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Abstract. This paper presents a glove defect classification method that integrates
image enhancement techniques with a lightweight model to enhance the efficiency
and accuracy of glove defect classification in industrial manufacturing. A dataset
comprising images of five types of gloves was collected, totaling 360 sample im-
ages, for the training and validation of a deep learning-based glove defect classifi-
cation model. Image enhancement techniques, including super-pixels, exposure ad-
justment, blurring, and limited contrast adaptive histogram equalization, increased
dataset diversity and size, improving model generalization. Based on the lightweight
model MobileNetV2, the model was improved by reducing the number of input im-
age channels through grayscale conversion and optimizing the loss function. Ex-
perimental results demonstrate that the improved MobileNetV2 model achieved an
average accuracy of 97.85% on both the original and enhanced datasets, effectively
mitigated overfitting phenomena, and exhibited a significantly faster training speed
compared to the ResNet34 and ResNet50 models.

Keywords: glove defect classification, machine vision, image enhancement, deep
learning, lightweight model, mobilenetv2.

1. Introduction

Industrial defect classification is an important technology to ensure product quality. The
rapid development of new technologies in the fields of machine vision, image processing,
and deep learning has also driven the significant progress of industrial defect classification
technology. Currently, it can be applied to the detection of various industrial products such
as metals, semiconductors, textiles, and rubber [21].

The limitations of traditional manual inspection methods, such as low efficiency, high
cost, and strong subjectivity, can no longer meet the needs of modern industrial produc-
tion. In the field of latex glove production, with the advancement of industrial automa-
tion and intelligence, glove defect classification technology is also gradually transition-
ing from traditional manual visual inspection to automated detection based on machine
vision, which makes the machine vision-based defect classification technology play an
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increasingly important role in product quality assurance. Therefore, the research and de-
velopment of efficient defect classification technology has become particularly urgent
[20].

Traditional machine vision-based defect classification methods mainly relied on im-
age processing technologies, such as edge detection and template matching [3]. These
methods performed well in handling simple or rule-based industrial images, but their per-
formance was limited in complex scenarios. With the application of machine learning
technology, researchers have begun to explore statistical learning-based methods, such as
support vector machines (SVMs) and random forests, which can better handle the local
features and classification problems of images [10, 24].

The rise of deep learning technology has brought new development opportunities for
defect classification. Convolutional neural networks (CNNs) have been widely applied to
defect classification tasks, especially in image classification, object detection, and seman-
tic segmentation [6, 16, 30].

The main goal of glove defect classification in the industrial production process is
to quickly distinguish the types of qualified and nonqualified products, so as to control
product quality. Due to the variety of gloves and defect types, collecting and labeling a
large amount of high-quality data is costly and challenging [27], and there are still prob-
lems such as strong data dependency and weak model generalization ability. In addition,
real-time and computational resource requirements are also limiting factors. Therefore,
this paper proposes a lightweight latex glove defect classification method based on image
enhancement.

Fig. 1. The process of glove defect classification based on machine vision

2. Related Work

2.1. Defect classification based on machine vision

The typical process of defect classification based on machine vision usually includes three
parts: image acquisition, image enhancement and model training, and deployment appli-
cation.

Firstly, an industrial camera is used to capture high-quality images of products. The
collected data is then subjected to image enhancement. Next, a suitable model is selected
for training. Finally, the trained model is applied to perform defect classification. For
example, The overall process of glove defect classification is illustrated in Figure 1.
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Early defect detection methods relied heavily on manual inspection and basic image
processing techniques. While early methods can be effective in specific scenarios, they are
labor-intensive and do not scale well with increasing production volumes. To overcome
these limitations, conventional image processing techniques such as thresholding, edge
detection, and template matching were introduced [15]. Thresholding involves setting
a gray-level threshold to segment images into foreground and background, facilitating
defect identification based on pixel intensity differences [11]. Edge detection algorithms,
such as Canny and Sobel, are designed to identify abrupt changes in image brightness,
thereby outlining object boundaries that can indicate the presence of cracks or scratches
[19]. Template matching compares a region of interest in the test image with predefined
templates, allowing for the detection of deviations that signify defects [32]. Despite their
simplicity and high computational efficiency, traditional methods often face challenges
when dealing with complex defect patterns, varying lighting conditions, and noisy images.
This has prompted the exploration of more advanced techniques, particularly those that
leverage deep learning.

