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Abstract. The Spatial Rich Model (SRM) generates powerful steganalysis 

features, but has high computational complexity since it requires calculating tens 

of thousands of convolutions with image noise residuals. Practical applications 

dealing with a massive amount of image transferred through the Internet would 

suffer a long computing time if using CPU. To accelerate the steganalysis, we 

present a parallel SRM feature extraction algorithm based on GPU architecture. 

We exploit parallelism of the algorithm, modify the original SRM extraction 

algorithm and employ some strategies to avoid the disadvantage of its 

sequentiality. Some OpenCL optimization technologies are also used to accelerate 

the extraction process, such as convolution unrolling, combined memory access, 

split-merge strategy for co-occurrence matrix calculation. The experimental 

results show that the speed of the proposed parallel extraction algorithm for 

different size images is 25~55 times faster than the original single thread 

algorithm. In addition, when using AMD GPU HD 6850, our algorithm runs 

2~4.2 times faster than using a Intel Quad-core CPU. This indicates our algorithm 

makes good use of the GPU cores. 

Keywords: Parallel computing, Steganalysis, SRM feature, OpenCL. 

1. Introduction 

Steganography is an information security technology by hiding the secret data in multi-

media data without perceptible modifications to be unnoticed to the third eye 1. It has 

been used for digital watermarking, Data Rights Management (DRM), and covered 

communications, etc. However, protecting data via covered communications are also 

used in crime, or even terrorism 23. Therefore, it is also necessary to develop inverse 

algorithmic techniques, such as steganalysis methods, to discover covered data in order 

to detect hidden information. Since images are the most used material in covered 

communications, steganalysis for images is a valuable theme. 

The modern steganalysis paradigm applies machine learning techniques for detecting 

stego-images based on features extracted from each image. Early features were almost 

simple and with low dimensions. However, with the increased sophistication of 

steganographic algorithms, such as Highly Undetectable steGO (HUGO) 4, the 
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dimensionality of feature extracted from image for steganalysis increases greatly for 

improving detection rates, e.g. 24993-dimensional Higher-Order Local Model 

Estimators of Steganographic (HOLMES) feature 5, 34761-dimensional Spatial Rich 

Model (SRM) feature 6. High-dimensional feature brings detection performance 

improvements, but also leads to great computational cost that drops the speed 

performance. Actually, feature extraction takes most of the computational complexity in 

a modern steganalysis system. Paper 7 gives the time consumed by some popular 

steganalysis algorithms executed in single-thread. For example, the implementation of 

symmetrized co-occurrence features CF∗ takes about 1.3 seconds for a 1Mpix image on 

author’s benchmark machine 8; SRM features take about 12s, and JPEG Rich Model 

(JRM) features 36s 9. Calculation of Projected Spatial Rich Model (PSRM) features, for 

a single 1Mpix image, takes 20–30 minutes 1011. So when the steganalysis is carried 

out against massive images, a fast feature extraction is critical to boost the entire 

steganalysis system. So decreasing processing times is nowadays necessary due to the 

large number of images transferred through the Internet. 

For high computational complexity in the theme of multimedia processing, parallel 

computing is a good way to improve the performance. In that, the first way is to use 

large-scale cluster computer servers, which, however, always suffers the cost of million 

dollars to build the infrastructure. Another low-cost way is to use GPU for parallel 

computing. In recent years, universal parallel computing technology on GPU develops 

rapidly. GPU has overwhelming superiority to CPU in the capability of floating point 

computing and memory bandwidth. Such as the latest NVIDIA Tesla K20X 12, it has 

2688 CUDA cores, 1.31T flops (double-precision), 3.95T flops (single-precision), and 

250 GB/s memory bandwidth. The price of computing card with K20X core is just 

$3k~4k, that is much cheaper than the super computer (large-scale cluster computer 

servers). Therefore, GPU provides a feasible solution for the large-scale data computing 

with low cost, and more and more applications have used GPU as a co-processor of 

CPU to accelerate the calculation. 

