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Abstract. Diffusion wavelets (DW) transform has been successfully used in 

Multi-Resolution Analysis (MRA) of traffic matrices because it inherently adapts 

to the structure of the underlying network. There are many potential applications 

based on DW analysis such as anomaly detection, routing optimization and 

capacity plan, which, however, have not been well developed. This paper shows 

how to apply two-dimensional DW transform in traffic matrix analysis and 

anomaly detection. The experimental results demonstrate the effectiveness of DW-

based technique in traffic matrix analysis and anomaly detection in practical 

networks. It also shows this new technique is potential to be used in many other 

network applications. 

Keywords: traffic matrices, diffusion wavelets, multi-resolution analysis, 

anomaly detection. 

1. Introduction 

As development of computer technology, networks become more and more large and 

complex. As a result, management on networks becomes more and more difficult. 

Various problems, such as intrusion anomaly, links anomaly, are hard to be detected in 

networks. The knowledge of traffic matrix (TM) is very helpful for network managers to 

find out useful information from Internet data [1]. Here a TM denotes an overview of all 

end-to-end traffic flows. How to detect these anomalies from TMs efficiently has been a 

hot topic in recent years. Researchers are keen on developing good methods for TM 

analysis so as to find out efficient solutions to various tasks, such as network 

management and traffic engineering.   

For a network with N end-nodes, its TM describes the traffic flow between any two 

end-nodes. Thus, it has N
2
 terms in total. Since N may be in thousands, the number of 

terms in the traffic matrix may become very large. So it is hard to obtain a traffic matrix 

in a large-scale complex network or perform any analysis on such a large TM. Bayes 

Estimation [4], Gravity Model Estimation [5] and so on have been proposed for TM 

inference. They assume the traffic follow a prior model and then infer the overall TM 

from limited number of measurements on links. These prior model-based inference only 

perform well for those traffic with certain characteristics of prior models. Principal 

Components Analysis (PCA)-based methods [2, 3] are proposed for TM analysis in time 
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domain. As far as we know, none of them can perform an efficient analysis on complex 

traffic, especially in space domain.  

In this paper, we conduct Multi-Resolution Analysis (MRA) on TMs by using 

Diffusion Wavelets Transform (DWT). MRA-based methods work well for sparse 

matrices where many elements are zero or very small compared to other elements. A TM 

is such a sparse matrix because there is no or little traffic flow between many end-to-end 

node pairs. Such sparse models may be characterized by a small number of coefficients, 

M. In comparison with the number of elements in TM, N
2
, M is much smaller, that is, M 

<<N
2
. Since M parameters describe the main characteristics of the original TM, it enables 

fast computation and efficient analysis on TMs.  

The DW was firstly proposed in 2006 [9] and applied to TM analysis in networking 

fields in 2008 [11]. The DW-based technique can perform Multi-Resolution Analysis on 

TM and find out the main characteristics of such sparse models. It can adapt to analyze 

irregular topologies of the underlying networks. DW-based techniques can conduct TM 

analysis in both time domain and space domain. This guarantees the effectiveness of 

analysis on practical networks’ TMs. DW-based MRA can provide meaningful 

characteristic parameters in different scales, which includes only a small set of 

significant parameters. Analysis on these parameters may help to solve various problems: 

inference, synthesis, anomaly detection, traffic prediction [23] and so on. 

2. Related Work 

Diffusion wavelet-based analysis is a sparsification technique which represents a TM as a 

sufficiently sparse signal in wavelet domain. The application of diffusion wavelets in TM 

analysis is similar to Compressed Sensing (CS) technique applied in many applications. 

Such sparsification technique shows that any sufficiently compressible signal can be 

accurately recovered from a small number of non-adaptive, randomized linear projection 

samples [18]. Mark Coates et al. [19] applied Compressed Sensing in estimation of 

network performance metrics. They address the problem of inferring end-to-end 

performance metrics such as end-to-end delays in an IP network or bit-error rates in an 

all-optical network from observations on a selected set of paths. However, they didn’t 

apply this technique in anomaly detection.  

