
Computer Science and Information Systems 12(4):1345–1359 DOI: 10.2298/CSIS140815058C

A Parallel SRM Feature Extraction Algorithm for

Steganalysis Based on GPU Architecture

Kaizhi Chen1,2, Chenjun Lin
1
, Shangping Zhong1,2, and Longkun Guo1

1 College of Mathematics and Computer Science, Fuzhou University

Fuzhou, 350108

{ckz, N110320080, spzhong, lkguo}@fzu.edu.cn
2 Fujian Provincial Key Laboratory of Networking Computing and

Intelligent Information Processing

Fuzhou, 350108

Abstract. The Spatial Rich Model (SRM) generates powerful steganalysis

features, but has high computational complexity since it requires calculating tens

of thousands of convolutions with image noise residuals. Practical applications

dealing with a massive amount of image transferred through the Internet would

suffer a long computing time if using CPU. To accelerate the steganalysis, we

present a parallel SRM feature extraction algorithm based on GPU architecture.

We exploit parallelism of the algorithm, modify the original SRM extraction

algorithm and employ some strategies to avoid the disadvantage of its

sequentiality. Some OpenCL optimization technologies are also used to accelerate

the extraction process, such as convolution unrolling, combined memory access,

split-merge strategy for co-occurrence matrix calculation. The experimental

results show that the speed of the proposed parallel extraction algorithm for

different size images is 25~55 times faster than the original single thread

algorithm. In addition, when using AMD GPU HD 6850, our algorithm runs

2~4.2 times faster than using a Intel Quad-core CPU. This indicates our algorithm

makes good use of the GPU cores.

Keywords: Parallel computing, Steganalysis, SRM feature, OpenCL.

1. Introduction

Steganography is an information security technology by hiding the secret data in multi-

media data without perceptible modifications to be unnoticed to the third eye 1. It has

been used for digital watermarking, Data Rights Management (DRM), and covered

communications, etc. However, protecting data via covered communications are also

used in crime, or even terrorism 23. Therefore, it is also necessary to develop inverse

algorithmic techniques, such as steganalysis methods, to discover covered data in order

to detect hidden information. Since images are the most used material in covered

communications, steganalysis for images is a valuable theme.

The modern steganalysis paradigm applies machine learning techniques for detecting

stego-images based on features extracted from each image. Early features were almost

simple and with low dimensions. However, with the increased sophistication of

steganographic algorithms, such as Highly Undetectable steGO (HUGO) 4, the

mailto:ckz@fzu.edu.cn
mailto:spzhong@fzu.edu.cn

1346 Kaizhi Chen et al.

dimensionality of feature extracted from image for steganalysis increases greatly for

improving detection rates, e.g. 24993-dimensional Higher-Order Local Model

Estimators of Steganographic (HOLMES) feature 5, 34761-dimensional Spatial Rich

Model (SRM) feature 6. High-dimensional feature brings detection performance

improvements, but also leads to great computational cost that drops the speed

performance. Actually, feature extraction takes most of the computational complexity in

a modern steganalysis system. Paper 7 gives the time consumed by some popular

steganalysis algorithms executed in single-thread. For example, the implementation of

symmetrized co-occurrence features CF∗ takes about 1.3 seconds for a 1Mpix image on

author’s benchmark machine 8; SRM features take about 12s, and JPEG Rich Model

(JRM) features 36s 9. Calculation of Projected Spatial Rich Model (PSRM) features, for

a single 1Mpix image, takes 20–30 minutes 1011. So when the steganalysis is carried

out against massive images, a fast feature extraction is critical to boost the entire

steganalysis system. So decreasing processing times is nowadays necessary due to the

large number of images transferred through the Internet.

For high computational complexity in the theme of multimedia processing, parallel

computing is a good way to improve the performance. In that, the first way is to use

large-scale cluster computer servers, which, however, always suffers the cost of million

dollars to build the infrastructure. Another low-cost way is to use GPU for parallel

computing. In recent years, universal parallel computing technology on GPU develops

rapidly. GPU has overwhelming superiority to CPU in the capability of floating point

computing and memory bandwidth. Such as the latest NVIDIA Tesla K20X 12, it has

2688 CUDA cores, 1.31T flops (double-precision), 3.95T flops (single-precision), and

250 GB/s memory bandwidth. The price of computing card with K20X core is just

$3k~4k, that is much cheaper than the super computer (large-scale cluster computer

servers). Therefore, GPU provides a feasible solution for the large-scale data computing

with low cost, and more and more applications have used GPU as a co-processor of

CPU to accelerate the calculation.