In recent years, deep learning has transformed defect detection by automating feature
extraction and enabling the learning of intricate patterns from large datasets. Convolu-
tional Neural Networks (CNNs) have become foundational in deep learning-based defect
detection due to their capability to hierarchically learn spatial hierarchies of features from
image data [6]. CNNs utilize convolutional layers that apply learnable filters to the input
images, allowing them to automatically capture essential features such as edges, textures,
and shapes at multiple scales. This hierarchical feature extraction process means that ini-
tial layers may learn simple patterns like edges and colors, while deeper layers can rec-
ognize more complex structures, such as patterns specific to defects [7]. Furthermore, the
architecture of CNNs can be tailored to specific defect detection tasks by adjusting param-
eters such as the number of layers, filter sizes, and activation functions. This flexibility
allows researchers to optimize CNNs for particular types of defects or image characteris-
tics, thereby improving classification accuracy [12].

Beyond CNNs, other deep learning architectures have also been employed for de-
fect detection. Generative Adversarial Networks (GANs), for instance, are effective for
anomaly detection by training a generator to create realistic, defect-free images, while a
discriminator distinguishes between real and generated images. This setup allows GANs
to flag anomalies as deviations from the learned distribution [29]. Similarly, Autoencoders
can be adapted for defect detection by reconstructing input images with minimal recon-
struction error. Significant discrepancies between the original and reconstructed images
can indicate potential defects, making Autoencoders valuable for identifying anomalies
that may not be well-represented in the training data [14].

2.2. Image enhancement techniques

Image enhancement techniques play a pivotal role in enhancing the efficiency and gen-
eralization capabilities of deep learning models, especially when dealing with limited
sample data [25, 8]. These techniques serve to expand the diversity and size of the dataset
by simulating various changes that may occur in the real world and generating new image
samples by applying a series of transformations to the original image [18].

One common approach to image enhancement is data augmentation, which involves
applying a series of transformations to the original images, such as rotation, scaling, flip-
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ping, and color adjustments. These transformations help the model generalize better by
exposing it to a wider range of visual patterns during training. In addition to data augmen-
tation, other image enhancement techniques, such as histogram equalization and noise
reduction, can also be employed to further improve image quality and feature extraction
[1, 13]. These techniques are particularly useful in scenarios where the original images
are of low quality or contain significant noise. Recent advancements in generative adver-
sarial networks (GANs) have also opened up new possibilities for image enhancement
[28]. GANs can generate highly realistic synthetic images that can be used to augment
the training dataset, further improving the performance of deep learning models in glove
defect classification tasks.

In summary, the integration of image enhancement techniques with deep learning
models has significantly advanced the field of glove defect classification. By leveraging
these techniques, researchers have been able to improve classification accuracy, reduce
manual inspection efforts, and enhance the robustness and generalization capabilities of
their models.

3. Materials and Methods

3.1. Dataset construction

The choice and setup of the lens and industrial camera are crucial for the quality of cap-
tured images [5]. In this study, a 5 megapixel color camera and a 12mm fixed focus lens of
Detron were selected, and white stripe light and black background were used for shooting.
The side view of the camera is shown in Figure 2.

In this paper, a dataset containing five types of glove images, totaling 360 sample
images, was collected to train and validate a glove defect classification model based on
deep learning.The dataset is crucial for effectively training the model to recognize various
types of defects that may occur in latex gloves, which are commonly used in industrial
settings. Each type of image reflects different defect characteristics, as shown in Table 1.

The inclusion of these diverse image types allows for a comprehensive evaluation of
the model’s ability to detect defects that can occur in real-world scenarios. For instance,
minor damage such as small cracks or wear may not render the gloves immediately un-
usable but could lead to issues over time, affecting the safety of users. On the other hand,
major damage, including significant tears, directly impacts the gloves’ usability and poses
a safety risk.

