different times in the same region to
replace pixels to achieve cloud removal. CSF achieved high accuracy in cloud removal for
Landsat and Quick Bird images. Moreover, the accuracy of the method was not affected
by the size, thickness and density of the cloud. Similar to the principle of CSF, Liu [36]
replaced the cloudless pixel in Radarsat-2 fully polarized SAR image with the least spec-
tral difference from the pixel with cloud region in Landsat 8 OLI false color image by
weighted Euclidean distance, and realized cloud noise removal and repair in Landsat 8 re-
mote sensing image. This method could integrate the advantages of microwave and optical
images to achieve cloud region restoration of multi-spectral images and achieve a better
cloud removal effect. In addition, Huang et al. [37] proposed a method to reconstruct
cloud region information by using the correlation of multi-temporal images. First, images
at different times were obtained with similar cloud-free patches to reconstruct cloud pol-
lution regions, and then Poisson equation was used to globally optimize the filled cloud
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images to improve the radiation inconsistency problem. Li et al. [38] further proposed a
joint determination method to replace Poisson equation to reconstruct and optimize cloud
pollution images. Compared with the original method, the optimized method performed
better in terms of radiation accuracy and consistency. Ji et al. [39] proposed an auto-
matic cloud removal algorithm, which firstly used temporal similarities of multi-temporal
Landsat images to reconstruct the cloud polluted part, and then adopted Poisson hybrid
algorithm to further eliminate the radiation difference between the cloud-free region and
the reconstructed region. The algorithm automatically generated a cloud-free dataset for
Landsat 8 from 2013 to 2017, covering the whole of China, and the method could also
generate cloud-free time series images for other satellites.

The cloud removal method based on multi-phase image replacement can make full
use of existing images to achieve the purpose of cloud removal, but the prerequisite for
the application of this method is not only to solve the registration and correction problems
between different images, but also to solve the radiation difference between the original
image and the corrected image, and to ensure that multiple sensors obtain remote sensing
data in the same area, which is very demanding.

3. Proposed Object Shadow Detection Model

Considering the accuracy and real-time detection requirements, this paper presents an
object shadow detection threshold segmentation method based on information fusion. The
detailed detection structure is shown in Figure 1.

Fig. 1. Proposed detection flowchart

3.1. HSI Color Space Transformation

According to lighting model in reference [40], the brightness of an object mainly comes
from ambient reflected light, diffuse reflected light and specular reflected light, which can
be expressed as:

I = Iaka + Ipkd cos θ + Ipks cos
n φ. (1)

Where Ia is the ambient brightness. ka is the ambient reflection coefficient of the
object surface. Ip is the intensity of direct light source. kd and ks are the diffuse and
specular reflection coefficients of the object surface to the light source, respectively. θ is
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the incidence Angle of the direct light source. φ is the Angle between the mirror reflection
direction and the camera observation direction. n is the convergence index of specular
reflected light. When the direct light in the scene is partially or completely blocked by the
object and the shadow appears, the diffuse reflection and specular reflection of the direct
light source in the area will be significantly reduced, so the brightness of the shadow area
can be expressed as:

I ′ = Iaka + λIp(kd cos θ + ks cos
n φ) < I. (2)

Where, 0 < λ < 1, whose size is determined by the spatial position of the pixel or
area in the scene. Through the above analysis, it can be found that a prominent feature
before and after the shadow appears in the background area is that the brightness of pixels
in the current frame is lower than that of corresponding pixels in the background, so the
shadow can be screened by brightness changes.

The perceived color characteristics of an object depend on the spectral reflection char-
acteristics of the object surface, independent of changes in the scene and light. When the
brightness of an object changes, the color information perceived by human eyes is basi-
cally unchanged, that is, chroma is independent of brightness. For example, the normal-
ized color feature RGB in rgb space, UV component in YUV space, hue H and saturation
S in HSI space, etc. Therefore, it is possible to distinguish the target from the shadow
by using the approximately identical chromaticity of the pixel in the shadow area and the
corresponding background area.