2. Related Work

There exist many literature giving successful examples in the theme of image parallel

processing on GPU 131415. The first of them worth to address are steganalytic

hardware implementations. Paper 16 developed an FPGA-based architecture for the RS

algorithm, a specific steganalysis method proposed by Fridrich et al. 17 which

recognizes LSB (Least Significant Bit). The proposed architecture uses a three stage

pipeline and was synthesized in a Xilinx Virtex II FPGA. In 2013, Gutierrez-Fernandez

et al. introduced an FPGA-based architecture for transform domain universal

steganalysis in JPEG images 18. This architecture is based on JPEG’s compatibility

algorithm proposed by Fridrich et al. 19. Authors proposed a pipeline scheme

implemented in VHDL and synthesized in a Xilinx Virtex 6 FPGA. In 2014, Tiwary et

al. proposed faster and intelligent steganography detection, and used Graphics

Processing Unit in cloud for faster operations 20. In 2015, Rodriguez-Perez et al.

accelerated the Subtractive Pixel Adjacency Model (SPAM) model 22 calculation on the

CUDA architecture 21. In 2014, Andrew developed a GPU-based architecture for an

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1347

implementation of the PSRM features 7. This PSRM feature is only marginally more

powerful than SRM, but consumes far larger computation than SRM. The author also

suggests it may be more valuable to settle for optimized of SRM or JRM. Moreover, to

the best of the authors’ knowledge, there is not any literature about SRM features

parallel extraction algorithm on GPU. Therefore, we try to develop GPU-based

architecture for SRM extraction (GPU-SRM).

In this paper, we shall first analyze the single thread SRM extraction algorithm

proposed by Fridrich, and then accordingly design a parallel algorithm for SRM feature

extraction using the parallel program framework of OpenCL based on GPU architecture.

At last, we shall give experimental results to show our proposed algorithm speed up the

SRM feature extraction well.

3. Parallelism of SRM Feature Extraction

In this section, we exploit parallelism of SRM Feature Extraction. SRM features is

proposed by Fridrich and Kodovsky in 2012 [6], and arises from applying the rich

model to extract the spatial domain information of the images for steganalysis 6. It is

still one of the state-of-the-art steganalysis features to the best of our knowledge. In

Fridrich and Kodovsky's work, the feature extraction is composed of many sub-models

of rich model, each of which are used to compute a co-occurrence matrix for images by

going through three processes: 1) Computing Residuals; 2) truncation & quantization; 3)

co-occurrence matrix calculation. The difference of each sub-model mainly exists in the

model of residual computing and the quantization parameter. The computed matrixes

can be merged into a final SRM feature set for steganalysis.

3.1. Step 1: Residuals Computing

Noise residuals computing is essentially a convolution process used a high-pass filter.

Different sub-model corresponds to different filter coefficients. The author defines 19

filters (sub models). Noise residual is generated by the following formula:

 ˆ
ij ij ij ijR X N cX  (1)

where   1 2n n

ijR R   is noise residuals, c N is the residual order,
ijN is a local

neighborhood of pixel
ijX ,

ij ijX N , and  ˆ .ijX is a predictor of
ijX using the filter.

The advantage of modeling the residual instead of the pixel values is that the image

content is largely suppressed in R, which has a much narrower dynamic range and a

more compact and robust statistical description.

As the above analysis, each pixel in the image will be convert to a residual by the

similar and independent convolution computing, which is suitable for processing in

parallel.

1348 Kaizhi Chen et al.

3.2. Step 2: Truncation &Quantization

In each sub model, the residual is quantized and truncated as following formula:

ij

ij

R
R truncT round

q

  
   

  

(2)

where q > 0 is a quantization step. The experimental results in the literature [3] show

that it is best to set  , 2q c c for the best performance, as follows:

 

 

,1.5 ,2 1

1,2 1

c c c for c
q

for c






(3)

In this step, every residual is processed similarly and independently. It is also suitable

for parallel processing.

3.3. Step 3: Co-occurrences matrix calculation

In this step, the residual matrix will be scanned to generate horizontal and vertical co-

occurrences of four consecutive samples processed using formula (2) with q=2.