2. Related Work 

There exist many literature giving successful examples in the theme of image parallel 

processing on GPU 131415. The first of them worth to address are steganalytic 

hardware implementations. Paper 16 developed an FPGA-based architecture for the RS 

algorithm, a specific steganalysis method proposed by Fridrich et al. 17 which 

recognizes LSB (Least Significant Bit). The proposed architecture uses a three stage 

pipeline and was synthesized in a Xilinx Virtex II FPGA. In 2013, Gutierrez-Fernandez 

et al. introduced an FPGA-based architecture for transform domain universal 

steganalysis in JPEG images 18. This architecture is based on JPEG’s compatibility 

algorithm proposed by Fridrich et al. 19. Authors proposed a pipeline scheme 

implemented in VHDL and synthesized in a Xilinx Virtex 6 FPGA. In 2014, Tiwary et 

al. proposed faster and intelligent steganography detection, and used Graphics 

Processing Unit in cloud for faster operations 20. In 2015, Rodriguez-Perez et al. 

accelerated the Subtractive Pixel Adjacency Model (SPAM) model 22 calculation on the 

CUDA architecture 21. In 2014, Andrew developed a GPU-based architecture for an 
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implementation of the PSRM features 7. This PSRM feature is only marginally more 

powerful than SRM, but consumes far larger computation than SRM. The author also 

suggests it may be more valuable to settle for optimized of SRM or JRM. Moreover, to 

the best of the authors’ knowledge, there is not any literature about SRM features 

parallel extraction algorithm on GPU. Therefore, we try to develop GPU-based 

architecture for SRM extraction (GPU-SRM). 

In this paper, we shall first analyze the single thread SRM extraction algorithm 

proposed by Fridrich, and then accordingly design a parallel algorithm for SRM feature 

extraction using the parallel program framework of OpenCL based on GPU architecture. 

At last, we shall give experimental results to show our proposed algorithm speed up the 

SRM feature extraction well. 

3. Parallelism of SRM Feature Extraction 

In this section, we exploit parallelism of SRM Feature Extraction. SRM features is 

proposed by Fridrich and Kodovsky in 2012 [6], and arises from applying the rich 

model to extract the spatial domain information of the images for steganalysis 6. It is 

still one of the state-of-the-art steganalysis features to the best of our knowledge. In 

Fridrich and Kodovsky's work, the feature extraction is composed of many sub-models 

of rich model,  each of which are used to compute a co-occurrence matrix for images by 

going through three processes: 1) Computing Residuals; 2) truncation & quantization; 3) 

co-occurrence matrix calculation. The difference of each sub-model mainly exists in the 

model of residual computing and the quantization parameter. The computed matrixes 

can be merged into a final SRM feature set for steganalysis. 

3.1. Step 1: Residuals Computing  

Noise residuals computing is essentially a convolution process used a high-pass filter. 

Different sub-model corresponds to different filter coefficients. The author defines 19 

filters (sub models). Noise residual is generated by the following formula: 

 ˆ
ij ij ij ijR X N cX   (1) 

where   1 2n n

ijR R    is noise residuals, c N  is the residual order, 
ijN is a local 

neighborhood of pixel
ijX , 

ij ijX N , and  ˆ .ijX  is a predictor of 
ijX using the filter. 

The advantage of modeling the residual instead of the pixel values is that the image 

content is largely suppressed in R, which has a much narrower dynamic range and a 

more compact and robust statistical description. 

As the above analysis, each pixel in the image will be convert to a residual by the 

similar and independent convolution computing, which is suitable for processing in 

parallel. 
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3.2. Step 2: Truncation &Quantization 

In each sub model, the residual is quantized and truncated as following formula: 

ij

ij

R
R truncT round

q

  
   

  

 
(2) 

where q > 0 is a quantization step. The experimental results in the literature [3] show 

that it is best to set  , 2q c c for the best performance, as follows: 
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(3) 

In this step, every residual is processed similarly and independently. It is also suitable 

for parallel processing. 

3.3. Step 3: Co-occurrences matrix calculation 

In this step, the residual matrix will be scanned to generate horizontal and vertical co-

occurrences of four consecutive samples processed using formula (2) with q=2. 

Formally, each co-occurrence matrix C is a four-dimensional array indexed with d=(d1, 

d2, d3, d4)∈{-q,…,q}
4
,  which gives the (2q+1)

4
=625 elements. The d-th element of the 

horizontal co-occurrence for residual is formally defined as the (normalized) number of 

groups of four neighboring residual samples with values equal to d1, d2, d3, d4, as 

follows: 

    , 1 , 2 , 3 , 1

1
, , , | , 1,...4

h

d ij i j i j i j i j k kC R R R R R d k
Z

        (4) 

where Z is the normalization factor ensuring that
 

1
h

d T dC
  . The vertical co-

occurrence 
 v

dC is defined analogically. 