To address the challenges presented by varying defect types and conditions, the fol-
lowing image enhancement techniques are introduced in this study: color dithering, which
can simulate the effects of different lighting conditions and increase the color diversity of
the dataset by randomly changing the color values in the image; brightness adjustment,
which can better adapt to different ambient lighting situations by adjusting the brightness
of the image so that the model can deal with a variety of scenarios ranging from bright
to dim; and contrast adjustment, which enhances or reduces the contrast of the image that
can help the model learn to recognize defects under different contrast conditions.

Additionally, other methods such as superpixels, blur, solarize, affine transformations,
Canny edge detection, and CLAHE are utilized for image enhancement, as illustrated in
Figure 3. The specific image augmentation methods and their parameters are summarized
in Table 2.
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Fig. 2. Camera Side View and Parameter Description

In order to compare and analyze the impact of image enhancement on the model
training effect, the dataset (Raw) is the original glove sample image set, without any image
enhancement processing. The dataset (Aug) adopts 6 transformation methods for image
enhancement. The above image enhancement combination builds the training dataset as
shown in Table 3.

3.2. Network model structure

In this study, lightweight network MobileNetV2 was selected as the basic model archi-
tecture, and the classic ResNet34 and ResNet50 network models were used in the com-
parative experiment. ResNet networks [4] effectively solve the problem of gradient disap-
pearance in deep neural networks by introducing residual connections, thus allowing the
network to train deeper model structures. The difference between ResNet34 and ResNet50
lies not only in their depth and number of layers, but also in their construction of Residual
blocks. ResNet34 uses the Residual Block, while ResNet50 uses a Bottleneck block, as
shown in Figure 4.

ResNet34 includes a 34-layer network structure with fewer parameters, making it
more efficient when computing resources are limited or on small datasets. ResNet50,
which contains a 50-layer network structure, has more parameters and more complex fea-
ture extraction capabilities, and is suitable for large datasets and complex image recogni-
tion tasks. The MobileNetV2 [22] network employs an Inverted Residual Block structure
(as shown in Figure 5) and Linear Bottlenecks, enhancing model efficiency and accuracy
while maintaining low computational cost and minimal memory usage.



186 Yong Ren, Dong Liu and Sanhong Gu

Table 1. Glove Image Types and Sample Quantities
Type Quantity(Pieces) Description

Normal Images (Ok) 200 Glove images
without visible defects

Empty Images (Empty) 18 Blank images
with no gloves captured

Minor Damage Images (Minor) 27 Glove images
with small cracks or wear

Major Damage Images (Major) 72 Glove images
with significant damage or tears

Dirty Images (Dirty) 43 Glove images contaminated
with oil stains or similar substances

To reduce the computational complexity of the model, this study converts input sam-
ple images to grayscale, removing color information and retaining only luminance data,
which means the model is trained using single-channel images. Consequently, the first in-
put layer parameter of the MobileNetV2 model is changed from 224×224×3 to 224×224×1.
The overall structure of the adjusted MobileNetV2 network is shown in Table 4, where t
represents the expansion factor, c denotes the depth of the output feature map (channel),
n indicates the number of repetitions of the bottleneck, and s refers to the stride.

Meanwhile, ReLU6 is used as the activation function, a Rectified Linear Unit ac-
tivation function [23] with a rectified linear unit output limit of 0 to 6, which can be
mathematically defined as:

ReLU6(x) = min(max(0, x), 6) (1)

3.3. Loss Function Optimization

In addition, to train the model to accurately identify the defect type of gloves, the Loss
function employs Multi-Class Cross-Entropy loss, which measures the difference between
the probability distribution predicted by the model and the true label [31]. For each sam-
ple, the loss function can be expressed as:

L =
∑C

i=1 yilog(Pi) (2)

Where: C is the number of categories, yi is the unique thermal coding of the real label,
and pi is the probability distribution predicted by the model.

To improve model performance, Mini-batch Gradient Descent is utilized for training,
specifically using the Adam optimizer [17, 26]. The Adam optimizer combines the bene-
fits of Momentum and adaptive learning rates, allowing for automatic adjustment of the
learning rate for each parameter, thus speeding up the training process and increasing
convergence speed.
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Table 2. Image Augmentation Methods
Method Parameter Settings Operational Steps

Color Dithering RGB values within ±10% Use PIL to modify pixel
values randomly.