Formally, each co-occurrence matrix C is a four-dimensional array indexed with d=(d1,

d2, d3, d4)∈{-q,…,q}
4
, which gives the (2q+1)

4
=625 elements. The d-th element of the

horizontal co-occurrence for residual is formally defined as the (normalized) number of

groups of four neighboring residual samples with values equal to d1, d2, d3, d4, as

follows:

    , 1 , 2 , 3 , 1

1
, , , | , 1,...4

h

d ij i j i j i j i j k kC R R R R R d k
Z

       (4)

where Z is the normalization factor ensuring that
 

1
h

d T dC
  . The vertical co-

occurrence
 v

dC is defined analogically.

 As shown above, every group of four neighboring residual samples are scanned, and

then the results are written to a global co-occurrence matrix. These processes are similar

but not independent because of writing in the same co-occurrence matrix, which may

cause memory conflicts in parallel program. So we need to do some modifications to

achieve good parallel ability.

4. GPU and OpenCL

In this section, we shall give the necessary information of GPU and OpenCL, since we

shall use the AMD GPU HD 6850 to accelerate the SRM extraction algorithm in latter

sections. In general, the GPU hardware contains 12 multithreaded Single Instruction

Multiple Data (SIMD) Processors (also called as CU, Compute Unit), which can execute

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1349

tasks independently. Each CU is composed by 16 PE (Processing Element) that contains

5 ALU (Arithmetic Logical Unit) for computing. PE is the smallest unit that can run a

thread independently. The basic principle of parallel computing on GPU is that a large

number of PEs execute same task to process different data blocks simultaneously, that is

data-based parallelism.

Parallel program on the GPU needs appropriate program framework to support.

OpenCL (Open Computing Language) is the first free parallel program framework for

writing programs that execute across heterogeneous platforms consisting of CPU, GPU,

DSP and other processors. OpenCL provides parallel computing using data-based

parallelism. An OpenCL program usually consists of two parts: a program runs on the

host computer and a program called kernel runs on an OpenCL device (such as GPU).

Parallel computing is implemented by launching kernels that maps each work-item to a

portion of the input data as opposed to a specific task. The map is processed by index ID

of work-item. A work-item corresponds to a thread runs in a PE. Multiple work-items

can form a work-group that runs in a SIMD engine (CU). The index ID of work-item

and work-group form a N-dimensional index space, called NDRange as shown in Fig. 1.

If image data is segment as NDRange, parallel processing is achieved by each of the

work-item processing corresponding image data with same index ID.

WG

<0, 0>

WG

<1, 0>

WG

<0, 1>

WG

<i, j>

WG

<0, L>

WG
<K, L>

...
...

NDRange

WI

<0, 0>

WI

<1, 0>

WI

<M,0>

WI

<0, 1>

WI

<0, L>

WG

<M,N>

...

...

Workgroup(i, j)

Y

XX

Y

Fig. 1. OpenCL NDRange

5. The Parallel GPU-SRM Algorithm

The main steps of our proposed algorithm is depicted as in Fig. 2. In general, it contains

two parts: the host program on CPU and the kernel program on GPU. The former is

responsible for process control operation, such as OpenCL initialization, image input,

sub models selection, while the latter executes the task of feature extraction from image

with the help of powerful parallel computing capability on GPU. According to the

parallel program framework OpenCL, we define some functions run on work-item for

each step in SRM extraction, mainly including residual computing, truncation &

quantization, co-occurrence matrix calculation. Then a collection of work-items are

executed simultaneously in GPU, and use the ID to load corresponding block of image

to process. Images and final SRM feature extracted are transmitted between CPU and

GPU by the PCI-E bus.

http://en.wikipedia.org/wiki/Parallel_computing

1350 Kaizhi Chen et al.

As the analysis in section 3, in the GPU side, residual computing, truncation &

quantization can be easy parallelized, but the co-occurrence matrix calculation needs to

do some modifications to achieve good parallel computing. Moreover, because of

concurrent characteristics in parallel program with large-scale multi-thread, the

optimization for parallel program has great influence on the performance of algorithms.

On analysis of the SRM extraction process, we employ optimization technology

including convolution unrolling, combined memory access, split-merge strategy for Co-

occurrence matrix calculation in parallel program to accelerate SRM feature extraction.