 As shown above, every group of four neighboring residual samples are scanned, and 

then the results are written to a global co-occurrence matrix. These processes are similar 

but not independent because of writing in the same co-occurrence matrix, which may 

cause memory conflicts in parallel program. So we need to do some modifications to 

achieve good parallel ability. 

4. GPU and OpenCL 

In this section, we shall give the necessary information of GPU and OpenCL, since we 

shall use the AMD GPU HD 6850 to accelerate the SRM extraction algorithm in latter 

sections. In general, the GPU hardware contains 12 multithreaded Single Instruction 

Multiple Data (SIMD) Processors (also called as CU, Compute Unit), which can execute 
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tasks independently. Each CU is composed by 16 PE (Processing Element) that contains 

5 ALU (Arithmetic Logical Unit) for computing. PE is the smallest unit that can run a 

thread independently. The basic principle of parallel computing on GPU is that a large 

number of PEs execute same task to process different data blocks simultaneously, that is 

data-based parallelism. 

Parallel program on the GPU needs appropriate program framework to support. 

OpenCL (Open Computing Language) is the first free parallel program framework for 

writing programs that execute across heterogeneous platforms consisting of CPU, GPU, 

DSP and other processors. OpenCL provides parallel computing using data-based 

parallelism. An OpenCL program usually consists of two parts: a program runs on the 

host computer and a program called kernel runs on an OpenCL device (such as GPU). 

Parallel computing is implemented by launching kernels that maps each work-item to a 

portion of the input data as opposed to a specific task. The map is processed by index ID 

of work-item. A work-item corresponds to a thread runs in a PE. Multiple work-items 

can form a work-group that runs in a SIMD engine (CU). The index ID of work-item 

and work-group form a N-dimensional index space, called NDRange as shown in Fig. 1. 

If image data is segment as NDRange, parallel processing is achieved by each of the 

work-item processing corresponding image data with same index ID. 
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Fig. 1. OpenCL NDRange 

5. The Parallel GPU-SRM Algorithm  

The main steps of our proposed algorithm is depicted as in Fig. 2. In general, it contains 

two parts: the host program on CPU and the kernel program on GPU. The former is 

responsible for process control operation, such as OpenCL initialization, image input, 

sub models selection, while the latter executes the task of feature extraction from image 

with the help of powerful parallel computing capability on GPU. According to the 

parallel program framework OpenCL, we define some functions run on work-item for 

each step in SRM extraction, mainly including residual computing, truncation & 

quantization, co-occurrence matrix calculation. Then a collection of work-items are 

executed simultaneously in GPU, and use the ID to load corresponding block of image 

to process. Images and final SRM feature extracted are transmitted between CPU and 

GPU by the PCI-E bus.  

http://en.wikipedia.org/wiki/Parallel_computing
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As the analysis in section 3, in the GPU side, residual computing, truncation & 

quantization can be easy parallelized, but the co-occurrence matrix calculation needs to 

do some modifications to achieve good parallel computing. Moreover, because of 

concurrent characteristics in parallel program with large-scale multi-thread, the 

optimization for parallel program has great influence on the performance of algorithms. 

On analysis of the SRM extraction process, we employ optimization technology 

including convolution unrolling, combined memory access, split-merge strategy for Co-

occurrence matrix calculation in parallel program to accelerate SRM feature extraction. 
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Fig. 2. GPU-SRM algorithm 

6. Parallel Optimization 

In three steps of SRM feature extraction, the style of parallel computing and memory 

access are different, so the parallelization and optimization method also have some 

differences. The following are the specific parallelization and optimization methods in 

each step. 
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6.1. Selection of NDRange Size 

NDRange size that includes the number of workgroup and work-item, will affect the 

efficiency of parallel processing. Its size is limited by many factors, such as target 

architecture, the design of algorithm and the quantity of memory. Moreover, too many 

workgroups and work-items always result in great cost in resource scheduling, memory 

access, and communication. Usually, the optimal number of workgroups is equal to or 

an integral multiple of CUs, because local memory in each CU can be used most 

effectively. On the other hand, the size of image block that is processed by each work-

item is important to the performance. If each work-item processes just one pixel, an 

image with (row x col) pixels (such as 512x512) should need great quantity of work-

items. The execution cost will be great. Moreover, on AMD GPU, the number of work-

item in one workgroup is limited under 256. So a more practical approach is that each 

work-item processes a sequence or a block of pixels. 