Brightness Adjustment Range: [0.5, 1.5] Use ImageEnhance.Brightness
to adjust brightness.

Contrast Adjustment Range: [0.5, 1.5] Use ImageEnhance.Contrast
to adjust contrast.

Superpixels N/A Apply superpixel segmentation
using skimage.

Blur Adjustable kernel size Use Gaussian blur to reduce
noise and details.

Solarize Threshold parameter Invert brightness of pixels
above a certain threshold.

Affine Transform Rotation angle, scaling factors Apply transformations to
create diverse perspectives.

Canny Edge Detection N/A Highlight edges
using the Canny algorithm.

CLAHE Clip limit, grid size Enhance local contrast
using CLAHE algorithm.

Table 3. Image Enhancement Combination for Constructing the Training Dataset
Dataset Sample Classification Quantity Total(Pieces)

Original Dtaset(Raw) Normal (OK) 200, Empty 18, Minor 27,
Major 72, Dirty 43 360

Augmented Dtaset(Aug) Normal (OK) 200, Empty 108, Minor 162,
Major 432, Dirty 253 1155

On the basis of multi-class cross-entropy Loss function, weighted loss function and
Focal Loss are introduced.The weighted loss function increases the model’s attention to a
few categories by assigning different weights to each category. The weights for each class
can be set based on the frequency of samples in the dataset. For example:

Weighti =
N

ni

Where: N is the total number of samples, and ni is the number of samples in class
i. By assigning higher weights to minority classes (e.g., Minor damage), the model fo-
cuses more on these samples during training. The weights are fine-tuned through cross-
validation to find a balance that maximizes overall model accuracy.
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Fig. 3. Example of Image Enhancement

The focus loss makes the model more focused on the learning of difficult classification
samples by reducing the loss weights of easy classification samples. Specifically, focus
loss can be expressed as

FL(pi) = −αt(1− pt)
γ(pt) (3)

In this formula, αt is the class weight, pt is the prediction probability of the model
for the correct class, and γ is the regulator that adjusts the rate at which easy samples are
down-weighted. A typical value for γ might be set to 2, but it can be optimized through
grid search or random search techniques to determine the value that yields the best vali-
dation accuracy.

By introducing an improved loss function, the model can deal with class imbalance
more effectively, thus improving the overall detection accuracy.
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(a) Residual Block (b) Bottleneck

Fig. 4. Two Types of Residual Blocks in ResNet

Table 4. The overall structure of the adjusted MobileNetV2
Input Operator t c n s

2242 × 1 conv2d - 32 1 2
1122 × 32 bottleneck 1 16 1 1
1122 × 16 bottleneck 6 24 2 2
562 × 24 bottleneck 6 32 3 2
282 × 32 bottleneck 6 64 4 2
142 × 64 bottleneck 6 96 3 1
142 × 96 bottleneck 6 160 3 2
72 × 160 bottleneck 6 320 1 1
72 × 320 conv2d 1× 1 - 1280 1 1
72 × 1280 avgpool 7× 7 - - 1 -

1× 1× 1280 conv2d 1× 1 - - - -

4. Experiment and Results

4.1. Experimental environment and model training

The experiments in this paper were conducted on a cloud server equipped with an NVIDIA
GPU to ensure sufficient computing power for deep learning model training. The hard-
ware specifications are as follows:

GPU: NVIDIA RTX A4000 with 16GB of video memory
CPU: 8 × Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz
Memory: 60GB
Storage: 200GB
The software environment used for the experiments includes Ubuntu 20.04, Python

3.10, PyTorch 2.0.1, and CUDA 11.8. All training and testing experiments were per-
formed in this environment.