HSI color space clearly expresses Hue, Saturation and Intensity changes and greatly
simplifies the workload of image analysis and processing. Therefore, this paper selects
HSI color space for preliminary screening of shadows. According to the above analysis
of color characteristics, compared with the corresponding background region, the bright-
ness information of the shadow will change greatly, while the hue H and saturation S
remain basically unchanged. According to the above characteristics, shadow pixels can
be detected by satisfying equation (3), i.e.,

S1 =

{
127 α1 ≤ P i

F /P
i
B ≤ α2

255 others
(3)

Here, |Ph
F − Ph

B | ≤ β, |P s
F − P s

B | ≤ γ. S1 is the screened shadow region. h, s and i
respectively represent hue, saturation and brightness after the normalization of HSI color
space. Ph

F , P s
F , P i

F and Ph
B , P s

B , P i
B represent h, s and i values corresponding to pixel

point P in the current detection image F and background image B respectively. α1, α2, β
and γ are the shadow discrimination thresholds of each color component. Threshold set-
ting is to select the weak threshold from the optimal threshold range obtained by manual
experiment, so as to screen out the shadow area more adequately.

3.2. Principal Component Normalization Method

Principal component analysis method can reduce the dimension of data and reduce the
redundancy of data [41,42]. For different remote sensing images, different bands can be
selected for principal component analysis. Different eigenvalues can be obtained by prin-
cipal component analysis of different wavebands. The larger eigenvalue denotes the bet-
ter corresponding eigenvector. For remote sensing images, since the variance contribution
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rate of the first principal component is usually above 90%, the first principal component
image can represent most of the information of the original image. The original image
and the first principal component image are shown in Figure 2.

Fig. 2. Diagram of principal component analysis results. (a) original image; (b) First prin-
cipal component image; (c) Second principal component image; (d) Third principal com-
ponent image

As can be seen from Figure 2(b), after principal component transformation, the bright-
ness of the shadow region is greater than that of other ground objects, which is conducive
to further shadow extraction. According to ENVI analysis, the shadow region is always at
both ends of the first principal component, that is, at the maximum value of positive value
and the minimum value of negative value. Therefore, normalization of the first principal
component within [0,1] can better highlight the difference between shadows and other
features.

3.3. Shadow Index Construction

After the color component C is extracted from the remote sensing image through HSI con-
version of color space, the blue light value of the shadow area is larger than that of the red
and green light value, which enhances the contrast with other ground objects. After prin-
cipal component transformation of remote sensing image, the shadow region is located
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at two endpoints of the first principal component. Through normalization, the shadow re-
gion occupies a larger value in the first principal component than other features, which
is similar to the C component. Inspired by the similarity, this paper proposes a shadow
index construction method combining C component and first principal component. The
shadow index is expressed as follows:

shadow − index =
C − PC1

C + PC1
. (4)

3.4. Weighted Threshold Segmentation

In the task of shadow detection, in order to detect the shadow region more conveniently,
the three channels of RGB image are first separated to obtain the single channel informa-
tion of R, G and B, and then the linear weighting algorithm of Equation (5) is used for
information fusion processing between channels. Set the three channels of remote sensing
image as R, G and B respectively, then the weighted gray value Igray is:

Igray = 0.2R(x, y) + 0.6G(x, y) + 0.2B(x, y). (5)

After gray linear processing, the pixel intensity of the shadow part is lower than that
of the non-shadow area. With the gray level intensity of 0-255 pixels as the horizontal
coordinate and the frequency of each gray level pixel intensity as the vertical coordinate,
the functional statistical mapping relationship between gray level intensity frequency and
gray level intensity in remote sensing images is established.

In the gray distribution diagram (Fig.3 (d)), the area with low gray level is the shadow
area, while the area with high gray level is the non-shadow area. The gray value changes
of the shaded area are more concentrated, and the distribution range of the non-shaded
area is more extensive than that of the shaded area. The trough between two crests is
used as the threshold to segment the shadow region, although it can be recognized, but the
segmentation and recognition effect is poor. At present, the most common method is to es-
tablish the threshold segmentation model based on pixel intensity by using the maximum
inter-class variance method, and determine a threshold by using the threshold segmenta-
tion model adaptively. However, the method of determining the boundary threshold be-
tween shadow and non-shadow regions based on the maximum inter-class variance only
describes the variance distance between shadow and non-shadow categories, and does not
take into account the differences within each category. In this paper, a constraint term of
minimum in-class variance is added to the maximum category variance. First, it calcu-
lates the maximum variance distance needed to distinguish between the two categories.
The larger distance denotes the better the classification effect of shadow and non-shadow.
Then it calculates the minimum variance distance between the elements in each class. The
smaller minimum variance distance denotes the more dense the elements in the class, in-
dicating that the probability of each gray pixel belonging to the same category is greater.
The detailed steps are as follows.