Argawalet. al. in [7] proposed an accurate link-level anomaly localization scheme that 

can localize all potential single link-level anomalies in a given network. The key idea is 

to deploy monitors for a selected set of paths and distinguish all links of the network. 

Barford et al. [8] proposed another scheme that selected paths to monitor during the 

localization phase. This technique minimizes the localization overhead, because the 

monitored paths distinguish only the suspected links. However, it has two weakness. The 

first is selecting paths to monitor increases the localization delay (i.e. time duration from 

the moment when an anomaly is detected and the moment when the anomalous link is 

pinpointed). The second is that it’s not guaranteed to localize all potential anomalies, 

because deployed monitors only covers part of links. All these work rely on the monitors 

to detect the link anomaly from end-to-end measurements. Our method is beneficial to 

their critical step, selection of monitored paths. We firstly analyze TMs by using 

Diffusion Wavelets-based method and find out significant diffusion coefficients. We then 
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propose an efficient method to detect the anomaly and find its possible location based on 

these significant parameters. 

Principal Components Analysis (PCA) is applied to anomaly detection and 

localization in [20, 21]. PCA is combined with source data similarity or similarity among 

nodes to detect and localize anomaly in networks. We will compare DW-based analysis 

and localization results with the results by these PCA-based techniques. 

In order to analyze TMs by DW-based MRA methods effectively, selecting an 

appropriate DW operator is critical. In [6], DW-based analysis results and anomaly 

detection results by two different diffusion operators are compared. But both work in [6] 

and [11] didn’t study anomaly localization. To the best of our knowledge, it is very new 

to perform anomaly localization based on DW analysis results. We conduct TM analysis 

in space domain efficiently and localize the anomaly for two cases, node disconnection 

and Distributed Denial of Service (DDoS).  

The paper is organized as follows. In Section 2, we introduce the background. In 

Section 3, we describe a method to diagnose anomalies by analyzing the diffusion 

wavelets coefficients. In Section 4, an approach to distinguish different anomalous 

situations is proposed. In Section5, we develop an anomaly localization method and 

compare localization results with existing results. Section6 concludes the paper. 

3. Diffusion Wavelets-based Analysis 

A backbone network consists of many nodes connected by links. These nodes are also 

called Points of Presence (PoPs). Fig.1 shows the backbone network of America, 

Abilene, where each node represents a state. An Origin-Destination (OD) flow is defined 

as a traffic matrix component. It describes the volumes of traffic Ti,j for every ingress 

point i into the network and every egress point j out of the network, over a given time 

interval. The path followed by each OD flow is described by the routing matrix, the 

traffic observed on each backbone link arises from the superposition of these OD flows. 

We use the term volume anomaly to refer to a sudden change in an OD flow’s traffic 

which reflects Ti,j has a positive or negative change [10]. 

 

 

 

 

 

 

 

 

 

Fig. 1. The Abilene Network 
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Since the Abilene Network has 12 nodes, its TM is 12 by 12 dimensions. It’s difficult 

to directly monitor every Ti,j of TM to diagnose if the network is normal or abnormal. 

Existing studies show that the traffic distribution is long-related in a given period of time 

for a stable network, especially a backbone network. We study the traffic distribution as 

Fig.2 shows. If the data follow normal distribution the plot should be linear. Fig. 2 shows 

that all data lie on or near the red line, so the data can be approximated by a normal 

distribution. This forms the basis of our proposed analysis method. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Distribution of Normal probability 

According to David Rincón’s study in [11], 15% of the DW coefficients retain more 

than 90% of the original TM energy on average. Thus we can characterize the original 

TM by a limited number of coefficients which may be regarded as the most significant 

parameters.  