Considering the above factors, we assign the size of workgroup and work-item in the 

three step as following: 

 In the step 1, we assign the number of workgroups equal to CUs, for example, 

12x1 workgroups for AMD HD6850 GPU. Residual computing contains the 

process of image convolution that needs to access these pixels around according 

to the size of the filtering window, so it means 2-D range of work-item is 

suitable. Therefore, we use 16x16 work-items in one workgroup. 

 In the step 2, Truncation &Quantization is independently process one by one 

pixel. So it is suitable to assign the same NDRange size as step 1. 

 In the step 3, for best utilizing the GPU resource, we still assign the number of 

workgroups equal to CUs. But as the processes are similar but not independent, 

the work-item size will be affect by many factors that will be explored in section 

5.3. For optimal access of memory, we assign 1-D range, 256x1 work-items in a 

work-group. 

6.2. Convolution Unrolling 

As the residuals computing code (listing 1) shows, convolution occupies the main 

portion of computation. Each work-item contains four loops to processes a block with 

(row x col) pixels. Two inner loops just use one row of code to execute convolution 

computation. In work-item, compact convolution code is not good for effectively 

parallel computing, because the utilization of ALU calculation units is too low. We 

analyze the code of convolution in the GPU kernel function by AMD CodeXL profiler 

tool, and find that less than half of ALUs are in use, because the compiler cannot find 

enough instructions to take full advantage of VLIW (Very Long Instruction Word) units. 

For increasing ALU instructions, we use convolution unrolling to fast the speed. 

Convolution filter size in all the sub models has been fixed, so we can unroll 

convolution computing. However, the number of registers required in convolution after 

unrolling will rise greatly. In order to control the number of required registers in a 

reasonable scale, all the sub models are sorted into some kernel functions according to 
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their filter size. If filter size is not large than 8, just one inner loop be unrolled, as 

listing 2 shows. Otherwise, both of inner loops are unrolled as listing 3 shows. 

Listing 1. Residual computing model 

function work-item-residuals-computing 

input:  L_I;                    //localImage 

        F;                      //filter 

output: O_I;                    //outputImage 

 /* just kernel code is listed */  

For col := 0 To width - 1           // convolution 

      For row := 0 To height - 1  

      { 

 O_I(col, row) := 0;  

         For F_Col := 0 To F_Width - 1 

            For F_Row := 0 To F_Height – 1 

            { 

                O_I(col, row) += L_I (col + F_Col,  

                row + F_Row) * F(F_Col, F_Row); 

} 

} 

Listing 2. Inner loop is unrolled (when filter size is not larger than 8) 

...  

{ /* convolution */  

O_I(col, row) = 0;  

For F_Col := 0 To F_Width - 1{ 

   O_I(col, row) += L_I(col + F_Col, row + 0)  

   * F(F_Col, 0);  

   ... 

   O_I(col, row) += L_I(col + F_Col, row + F_Height - 1) 

   *F(F_Col,  F_Height - 1);  

   } 

} 

Listing 3. Two inner loops are unrolled (when filter size is larger than 8) 

... 

{  /* convolution */  

   O_I(col, row) = 0;  

   O_I(col, row) += L_I(col + 0, row + 0) * F(0, 0);  

   ... 

   O_I(col, row) += L_I(col + F_Width - 1,  

   row + F_Height - 1) * F(F_Width - 1, F_Height - 1);  

} 



A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture           1353 

 

6.3. The Split-merge Strategy for Co-occurrence Matrix Calculation  

In the step of Co-occurrences matrix calculation, the most troublesome problem is that 

the global co-occurrence matrix needs to be read/write by all the work-items, which will 

result in many memory read/write conflicts unavoidably. To solve this problem, we 

firstly divided the residual noise matrix into lots of blocks for each work-item, and a 

local co-occurrence matrix for each block is calculated to store in local memory in the 

work-items. Then all of the local co-occurrence matrixes in the same workgroup are 

merged into a co-occurrence matrix by the first work-item to avoid the band conflict. 

Finally, these co-occurrence matrixes from each workgroups are merged into a global 

co-occurrence matrix in GPU or in the host CPU.  

This strategy seems perfect, but it has a great bottleneck that the size of local memory 

in SIMD is limited, just 32KB (32 bank) in AMD GPU. It means that if a local co-

occurrence matrix contains 256 elements with 32bit (4B) value, it just supports 32 work-

items for use.  More work-items will result in bank conflict (conflict of read/write local 

memory) unavoidably to hang up the read/write operation for sequential process. 