Read image

Init OpenCL

OpenCL allocate

storage for image

Computing

Residuals

Truncation and

Quantization

Co-occurrence

Calculation

Prepare

submodels

Save feature data

of submodel

Has

submodel?

end

CPU

GPU

No

Yes

Send

image

Send

feature data

Control

Instruction

PCI-E

PCI-E

Fig. 2. GPU-SRM algorithm

6. Parallel Optimization

In three steps of SRM feature extraction, the style of parallel computing and memory

access are different, so the parallelization and optimization method also have some

differences. The following are the specific parallelization and optimization methods in

each step.

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1351

6.1. Selection of NDRange Size

NDRange size that includes the number of workgroup and work-item, will affect the

efficiency of parallel processing. Its size is limited by many factors, such as target

architecture, the design of algorithm and the quantity of memory. Moreover, too many

workgroups and work-items always result in great cost in resource scheduling, memory

access, and communication. Usually, the optimal number of workgroups is equal to or

an integral multiple of CUs, because local memory in each CU can be used most

effectively. On the other hand, the size of image block that is processed by each work-

item is important to the performance. If each work-item processes just one pixel, an

image with (row x col) pixels (such as 512x512) should need great quantity of work-

items. The execution cost will be great. Moreover, on AMD GPU, the number of work-

item in one workgroup is limited under 256. So a more practical approach is that each

work-item processes a sequence or a block of pixels.

Considering the above factors, we assign the size of workgroup and work-item in the

three step as following:

 In the step 1, we assign the number of workgroups equal to CUs, for example,

12x1 workgroups for AMD HD6850 GPU. Residual computing contains the

process of image convolution that needs to access these pixels around according

to the size of the filtering window, so it means 2-D range of work-item is

suitable. Therefore, we use 16x16 work-items in one workgroup.

 In the step 2, Truncation &Quantization is independently process one by one

pixel. So it is suitable to assign the same NDRange size as step 1.

 In the step 3, for best utilizing the GPU resource, we still assign the number of

workgroups equal to CUs. But as the processes are similar but not independent,

the work-item size will be affect by many factors that will be explored in section

5.3. For optimal access of memory, we assign 1-D range, 256x1 work-items in a

work-group.

6.2. Convolution Unrolling

As the residuals computing code (listing 1) shows, convolution occupies the main

portion of computation. Each work-item contains four loops to processes a block with

(row x col) pixels. Two inner loops just use one row of code to execute convolution

computation. In work-item, compact convolution code is not good for effectively

parallel computing, because the utilization of ALU calculation units is too low. We

analyze the code of convolution in the GPU kernel function by AMD CodeXL profiler

tool, and find that less than half of ALUs are in use, because the compiler cannot find

enough instructions to take full advantage of VLIW (Very Long Instruction Word) units.

For increasing ALU instructions, we use convolution unrolling to fast the speed.

Convolution filter size in all the sub models has been fixed, so we can unroll

convolution computing. However, the number of registers required in convolution after

unrolling will rise greatly. In order to control the number of required registers in a

reasonable scale, all the sub models are sorted into some kernel functions according to

1352 Kaizhi Chen et al.

their filter size. If filter size is not large than 8, just one inner loop be unrolled, as

listing 2 shows. Otherwise, both of inner loops are unrolled as listing 3 shows.

Listing 1. Residual computing model

function work-item-residuals-computing

input: L_I; //localImage

 F; //filter

output: O_I; //outputImage

 /* just kernel code is listed */

For col := 0 To width - 1 // convolution

 For row := 0 To height - 1

 {

 O_I(col, row) := 0;

 For F_Col := 0 To F_Width - 1

 For F_Row := 0 To F_Height – 1

 {

 O_I(col, row) += L_I (col + F_Col,

 row + F_Row) * F(F_Col, F_Row);

}

}

Listing 2. Inner loop is unrolled (when filter size is not larger than 8)

...

{ /* convolution */

O_I(col, row) = 0;

For F_Col := 0 To F_Width - 1{

 O_I(col, row) += L_I(col + F_Col, row + 0)

 * F(F_Col, 0);

 ...

 O_I(col, row) += L_I(col + F_Col, row + F_Height - 1)

 *F(F_Col, F_Height - 1);

 }

}

Listing 3. Two inner loops are unrolled (when filter size is larger than 8)

...