Three models were trained: ResNet34, ResNet50 and MobileNetV2. Each model was
trained for 50 epochs on both the Raw dataset and the Aug dataset. The initial learning
rate for all gradient descent algorithms was set to 1e-3, and the model training batch size
was set to 4.
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Fig. 5. Convolution block of MobilenetV2

(a) ResNet34 (b) ResNet50 (c) MobileNetV2

Fig. 6. Model Training Process on the Raw Dataset

As shown in Figure 6, it can be observed that on the original dataset (Raw), both the
ResNet34 and ResNet50 models begin to overfit after 10 training epochs due to insuffi-
cient training samples. The ResNet50 model, having a stronger feature fitting capability,
tends to overfit more easily, resulting in a higher validation loss. In contrast, Figure 7 in-
dicates that on the augmented dataset (Aug), overfitting for both ResNet34 and ResNet50
occurs only after 40 epochs, with a noticeable improvement in both training and valida-
tion accuracy, and a loss value approaching zero. The MobileNetV2 model outperformed
the other two models both before and after enhancement.

4.2. Confusion matrix, ROC curve and multi-classification evaluation index

In order to ensure the effectiveness and generalization performance of the experimental
results, the enhanced dataset is divided, and 20% (233 images) are set aside as the test
dataset, and the original proportion of various types of images is maintained as far as
possible. For the model trained by ResNet34, ResNet50 and MobileNetV2 on the Raw
dataset, the confusion matrix and ROC curve of the test results [9] are shown in Figure 8
and Figure 9.
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(a) ResNet34 (b) ResNet50 (c) MobileNetV2

Fig. 7. Model Training Process on the Augmented Dataset

Fig. 8. Confusion Matrix of the Model on the Raw Dataset

According to the above test results, the prediction accuracy of the Minor image model
is the lowest for all kinds of models, because the number of samples is relatively small and
the difference between the minor image and normal image (OK) and Dirty image is not
obvious. In the same case, although the Empty image has the smallest sample number, it
has the most significant difference from other types of images, so it is easier to distinguish
and has the highest prediction accuracy. However, due to the large number of samples
and great difference from other types of images, Major image has the second highest
prediction accuracy.

Training results of ResNet34, ResNet50, and MobileNetV2 models on the enhanced
dataset (Aug). The confusion matrix and ROC curve tested are shown in Figure 10 and
Figure 11.

It can be seen that in the enhanced dataset, the model training effect has been signif-
icantly improved, and all evaluation indicators of ResNet34 and ResNet50 models have
exceeded 99%, and MobileNetV2 even reached 100%. Moreover, the Area Under Curve
(AUC) of the five types of ROC curves almost reached 1, indicating good model perfor-
mance.

This improvement can be attributed to increased dataset diversity from various aug-
mentation techniques, which enable the model to learn robust features. Additionally, the
use of enhanced data mitigates overfitting by encouraging the model to focus on essential
features rather than memorizing specific examples. Finally, the introduction of challeng-
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Fig. 9. ROC Curve of the Model on the Raw Dataset

Fig. 10. Confusion Matrix of the Model on the Augmented Dataset

ing examples allows the model to better recognize subtle differences in glove defects,
which is crucial for precision in industrial applications. These factors collectively demon-
strate the effectiveness of image enhancement techniques in boosting detection accuracy
and model reliability in glove defect classification tasks.

In addition, based on the confusion matrix of model test, Accuracy, Precision, Recall
and F1 Score were calculated in this paper as evaluation indicators of model performance
[2], and the experimental results were shown in Table 5.

Table 5. Model Evaluation Metrics Statistics
Evaluation Resnet34 Resnet50 MobileNetV2

Metrics Raw Aug Raw Aug Raw Aug

Accuracy 84.55 99.57 89.70 99.14 95.71 100
Precision 87.86 99.62 90.59 99.12 95.20 100

Recall 81.28 99.50 88.45 99.00 94.79 100
F1 Score 80.67 99.55 88.43 99.05 94.86 100

Comparative analysis of the experimental results shows that: In the training results
on the original dataset, the four evaluation indexes of Resnet34 and Resnet50 models are
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Fig. 11. ROC Curve of the Model on the Raw Dataset

between 80% and 90%, while the MobileNetV2 model is about 95%. The training results
on the enhanced dataset showed that the four evaluation indexes of the three models were
improved, with the Resnet34 and Resnet50 models exceeding 99%, and the improved Mo-
bileNetV2 model even reaching 100%. This shows that the combined image enhancement
transform proposed in this paper can play a good role in improving the training effect of
the model, and the training effect of the improved lightweight model MobileNetV2 is ob-
viously better than that of the other two models. The glove classification detection effect
under the optimal weight condition is shown in Figure 12.