Traffic matrices can be represented as two dimensional functions ),( jiF . 2D DW 

transform is to project the function ),( jiF  twice onto the approximation and detail 

subspace bases by using 1D DW diffusion operator, once along each “direction”. We 

denote VVj, to be the transform coefficients corresponding to the low-pass approximation 

subspace and VWj, WVj and WWj the transform coefficients of the high-frequency detail 

subspaces respectively. Here V denotes the approximation and W the detail in 1-

dimension DW transform. The coefficients are contained by Equation (1) 

 

vCTree{lIndex}(vv).Coeffs=cWtTree{lIndex}(v).Basis’ * 

vCTree{lIndex-1}(vv).Coeffs * cWTree{lIndex}(v).Basis, 

lIndex = lLevel+1 

(1) 

 

lLevel is the wavelet decomposition level, like the scalein Wavelets Transform. Since the 

larger or largest coefficients will be gathered on the “left-top corner” of TM with level 
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increased as Fig.4 shows, it presents a simple illustrative example on a 12 nodes matrix. 

The 1D DW transform decomposes the spectrum in 3 subbands with 5, 2 and 5 

eigenvalues for theW1, W2 and V2subbands respectively, while 2D DW divides the 

spectrum into the approximation VV2andthe details VW2, WV2, WW2, VW1, WV1, WW1, 

where each one includes a set of n × m eigenvalues/eigenvectors. We focus on the 

approximation coefficients VVj [12, 13]. 

 

 

Fig. 3. 1D diffusion wavelet transform decomposition of TM 

 

Fig. 4. 2D diffusion wavelet transform decomposition of TM 

4. Anomaly detection 

Network traffic anomaly refers to the flow of network deviating from the normal 

behavior caused by a variety of reasons, such as network equipment breakdown, failed 

network operation, flash crowd, network intrusion, etc. The network may experience 

very hard period due to the characteristics of anomaly such as sudden-burst, 

unpredictability and so on. Therefore it is very important to ensure the network to work 

properly by detecting the anomaly effectively and responding appropriately. At present, 

network anomalies are divided into two main categories: nodes disconnected to the 

network and malicious abnormal behavior, such as Distributed Denial of Service (DDoS) 

[14, 15].We focus on these two categories and study how to detect anomaly. 

In our first experiment on detecting anomaly caused by nodes disconnected to the 

network, we apply two-dimensional DW analysis on 84 TM samples from datasets of 

Abilene Network. The granularity of the TMs is 5 minutes in Abilene as used in [11]. 

We consider four largest coefficients T(1,1),T(2,1),T(2,2),T(2,3), from the 5-th level 

approximation matrix to be significant parameters because their changes are apparent 

when the network experiences any anomaly situation. For convenience, we denote them 

byV1, V2, V3 and V4.We define Contribution Ratio to be Ri, which means the ratio of the 

square of the volume Vi to the total energy of T. The ratio is described in Equation (2). 
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j is the eigenvalue of T. 

It is found that the averages of R1, R2,R3and R4 are 0.4132, 0.0062, 0.0029 and 0.1355 

with variance of R1, R2,R3 and R4 are 6.9 ×10
-4

, 6.7×10
-6

, 1.13 ×10
-6 

and 1.01 ×10
4
, so 

they tend to be smooth in the normal cases as Fig.5 shows. 

 
Fig. 5. Contribution Ratio in normal cases (9:30 - 10:00 from 2nd to 8th Mar. 2004, 84 samples in 

total)  

 

It is found that the ratios changes when node 1 is disconnected at the 40th moment as 

Fig.6 shows. R2 increases 3 times than average of normal case while R3 increases 5 times 

than average of normal case at this moment compared with Fig. 5 

 
Fig. 6. Node 1 is disconnected at the 40th moment 
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When node 9 is disconnected at the 40th moment as Fig. 7 shows, the ratio R1 

decreases 0.6 times than average of normal case while R4 decreases 0.8 times than 

average of normal case at this moment compared with Fig. 5 

   

Fig. 7. Node 9 disconnected at the 40th moment 

When other single-node experiences abnormal situation, one or more parameters 

among R1-R4would change abruptly at abnormal moments. Similar to above figures, 

these abnormal situation could be detected. 

5. Anomaly Localization for Disconnection 

As described above, we can detect anomaly successfully through monitoring Ri, we 

cannot distinguish which node is disconnected. Since the data follow the normal 

distribution as discussed in Fig. 2, we know the most data are within a very limited 

range. We use this property to distinguish different “Anomaly Categories”. 