Moreover, local memory is also used for other task. Too much more memory used for 

local co-occurrence matrix will affect the speed of the whole algorithm. So it is need 

tradeoff the number of local co-occurrence matrixes. We will determine the quantity by 

the test in experiments. 
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Fig. 3. Memory request coalescing 

6.4. Optimization for Global Memory Access 

In step 3, the memory that stores the global co-occurrence matrix will be repeatedly 

executed lots of read-modify-write operations. On the CPU platform, an efficient 

solution is to use high speed cache to store the matrix, but the GPU has no cache to use. 

If we use global memory, it can greatly fast the speed by coalescing memory access 

requests by multiple consecutive work-item into a single memory access. For effective 

use of memory bandwidth, AMD GPU supports 16 consecutive work-item reads the 

128-bit aligned memory address, while the size of work-item is 32 on the NVIDIA GPU. 

This means that the most ideal access mode is 32 consecutive work-items sequentially 

access 4-bit. Thus, for the efficient memory access without concerning of the difference 

between two platforms, the width of workgroup(X dimension) should be set as 
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integral multiple of 32. The number of work-items in one workgroup is limited under 

256. Therefore, we set the workgroup size as 256x1 work-items in step 3. As shown in 

Fig. 3, memory access requests from 256 work-items will be coalesced to improve the 

bandwidth utilization. Thus, each work-item can process a whole column of element. 

7. Experimental Results 

We now measure the time consumption of GPU-SRM extraction, against the original 

implementation of single thread SRM extraction, as well as multi-threads in a Multi-core 

CPU. We also compare the time consumption in each step to show which step is still 

need to be improved. In addition to this, we also determine some optimal parameters 

used in GPU-SRM by the experiment.  

7.1. Experimental Setup 

We carried out the experiments to compare the performance of proposed algorithm with 

the original single thread SRM algorithm. The configuration of computer and the GPU 

used in experiment are shown in Table 1 and 2. Algorithm is coded with C++ language, 

and uses Visual studio 2010 SP1 combined with Intel Parallel Studio 2013 XE plug-in, 

and Intel C++ x64 compiler for compiling 64-bit program, and OpenCL SDK AMD-

APP-SDK v2.8.1.0. In order to eliminate the interference of time consumption in the 

compilation process, OpenCL kernel is pre-compiled into binary code in the 

experimental test. 

Table 1. Experimental platform 

CPU Intel i5-2310（4 cores 4 thread） 
CPU frequency 2.90 GHz 

Memory 8G 

OS Windows 7 SP1 x64 

PCI-E version 2.0 

Table 2. GPU specifications 

GPU Radeon HD 6850 

Memory Size 1 GB 

Core Clock 775 MHz 

SM units 12 

Stream pocessors 960 

FLOPS 1.5 TFLOPs 

Memory Bus 256 bit 

Bandwidth 128 GB/s 

 

The experiment collected respectively 512 gray scale steganographic images with 

different resolution, included 512x512, 1024x768, 1280x1024, 2048x1536, 3072x2304, 
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and 4000x3000. These images are used to test the time consumption of three different 

platforms for SRM feature extraction.  

7.2. The Optimal Size of Local Co-occurrence Matrix 

Co-occurrence matrix calculation takes over most of the time in the whole SRM 

extraction, and is also the most difficult to parallel processing. In Section 5.3, we 

propose a split-merge strategy to accelerate its calculation. In this strategy, it needs to 

determine the optimal number of local co-occurrence matrix from the sub-models of 

spam and minmax in one workgroup. We use three different sizes of images for 

calculating the Co-occurrence matrix in our benchmark platform. The experimental 

results in Fig. 4 show that, too many local Co-occurrence matrixes in local memory will 

degrade the speed of process, especially in large size (3078x2304) image, because it 

need more local memory for other task. When the number of local Co-occurrence 

matrixes is 1 to 6, the process time is least.  

 

Fig. 4. The optimal number of local co-occurrence matrix 

But this number is much less than the number of work-item. It results in bank conflict 

unavoidably. We use AMD CodeXL 23 profile to see the relation in the number of local 

Co-occurrence matrix, time consumption and bank conflict rate. The results are listed in 

Table 3.  As the table shows, when the number of local Co-occurrence matrix increases, 

bank conflict rate decreases. But the process time also increases. It shows that time 

consuming cause by bank conflict is much less than that more local memory occupied by 

Co-occurrence matrix. 
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According to above analysis, it is suitable to assign the number of local Co-

occurrence matrixes as 3, especially for large size of image. 