{ /* convolution */

 O_I(col, row) = 0;

 O_I(col, row) += L_I(col + 0, row + 0) * F(0, 0);

 ...

 O_I(col, row) += L_I(col + F_Width - 1,

 row + F_Height - 1) * F(F_Width - 1, F_Height - 1);

}

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1353

6.3. The Split-merge Strategy for Co-occurrence Matrix Calculation

In the step of Co-occurrences matrix calculation, the most troublesome problem is that

the global co-occurrence matrix needs to be read/write by all the work-items, which will

result in many memory read/write conflicts unavoidably. To solve this problem, we

firstly divided the residual noise matrix into lots of blocks for each work-item, and a

local co-occurrence matrix for each block is calculated to store in local memory in the

work-items. Then all of the local co-occurrence matrixes in the same workgroup are

merged into a co-occurrence matrix by the first work-item to avoid the band conflict.

Finally, these co-occurrence matrixes from each workgroups are merged into a global

co-occurrence matrix in GPU or in the host CPU.

This strategy seems perfect, but it has a great bottleneck that the size of local memory

in SIMD is limited, just 32KB (32 bank) in AMD GPU. It means that if a local co-

occurrence matrix contains 256 elements with 32bit (4B) value, it just supports 32 work-

items for use. More work-items will result in bank conflict (conflict of read/write local

memory) unavoidably to hang up the read/write operation for sequential process.

Moreover, local memory is also used for other task. Too much more memory used for

local co-occurrence matrix will affect the speed of the whole algorithm. So it is need

tradeoff the number of local co-occurrence matrixes. We will determine the quantity by

the test in experiments.

0 1 2 3 ……

…
…

…
…

…
…

…
…

……

workgroup size

memory

Y

XWI(0) WI(1)WI(2) WI(255)

Fig. 3. Memory request coalescing

6.4. Optimization for Global Memory Access

In step 3, the memory that stores the global co-occurrence matrix will be repeatedly

executed lots of read-modify-write operations. On the CPU platform, an efficient

solution is to use high speed cache to store the matrix, but the GPU has no cache to use.

If we use global memory, it can greatly fast the speed by coalescing memory access

requests by multiple consecutive work-item into a single memory access. For effective

use of memory bandwidth, AMD GPU supports 16 consecutive work-item reads the

128-bit aligned memory address, while the size of work-item is 32 on the NVIDIA GPU.

This means that the most ideal access mode is 32 consecutive work-items sequentially

access 4-bit. Thus, for the efficient memory access without concerning of the difference

between two platforms, the width of workgroup(X dimension) should be set as

1354 Kaizhi Chen et al.

integral multiple of 32. The number of work-items in one workgroup is limited under

256. Therefore, we set the workgroup size as 256x1 work-items in step 3. As shown in

Fig. 3, memory access requests from 256 work-items will be coalesced to improve the

bandwidth utilization. Thus, each work-item can process a whole column of element.

7. Experimental Results

We now measure the time consumption of GPU-SRM extraction, against the original

implementation of single thread SRM extraction, as well as multi-threads in a Multi-core

CPU. We also compare the time consumption in each step to show which step is still

need to be improved. In addition to this, we also determine some optimal parameters

used in GPU-SRM by the experiment.

7.1. Experimental Setup

We carried out the experiments to compare the performance of proposed algorithm with

the original single thread SRM algorithm. The configuration of computer and the GPU

used in experiment are shown in Table 1 and 2. Algorithm is coded with C++ language,

and uses Visual studio 2010 SP1 combined with Intel Parallel Studio 2013 XE plug-in,

and Intel C++ x64 compiler for compiling 64-bit program, and OpenCL SDK AMD-

APP-SDK v2.8.1.0. In order to eliminate the interference of time consumption in the

compilation process, OpenCL kernel is pre-compiled into binary code in the

experimental test.

Table 1. Experimental platform

CPU Intel i5-2310（4 cores 4 thread）
CPU frequency 2.90 GHz

Memory 8G

OS Windows 7 SP1 x64

PCI-E version 2.0

Table 2. GPU specifications

GPU Radeon HD 6850

Memory Size 1 GB

Core Clock 775 MHz

SM units 12

Stream pocessors 960

FLOPS 1.5 TFLOPs

Memory Bus 256 bit

Bandwidth 128 GB/s

The experiment collected respectively 512 gray scale steganographic images with

different resolution, included 512x512, 1024x768, 1280x1024, 2048x1536, 3072x2304,

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1355

and 4000x3000. These images are used to test the time consumption of three different

platforms for SRM feature extraction.