 

 
Fig. 8. Cumulative Distribution Function of R1 
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Firstly we study the distributions of the four ratios when different nodes are 

disconnected. For example, we let all T(1, j) and T(i, 1) from TM of all samples be zeros 

with the assumption of node 1 being disconnected, where i, j are from 1 to 12. Fig.8 

shows the cumulative distribution function (CDF) of R1. According to the result in Fig.2, 

we can get the distribution of R1. We then calculate a range within which covers 95% of 

samples and call this range 95% probability range. Depending on different ranges for the 

four ratios R1-R4 calculated as above, we can infer which node is disconnected with high 

accuracy. Finally, we collect all the circumstances in Table 1 named “Anomaly 

Dictionary” for judgment. 

 

Fig. 9. Normal distributions and 95% probability interval 

In Table 1, node 0 represents the normal state and node 1 to 12 represent 

circumstances where node i is disconnected respectively. The ranges in this table show 

95% probability ranges ofR1, R2, R3 and R4. 

 
Table 1. Anomaly dictionary 
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When we get four ratios of samples, we first figure out if the values of all ratios are 

within statistically normal range listed as above. If not, it means the sample may be 

abnormal. We then compare the values of 4 ratios to the following rows which show 

statistic abnormal ranges in Table 1. It is found that the single-node disconnection can be 

determined uniquely by comparing their ratios to these statistical abnormal ranges. 

Figure 10 describes one example where node 11 is disconnected at the 15th moment. 

The values of R1-R4 are given in Table2. Compared with Fig.5, we can find there is an 

anomaly at the 15th moment when R2 and R3 increase sharply. What’s more, we can 

determine which node is disconnected by statistic results given in Table1. Four ratios’ 

values in Table 2 are within ranges in 11
th
 row which indicates node 11 is disconnected. 

 

 
Fig. 10. Node 11 Disconnected at 15th moment. 

Table 2. Ratios 

 

Based on this comparison, we can detect and distinguish anomaly successfully. Since 

we get the 95% probability ranges of R1, R2, R3and R4,the accuracy rate of single-node 

anomalyis not 100%. If a normal sample is determined to be normal, we regard the case 

as true positive (TP). If a normal sample is determined to be abnormal, we regard the 

case as false negative (FN). If an abnormal sample is determined to be abnormal, we call 

this to be true negative (TN). If an abnormal sample is determined to be normal, we call 

this to be false positive (FP). Thus the accuracy rate should be calculated by Equation 

(3). 

Accuracy Ratio = (TP+TN) / (TP+TN+FP+FN) (3) 
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It is obtained that the accuracy ratio can be 89.78% theoretically since we are use the 

95% range to localize single-node disconnection. This rate though not 100%, has been a 

breakthrough result in anomaly localization. We may also choose 98% probability range 

to get a higher accuracy rate. However, this introduces more complicated overlapped 

cases for coefficients and thus increases computational complexity.   

To compare with existing anomaly localization skills in [20, 21, 22], we conduct 

experiments on our data sets. Authors in [21] obtained their FP and FN ratios were less 

than 20%, while the ratio of our false judgment (including FP and FN) is 18.55% 

theoretically. In experiments, we obtain the false judgment ratio of 15.21%. This means 

we can guarantee a higher accuracy ratio. Anomaly localization based on PCA was 

discussed in [20]. They tried to figure out which source among 8 sources exists anomaly 

by combing pair-wise correlation between any two sources in Graph Guided Joint Sparse 

PCA. When applying this method to our data sets, the accuracy ratio is only less than 

50%. The reason is our data sets are not pair-wise correlated as stocks data sets they 

used.  

Therefore, our method outperforms these existing methods in anomaly localization for 

large-scale backbone networks. However, same as existing work, localization is still 

limited to single-node or single-link. It is very challenging to extend our work to multi-

node anomaly localization. It’s also demanding to localize more complicated anomaly 

cases, such as Distributed Denial of Service (DDoS).  