Table 3. Local co-occurrence matrix and bank conflict 

Number 
Spam  Minmax  

Time (ms) Bank conflict time(ms) Bank conflict 

1 0.30423 20.80% 1.39756 9.44% 

2 0.31355 10.88% 1.38455 5.01% 

3 0.30967 8.38% 1.40288 3.83% 

4 0.31512 6.51% 1.45188 2.68% 

5 0.31533 6.47% 1.48811 5.39% 

6 0.31622 5.34% 1.45112 2.25% 

7 0.31844 5.31% 1.77189 1.88% 

8 0.31844 4.21% 1.77989 1.00% 

9 0.31566 4.32% 2.20522 1.24% 

10 0.31622 4.52% 2.29400 1.14% 

11 0.31811 4.49% 2.30833 1.18% 

12 0.31834 4.70% 2.33622 0.97% 

13 0.38889 3.62% 2.29067 0.82% 

14 0.39167 3.87% 3.32989 0.76% 

15 0.39478 3.69% 3.40600 0.79% 

16 0.41144 5.28% 3.21123 0.00% 

Table 4. Time-consumption of three steps in SRM extraction (s) 

 Single thread SRM in a CPU GPU-SRM 

Image size Step1 Step2 Step3 Step1 Step2 Step3 

512x512 0.2398 0.3024 3.3126 0.0043 0.0072 0.3037 

1024x768 0.7566 0.9153 10.4054 0.0104 0.0196 0.4379 

1280x1024 1.2483 1.5100 17.5234 0.0207 0.0294 0.5800 

2048x1536 2.9844 3.6049 42.6065 0.0464 0.0567 0.9147 

3072x2304 6.9139 8.1981 95.1779 0.0979 0.1223 1.5909 

4000x3000 11.3726 13.6937 153.2185 0.2058 0.3378 3.9255 

7.3. Time-Consumption of Three Steps 

Table 4 compares show that time-consumption of three steps in single thread SRM on 

CPU and GPU-SRM. Where Step1 is Residuals Computing, Step2 is 

truncation&quantization, Step3 is co-occurrence matrix calculation.  As the table shows, 

in each size pictures, Residuals Computing on GPU is 50 times faster than single thread 

SRM, and truncation&quantization is increased by about 40 times. The Co-occurrence 

matrix calculation is accelerated from 11 to 60 times, where large-size images are 
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improved more than the small-size images. It is because of the large size image can be 

divided into more blocks for parallel computing. 

In addition, Table 4 also shows that either single thread or GPU-SRM, The Co-

occurrence matrix calculation occupies the most portion of the time consumed by SRM 

feature extraction, which is due to co-occurrence matrix calculation is memory intensive, 

high computation, and difficult to parallel program. Therefore, optimization on this part 

has a decisive role in the entire feature extraction speed. 

7.4. Time-Consumption Comparison 

Table 5 show that, except for in the small size of 512x512 image, the proposed 

algorithm is 25~55 times faster than single thread run on CPU, and is 2~4 times faster 

than the parallel computing on quad-core CPU. It proves that our parallel algorithm on 

GPU can greatly accelerate SRM extraction. But in the 512x512 pixel image, the 

proposed algorithm advantage is not obvious, even a little slower than the case on multi-

core CPU. This is because the small size image with few blocks can not maximize the 

use of GPU parallel capabilities, especially in the step of co-occurrence matrix 

calculation. 

Table 5. Time-consumption of  SRM extraction on different platform (s) 

Image size 
Single thread 

in a CPU 

Multi-threads in 

multi-core CPU 
GPU-SRM 

521x512 3.93 0.28 0.35 

1024x768 12.29 0.92 0.49 

1280x1024 20.62 1.54 0.66 

2048x1536 49.56 3.64 1.10 

3072x 2304 110.68 8.18 1.94 

4000x3000 181.39 13.5 3.34 

8. Conclusion 

This paper presents a parallel algorithm for SRM feature extraction using GPU 

technology. Through the steps of computing noise residual, quantization and truncation, 

and the calculation of co-occurrence matrix, we give our implementation of the 

algorithm based on GPU architecture. The experimental results show when using AMD 

GPU 6850, the extracting speed is significantly improved comparing to the original 

single thread algorithm. In addition, it is also shown when using AMD 6850 our 

algorithm runs 2~4.2 times faster than using a Intel Quad-core CPU, which indicates our 

algorithm efficiently uses the GPU cores. 
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