7.2. The Optimal Size of Local Co-occurrence Matrix

Co-occurrence matrix calculation takes over most of the time in the whole SRM

extraction, and is also the most difficult to parallel processing. In Section 5.3, we

propose a split-merge strategy to accelerate its calculation. In this strategy, it needs to

determine the optimal number of local co-occurrence matrix from the sub-models of

spam and minmax in one workgroup. We use three different sizes of images for

calculating the Co-occurrence matrix in our benchmark platform. The experimental

results in Fig. 4 show that, too many local Co-occurrence matrixes in local memory will

degrade the speed of process, especially in large size (3078x2304) image, because it

need more local memory for other task. When the number of local Co-occurrence

matrixes is 1 to 6, the process time is least.

Fig. 4. The optimal number of local co-occurrence matrix

But this number is much less than the number of work-item. It results in bank conflict

unavoidably. We use AMD CodeXL 23 profile to see the relation in the number of local

Co-occurrence matrix, time consumption and bank conflict rate. The results are listed in

Table 3. As the table shows, when the number of local Co-occurrence matrix increases,

bank conflict rate decreases. But the process time also increases. It shows that time

consuming cause by bank conflict is much less than that more local memory occupied by

Co-occurrence matrix.

1356 Kaizhi Chen et al.

According to above analysis, it is suitable to assign the number of local Co-

occurrence matrixes as 3, especially for large size of image.

Table 3. Local co-occurrence matrix and bank conflict

Number
Spam Minmax

Time (ms) Bank conflict time(ms) Bank conflict

1 0.30423 20.80% 1.39756 9.44%

2 0.31355 10.88% 1.38455 5.01%

3 0.30967 8.38% 1.40288 3.83%

4 0.31512 6.51% 1.45188 2.68%

5 0.31533 6.47% 1.48811 5.39%

6 0.31622 5.34% 1.45112 2.25%

7 0.31844 5.31% 1.77189 1.88%

8 0.31844 4.21% 1.77989 1.00%

9 0.31566 4.32% 2.20522 1.24%

10 0.31622 4.52% 2.29400 1.14%

11 0.31811 4.49% 2.30833 1.18%

12 0.31834 4.70% 2.33622 0.97%

13 0.38889 3.62% 2.29067 0.82%

14 0.39167 3.87% 3.32989 0.76%

15 0.39478 3.69% 3.40600 0.79%

16 0.41144 5.28% 3.21123 0.00%

Table 4. Time-consumption of three steps in SRM extraction (s)

 Single thread SRM in a CPU GPU-SRM

Image size Step1 Step2 Step3 Step1 Step2 Step3

512x512 0.2398 0.3024 3.3126 0.0043 0.0072 0.3037

1024x768 0.7566 0.9153 10.4054 0.0104 0.0196 0.4379

1280x1024 1.2483 1.5100 17.5234 0.0207 0.0294 0.5800

2048x1536 2.9844 3.6049 42.6065 0.0464 0.0567 0.9147

3072x2304 6.9139 8.1981 95.1779 0.0979 0.1223 1.5909

4000x3000 11.3726 13.6937 153.2185 0.2058 0.3378 3.9255

7.3. Time-Consumption of Three Steps

Table 4 compares show that time-consumption of three steps in single thread SRM on

CPU and GPU-SRM. Where Step1 is Residuals Computing, Step2 is

truncation&quantization, Step3 is co-occurrence matrix calculation. As the table shows,

in each size pictures, Residuals Computing on GPU is 50 times faster than single thread

SRM, and truncation&quantization is increased by about 40 times. The Co-occurrence

matrix calculation is accelerated from 11 to 60 times, where large-size images are

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1357

improved more than the small-size images. It is because of the large size image can be

divided into more blocks for parallel computing.

In addition, Table 4 also shows that either single thread or GPU-SRM, The Co-

occurrence matrix calculation occupies the most portion of the time consumed by SRM

feature extraction, which is due to co-occurrence matrix calculation is memory intensive,

high computation, and difficult to parallel program. Therefore, optimization on this part

has a decisive role in the entire feature extraction speed.