Fig. 12. Improved glove detection effect based on MobileNetV2 model

To understand the performance differences among the models, we examined key fac-
tors such as architecture, parameter count, computational complexity, and applicable sce-
narios. MobileNetV2 employs depthwise separable convolutions, reducing parameters
and computational complexity compared to ResNet34 and ResNet50, enhancing general-
ization especially with limited data. With only 3.4 million parameters, MobileNetV2 of-
fers faster training and less risk of overfitting, making it suitable for resource-constrained
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environments and real-time applications. In contrast, ResNet34 and ResNet50, with ap-
proximately 21 and 25 million parameters respectively, require more computational re-
sources but offer higher accuracy, suitable for scenarios where precision is prioritized and
resources are abundant.

4.3. Model training time overhead

Under the same experimental conditions, Resnet34, Resnet50 and MobileNetV2 mod-
els do not use pre-training weights, and their respective training time costs on different
datasets as shown in Figure 13.

Fig. 13. Comparison of Model Training Time Costs

The experimental results indicate that the training time of the model is primarily de-
termined by factors such as the complexity of the model structure, the number of pa-
rameters, and the size of the training dataset. Compared to the ResNet34 and ResNet50
models, the MobileNetV2 model employs depthwise separable convolutions, effectively
reducing both the parameter count and computational load. This allows it to maintain
high performance while offering better computational efficiency, making it suitable for
resource-constrained situations.

In conclusion, the introduction of image augmentation techniques has significantly
enhanced the model’s performance. By simulating different perspectives and scales, im-
age augmentation increases the diversity of the dataset, enabling the model to learn more
robust feature representations. Considering the performance requirements for glove image
defect classification and the trade-off between model effectiveness and time expenditure,
the MobileNetV2 model trained on the augmented dataset(Aug), demonstrates superior
overall performance compared to the ResNet34 and ResNet50 models.

5. Conclusion and Discussion

Aiming at glove defect classification in industrial production, a deep learning method
combining image enhancement technology and lightweight model is proposed in this pa-
per. Three network models, ResNet34, ResNet50 and MobileNetV2, were used to com-
pare and analyze the model training effect of the original dataset and the enhanced dataset.
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The experimental results demonstrate that high-quality image samples, captured using
machine vision, effectively simulate the diversity of real-world scenarios when subjected
to image enhancement techniques. This approach significantly improves the model’s gen-
eralization ability and detection accuracy, allowing it to identify a wider range of defects
with greater reliability. Specifically, the enhancements not only facilitate better recog-
nition of subtle defects but also enable the model to perform well under varying con-
ditions that might not be present in the original dataset. Furthermore, the lightweight
MobileNetV2 model, in particular, showcases a remarkable reduction in the number of
parameters and computational complexity, making it suitable for real-time applications
in industrial settings. By meeting the stringent performance requirements of practical in-
dustrial applications, this method provides a novel and efficient solution for glove defect
classification. Ultimately, it contributes to improving the efficiency and overall product
quality in industrial production processes.

Future researches on glove defect classification can focus on exploring more efficient
image enhancement techniques and deep learning models, tailored to the needs of prac-
tical application scenarios. While our study has primarily employed some augmentation
methods, such as brightness and contrast adjustments, it is still potential to investigate
more advanced techniques, including Generative Adversarial Networks (GANs), which
could generate diverse and realistic images to augment the dataset and enhance model
generalization.

Furthermore, expanding the scope of research to more complex scenarios, includ-
ing varying lighting conditions, occlusions, and diverse glove materials, is essential for
assessing the model’s adaptability in real-world applications. By addressing these chal-
lenges, we aim to continuously optimize and improve the accuracy and efficiency of glove
defect classification systems, ensuring their robustness and applicability in diverse indus-
trial settings.

Future studies could also consider the integration of multimodal data, such as thermal
imaging or depth information, to enhance detection accuracy and reliability.
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