6. Anomaly Localization for DDoS 

We have obtained the ranges of 4 ratios in normal and abnormal cases. These ranges, 

though implying location information of single-node disconnection, are overlapped with 

each other. In order to locate anomaly nodes accurately and fast, we study the numerical 

relationship between abnormal cases and normal cases, and propose a Huffman Coding-

based method [16].  

It has been found abnormal cases’ ranges are different from normal cases’ in above 

experiments. We define abnormal ratios Mi in Equation (3). 
'

,

1

, 1,2,3,4; 1,2,3,..., ; 84
1

i

i n

i j

j

R
M i j n n

R
n 
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
  

(4) 

To calculate the abnormal ratios Mi, we use the parameter Ri and '

iR  to describe 

Contribution Ratio in normal and abnormal cases respectively. 

Because the total energy of TM must be different when the matrix changes a lot, 

Parameter P defined in Equation (4) is used to tell which kind of anomaly happens in 

network. We mainly study two anomaly categories: nodes disconnected to network and 

DDoS. We find P is less than 1.07 if any single-node is disconnected to network as Table 

3 shows. When DDoS happens in the network, P is always greater than 1.09 as Table 4 

shows. 
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(5) 

As proposed in Section 4, we now study the ranges of Mi, the results when DDoS 

happens are given in Table 3, and results of nodes when single-node disconnection 

happens in network are given in Table 4. 

 
Table 3. Ranges of Mi and P in DDoS case 

 
 

Table 4.Ranges of Mi and P of in single-node disconnection case 

 
 

According to Table 3, we can distinguish most circumstance of DDoS: node 1, 3, 4, 5, 

6, 7, 10, 11 and 12 only by M3, while other circumstance: node 2, 8 and 9 can be 

distinguished by M1 combined with M3. We propose a Huffman Coding method to 

encode the results and represent their corresponding anomaly locations. Fig. 11 shows 

the Huffman Coding Tree and Table 5 gives the corresponding coding results. It is 
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obvious that different anomaly locations in two categories of abnormal cases, single-node 

disconnection and DDoS, can be represented by binary codes uniquely. 

 

 

9.5

32

1

1.86

0

0.88
1.3

0.6 15.3

94.423

Node 9

Node 8

0
1 0 1

Node 

11

0 1

Node 

10
Node 7

10

10

0

Node 2

1

0.76
Node 

12

Node 6 Node 5

0 1

0 1

Node 3

1

70.6

Node 1 Node 4

0 1

0

 
 
Fig. 11. Huffman Coding Tree 

 

In Fig.11, the numbers in the circle represents thresholds, which are obtained from 

Table 3. Once we have calculated a Mi, we find its corresponding code by this coding 

tree. It will finally locates where the anomaly happens and what kind of anomaly it is.  

 
Table 5. Binary Code 

 
 

In Table 5, The leftmost digit of binary code “0”and “1” in Table 5 stands for the 

anomaly categories, i.e., “0” represents node disconnection, while “1” means DDoS. 

Thus all single-node anomalies have their unique binary codes. 
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7. Conclusion 

In this paper, we showed that DW-based techniques can perform an effective multi-

resolution analysis for traffic matrices. Based on the study of analysis results, we 

presented a novel method on anomaly detection and localization. This method can not 

only detect whether the anomaly is caused by single node disconnection or DDoS, but 

also localize the anomaly. To our knowledge, it is the first piece of work that applies 

DW-based analysis results to localize anomaly. In the future, we will extend this method 

to detect more complicated network problems, such as anomalies caused by multiple-

node disconnections and traffic prediction. Study on important coefficients from DW 

transform can also be used to develop applications in traffic prediction, network 

optimization and so on. 
 

Acknowledgment. This work was done under the support of National Natural Science Foundation 

of China No. 61100218 and General Projects funding No. 61170232, the Fundamental Research 

Funds for the Central Universities No. 2011JBM206.  