7.4. Time-Consumption Comparison

Table 5 show that, except for in the small size of 512x512 image, the proposed

algorithm is 25~55 times faster than single thread run on CPU, and is 2~4 times faster

than the parallel computing on quad-core CPU. It proves that our parallel algorithm on

GPU can greatly accelerate SRM extraction. But in the 512x512 pixel image, the

proposed algorithm advantage is not obvious, even a little slower than the case on multi-

core CPU. This is because the small size image with few blocks can not maximize the

use of GPU parallel capabilities, especially in the step of co-occurrence matrix

calculation.

Table 5. Time-consumption of SRM extraction on different platform (s)

Image size
Single thread

in a CPU

Multi-threads in

multi-core CPU
GPU-SRM

521x512 3.93 0.28 0.35

1024x768 12.29 0.92 0.49

1280x1024 20.62 1.54 0.66

2048x1536 49.56 3.64 1.10

3072x 2304 110.68 8.18 1.94

4000x3000 181.39 13.5 3.34

8. Conclusion

This paper presents a parallel algorithm for SRM feature extraction using GPU

technology. Through the steps of computing noise residual, quantization and truncation,

and the calculation of co-occurrence matrix, we give our implementation of the

algorithm based on GPU architecture. The experimental results show when using AMD

GPU 6850, the extracting speed is significantly improved comparing to the original

single thread algorithm. In addition, it is also shown when using AMD 6850 our

algorithm runs 2~4.2 times faster than using a Intel Quad-core CPU, which indicates our

algorithm efficiently uses the GPU cores.

1358 Kaizhi Chen et al.

Acknowledgments. The research is supported by the National Science Foundation of China

(Grant 61300025), the Ministry of Education of Doctoral Fund Project (Grant 20123514120013),

the Educational Research Project for Middle-aged and Young Teachers of Fujian Province (Grant

JA15066), and the Science and Technology Development Fund of Fuzhou University (Grant

2014-XY-20). The corresponding author is Longkun Guo.

References

1. Westfeld, A.: F5-A Steganographic Algorithm-Information Hiding. Springer Berlin

Heidelberg, 289-302. (2001)

2. Robertson, N. Cruickshank, P. Lister, T.: Documents Reveal al Qaeda’s Plans for Seizing

Cruise Ships, Carnage in Europe. Available at: http://www.cnn.com/2012/04/30/world/al-

qaeda-documents-future. (Accessed 2014)

3. Maney, K.: Bin Laden’s Messages Could be Hiding in Plain Sight. Available at:

http://usatoday30.usatoday.com/tech/columnist/2001/12/19/maney.htm. (Accessed 2014)

4. Pevny, T., Filler, T., Bas, P.: Using High-Dimensional Image Models to Perform Highly

Undetectable Steganography. In: Information Hiding, 161–177. (2010)

5. Fridrich J., Kodovský J., Holub V., et al.: Steganalysis of Content-Adaptive Steganography

in Spatial Domain. In: Information Hiding, 102-117. (2011)

6. Fridrich, J., Kodovsky J.: Rich Models for Steganalysis of Digital Images. IEEE

Transactions on Information Forensics and Security 7(3), 868–882. (2012)

7. Ker, A.D.: Implementing the Projected Spatial Rich Features on a GPU. In: IS&T/SPIE

Electronic Imaging. International Society for Optics and Photonics, vol.9028, 1801–1810.

(2014)

8. Kodovsky, J., Fridrich, J., and Holub, V.: Ensemble Classifiers for Steganalysis of Digital

Media. IEEE Transactions on Information Forensics and Security 7(2), 432–444. (2012)

9. Kodovsky, J. and Fridrich, J.: Steganalysis of JPEG Images Using Rich Models. In:

IS&T/SPIE Electronic Imaging, International Society for Optics and Photonics, vol.8303,

pp. 1-13. (2012)

10. Holub, V., Fridrich, J., and Denemark, T.: Random Projections of Residuals as An

Alternative to Co-occurrences in Steganalysis. In: IS&T/SPIE Electronic Imaging,

International Society for Optics and Photonics, vol. 8665, 1–11. (2013)

11. Holub, V. and Fridrich, J.: Random Projections of Residuals for Digital Image Steganalysis.

IEEE Transactions on Information Forensics and Security 8(12), 1996–2006. (2013)

12. TESLA K20X GPU ACCELERATORS. NVIDIA Corporation. Available at:

http://www.nvidia.com/content/PDF/kepler/Tesla-K20X-BD-06397-001-v07.pdf. (2014)