1. Set the gray value interval of the shadow region and the non-shadow region in the
remote sensing image as [0,m], then the number of gray values of all pixels is shown
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Fig. 3. Gray value distribution map. (a) original image; (b) Grayscale linear processing
graph; (c) One-dimensional histogram of (a); (d) One-dimensional histogram of (b)
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in Equation (6), the probability of each gray level is shown in Equation (7), and the
overall gray mean µall is shown in Equation (8):

N =

m∑
i=0

h(i). (6)

pi =
h(i)

N
. (7)

µall =

∑m
i=0(h(i)× i)∑m

i=0 h(i)
. (8)

Where i is the gray level of the gray distribution map. h(i) is the frequency corre-
sponding to the gray level i. m is the maximum gray level of the gray distribution
diagram (255 in this paper). µall indicates the global average gray level.

2. Let T be any gray value of the interval [0,m]. T is used as the segmentation thresh-
old, and the image of shadow area and non-shadow area is divided into gray interval
[0, T ] and [T +1,m], which are denoted as C1 and C2 respectively. Formula (9) and
formula (10) are used to calculate the average gray level µC1 and µC2 of the two parts
respectively.

µC1 =

∑T
i=0(h(i)× i)∑T

i=0 h(i)
. (9)

Where i is the gray level of the dark pixel in the shadow area in the gray distribution
map. h(i) is the corresponding frequency of gray level i of dark pixel in shadow
region. T is the threshold of boundary between shadow area and non-shadow area.
µC1 is the average gray level of C1 region.

µC2 =

∑m
i=T+1(h(i)× i)∑m

i=T+1 h(i)
. (10)

Where i is the gray level of bright pixels in the non-shadow area of the gray distribu-
tion map. h(i) is the corresponding frequency of gray level i of bright pixel in non-
shadow area. T is the threshold of boundary between shadow area and non-shadow
area. µC2 is the average gray level of the C2 region.

3. Equations (11-14) are used to calculate the variances of C1 in the dark shadow region
and C2 in the bright non-shadow region respectively.

wC1 =

T∑
i=0

p(i). (11)

wC2 =

m∑
i=T+1

p(i). (12)

σC1 =

∑T
i=0(i− µC1)

2 × h(i)∑T
i=0 h(i)

. (13)

σC2 =

∑m
i=T+1(i− µC2)

2 × h(i)∑m
i=T+1 h(i)

. (14)
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4. Formula (15) is used to calculate the maximum intra-class variance, maximum inter-
class variance and the optimization evaluation function. The maximum intra-class
variance σw at the threshold T is:

σw = wC1σC1 + wC2σC2. (15)

The maximum inter-class variance σb at the threshold T is:

σb = wC1(µC1 − µall)
2 + wC2(µC2 − µall)

2. (16)

To ensure the optimal segmentation threshold, two conditions are required: one is that
the variance between the shaded part and the non-shaded part is the largest; the other
is that the variance within the shaded area and the non-shaded area is the smallest. In
order to describe this phenomenon, the segmentation optimization function is defined:

ζ(T ) = max(σb(T )/σw(T )). (17)

Where ζ is the optimization factor, and the iterative method is used to traverse all
gray levels, then the threshold T corresponding to the largest optimization factor is
the optimal segmentation threshold.

5. Set the above threshold T [43], and use Equation (18) to segment the image:

Segmentation =

{
255 Optimalthreshold > T

0 otherwise
(18)

4. Experiments and Analysis

After analyzing the experimental process and data, the accuracy rate (ACC) and false de-
tection rate (FDR) are selected as the evaluation indexes of remote sensing image shadow
detection effect [44,45]. The data set for this article is derived from Google Earth and
DOTA [46]. Due to the limited content space, we choose four sets of images as experi-
mental results analysis. Figure 4 is the sample data set.

Firstly, we obtain the one-dimensional and two-dimensional histogram of the four
samples, in order to understand the pixel distribution of the original image more clearly.
The results are shown in figure 5 and figure 6. The results show that the distribution of
pixels in the original image is very uneven.

Figures 7,8,9 show the color map, threshold segmentation diagram and shadow detec-
tion effect diagram with the proposed algorithm in four scenes.

This paper is compared with three advanced shadow detection methods including
DUS [47], MUSA [48], MUCS [49]. Table 1 shows that the accuracy rate and false detec-
tion rate of the proposed method on the data set are superior to the other three methods.
It can be seen from the data in Table 1 that the shadow detection results in this paper are
better than other methods.