13. Li, P.H.: A Novel Color Based Particle Filter Algorithm for Object Tracking, Chinese

Journal of Computers, vol. 32, 2454-2463. (2009)

14. Cao, J. Xie, X. Liang, J.: GPU Accelerated Target Tracking Method. In: Advances in

Multimedia, Software Engineering and Computing, vol. 1, pp. 251-257. (2012)

15. Akhloufi, M. A., Gariepy, F. Champagne, G.: GPGPU Real-time Texture Analysis

Framework. In: SPIE Electronic Imaging, International Society for Optics and Photonics,

vol.7872, 1-9. (2011)

16. Sun, K. Pan, X. Wang, J.: Hardware Based Steganalysis. In: Signal Processing for Image

Enhancement and Multimedia Processing, 269–78. (2008)

17. Fridrich, J. Goljan, M. Du, R.: Reliable Detection of LSB Steganography in Color and

Gray-scale Images. In: Proceedings of the ACM Workshop Multimedia Security, 27–30.

(2011)

18. Gutierrez-Fernandez, E. Portela-García, M. Lopez-Ongil, C. Garcia-Valderas, M.: FPGA-

based Implementation for Steganalysis: A JPEG-Compatibility Algorithm. In: SPIE

http://usatoday30.usatoday.com/tech/columnist/2001/12/19/maney.htm

A Parallel SRM Feature Extraction Algorithm for Steganalysis Based on GPU Architecture 1359

Microtechnologies. International Society for Optics and Photonics, vol.8764, pp. 1-7.

(2013)

19. Fridrich, J., Goljan, M., Du, R.: Steganalysis Based on JPEG Compatibility. In:

International Symposium on the Convergence of IT and Communications (ITCom).

International Society for Optics and Photonics, 275-280. (2001)

20. Tiwary, M., Priyadarshini, R., Misra, R.: A Faster and Intelligent Steganography Detection

Using Graphics Processing Unit in Cloud. In: International Conference on High

Performance Computing and Applications (ICHPCA), 1-6. (2014)

21. Rodriguez-Perez, M. Morales-Reyes, A. Cumplido, R.: An Analysis of Computational

Models for Accelerating the Subtractive Pixel Adjacency Model Computation. Computers

& Electrical Engineering, vol.43, 9-16. (2015)

22. Pevny, T., Bas, P., Fridrich, J., Steganalysis by Subtractive Pixel Adjacency Matrix. IEEE

Transactions on information Forensics and Security 2(5), 215–224. (2010)

23. AMD Develpoer Central.: CodeXL – Powerful Debugging, Profiling & Analysis. Available

at: http://developer.amd.com/tools-and-sdks/ heterogeneous-computing /codexl/. (Accessed

2014)

Kaizhi Chen graduated at the College of Information Science and Engineering,

Southeast University in Nanjing, China in 2011, where he received a Ph.D. in

information and communication engineering. Now, he is a lecturer at the College of

Mathematics and Computer Science, Fuzhou University in Fuzhou, China. His research

interests include intelligent image analysis and machine learning.

Chenjun Lin graduated at the College of Mathematics and Computer Science, Fuzhou

University in Fuzhou, China in 2010, where he received a B.Sc. degree in computer

science and technology. He finished his M.Sc. studies in 2013. Currently, he is working

at a department in the government. His research interests include parallel processing and

machine learning.

Shangping Zhong received his B.Sc. in mathematics science from Fuzhou University,

Fuzhou, China, in 1991, and his M.Sc. in computer science and technology from Fuzhou

University, Fuzhou, China, in 1997, and his Ph.D. in computer science and technology

from Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China,

in 2005. Now, he is a Professor at the College of Mathematics and Computer Science,

Fuzhou University in Fuzhou, China. His research interests include information security,

intelligent image analysis and machine learning.

Longkun Guo received his BEng degree in computer science and his PhD degree in

computer software and theory from the University of Science and Technology of China,

in 2005 and 2011, respectively. Currently, he is an associate professor in the College of

Mathematics and Computer Science, Fuzhou University, China. His research interests

include approximation algorithms and optimization, parallel computing, computational

complexity and graph theory.

Received: August 15, 2014; Accepted: September 10, 2015.

http://developer.amd.com/tools-and-sdks/