For image 1, the accuracy of the proposed method is 95.4%, which is 6.0%, 4.1% and
7.1% higher than that of other methods, respectively. The FDR values of DUS, MUSA
and MUCS are 12.51, 9.45 and 7.28 respectively, which are 6.29, 3.33 and 1.16 higher
than that of the presented method in this paper (6.12). For image 2, ACC values of DUS,
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Fig. 4. Sample images

Fig. 5. One-dimensional histogram
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Fig. 6. Two-dimensional histogram

Fig. 7. Colour map
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Fig. 8. Threshold segmentation

Fig. 9. Shadow detection result
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Table 1. Comparison with other detection methods

Test image Index DUS MUSA MUCS Proposed

Image1 ACC 0.894 0.913 0.937 0.954
Image1 FDR 12.51 9.45 7.28 6.12
Image2 ACC 0.875 0.886 0.907 0.935
Image2 FDR 17.32 14.81 10.64 9.78
Image3 ACC 0.907 0.928 0.935 0.961
Image3 FDR 14.69 11.58 10.44 8.94
Image4 ACC 0.863 0.892 0.917 0.934
Image4 FDR 18.52 16.74 13.55 10.95
Image5 ACC 0.906 0.915 0.921 0.946
Image5 FDR 11.85 9.93 8.31 7.25
Image6 ACC 0.885 0.891 0.907 0.922
Image6 FDR 13.25 11.74 9.33 7.21
Image7 ACC 0.927 0.939 0.951 0.960
Image7 FDR 11.24 8.11 7.58 6.93
Image8 ACC 0.902 0.927 0.933 0.958
Image8 FDR 12.35 11.26 9.75 7.07

MUSA, MUCS and proposed method are 87.5%, 88.6%, 90.7% and 93.5%, respectively.
Obviously, the proposed method has some advantages over the other three methods. The
FDR value of the method in this paper is 9.78, which is significantly lower than the other
three methods. Similarly, in the other 7 images, the new method in this paper also has a
similar trend. Also, we can see similar characteristics from Figure 10.

The running efficiency of the algorithm is also an important index to evaluate the
performance of the algorithm. In order to measure the running efficiency of the algorithm
proposed in this paper, the running time of different methods is given in Table 2. The
visualized result is shown in Figure 11.

Table 2. Detection time with different methods/s

Test image size DUS MUSA MUCS Proposed

Image1 2610× 3931 5.71 4.66 4.25 3.36
Image2 936× 913 3.04 2.89 2.37 1.24
Image3 1104× 1103 4.71 3.47 2.86 2.35
Image4 1648× 1732 3.97 3.65 3.17 2.83
Image5 1112× 1026 4.56 3.74 3.25 2.84
Image6 1113× 1015 3.75 3.23 2.77 2.51
Image7 1289× 1302 3.82 3.31 2.86 2.55
Image8 673× 594 3.87 3.19 2.64 2.36
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Fig. 10. Evaluation index comparison results

Fig. 11. Results of Table 2
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5. Conclusions

Aiming at the low accuracy and robustness of shadow detection under single feature, one
new threshold segmentation method based on information fusion for object shadow de-
tection is presented in remote sensing images. Firstly, object shadow pixels are screened
using intensity and chromaticity information in HSI color space. Secondly, the remote
sensing image is carried out by principal component analysis (PCA) to obtain the first
principal component. A new shadow index is constructed using the results obtained from
HSI and the first principal component. Thirdly, based on the results of the above two
information fusion, a threshold segmentation model is established using the improved
threshold segmentation algorithm between the maximum and the minimum threshold seg-
mentation algorithm, so as to obtain the final object shadow detection results. Finally,
affluent experiments are conducted on the datasets collected from Google Earth. Exper-
iments show that the proposed algorithm can accurately and quickly detect the shadow
parts in the former scenic area, and has good robustness to the situation where the scene
illumination changes or the local texture of the object is not obvious, which lays a good
foundation for the accurate tracking and recognition of the target in the later stage.

Overall, the current cloud detection methods still have some limitations, and some
areas need to continue to improve. In terms of cloud detection, there is almost no general
algorithm that can detect cloud and cloud shadow on sensors, and different methods have
different application conditions and scopes. Because some large-scale tasks require mas-
sive remote sensing image data, especially in some tasks that require intensive time series
data and require multi-sensor data to work together, the existing cloud/shadow detection
methods are limited in scope of application and poor in generalization. In addition, the ac-
curacy of cloud detection will be affected by the background information of remote sens-
ing images, such as ice and snow, which often cause misjudgment and missing judgment
during detection, and the robustness is poor. In order to achieve a better cloud detection
effect, auxiliary images with sufficient time continuity and non-overlapping cloud regions
are needed, and the application prerequisite is high. At the same time, the problem of im-
age registration and calibration across sensors and radiation difference between images
should be solved.
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