References 

1. Rahman, M. M., Saha, S., Chengan, U.: IP Traffic Matrix Estimation Methods: Comparisons 

and Improvements, IEEE International Conference on Communications, 90 - 96. (2006) 

2. Li, S., Xu, L. D., Wang, X: Compressed Sensing Signal and Data Acquisition in Wireless 

Sensor Networks and Internet of Things, IEEE Transactions on Industrial Informatics, Vol.9, 

No. 4, 2177-2186. (2013) 

3. Cattaneo, A., Park, G., Farrar, C., et al.: The application of compressed sensing to long-term 

acoustic emission-based structural health monitoring, Proc. of SPIE Smart Structures and 

Materials, Nondestructive Evaluation and Health Monitoring, International Society for Optics 

and Photonics. (2012) 

4. Ren,  H. P., Li, J. P.:  Bayes Estimation of Traffic Intensity in M/M/1 Queue under a New Wei

ghted Square Error Loss Function. Advanced Materials Research, Vol. 485, 490-493. (2012) 

5. Tian, H., Sang, Y., Shen, H.: New Methods for Network Traffic Matrix Estimation Based on a 

Probability Model. Proc. of IEEE ICON, 270-274. (2011) 

6. Tian, H.,  Zhong, B.,  Shen, H.: Diffusion wavelet-based analysis on traffic matrices by 

different diffusion operators. Computers & Electrical Engineering, Vol.40, No. 6, 1874-1882. 

(2014) 

7. Agrawal, S.: Diagnosing Link-Level Anomalies Using Passive Probes, IEEE International 

Conference on Computer Communications, 1757-1765. (2007) 

8. Barford, P., Duffield, N., Ron, A. et al.: Network Performance Anomaly Detection and 

Localization. Proc. of INFOCOM, 1377-1385. (2009) 

9. Coifman, R. R., Maggioni, M: Diffusion Wavelets, Applied and Computational Harmonic 

Analysis,  Vol. 21, No. 1, 53-94. (2006) 

10. Qian, Y., Chen, M., Hao, Q.: ODC: a method for online detecting & classifying network-wide 

traffic anomalies, Journal on Communications,134-141, (2011). 

11. Willinger, W., Rincón, D., Roughan, M: Towards A Meaningful MRA Of Traffic 

Matrices, IMC Proceedings of ACM Sigcomm Conference on Internet Measurement, 331-

336. (2008) 

12. Uhlig, S., Quoitin, B., Lepropre, J., Balon, S.: Providing public intradomain traffic matrices 

to the research community. SIGCOMM Computer Communication Review, Vol. 36, No. 1, 

83-86.(2006) 



1374           Teng Sun et al. 

 

 

13. Hammond, D. K., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph 

theory. Applied and Computational Harmonic Analysis, Vol. 30, No. 2, 129–150. (2009) 

14. Wang, C., Mahadevan, S.: Multiscale Dimensionality Reduction Based on Diffusion Wavelet

s, Technical Report, University of Massachusetts, Department of Computer Science. (2009) 

15. Beitollahi, H., Deconinck, G.: Connection Score: a statistical technique to resist application-

layer DDoS attacks, Journal of Ambient Intelligence and Humanized Computing, Vol. 5, No. 

3, 425-442. (2014) 

16. Zargar, S. T., Joshi, J., Tipper, D.: A Survey of Defense Mechanisms against Distributed 

Denial of Service (DDoS) Flooding Attacks, Communications Surveys & Tutorials, Vol. 15, 

No. 4, 2046-2069. (2013) 

17. Soto Hernandez, M. A., Alvarado-Nava, O., Rodriguez-Martinez, E., et al.: Tree-less 

Huffman coding algorithm for embedded systems, International Conference on 

Reconfigurable Computing and FPGAs (ReConFig), 1-6.  (2013) 

18. Haupt, J., Bajwa, W. U., Rabbat, M., Nowak, R.: Compressed sensing for Network Data. 

( 2007) 

19. Coates, M., Pointurier, Y., Rabbat, M.: Compressed network monitoring for IP and all-optical 

networks, In ACM SIGCOMM Internet Measurement Conference (IMC), 241-252. (2007) 

20. Ruoyi, J., Fei, H., Huan, J.: Anomaly localization for network data streams with graph  joint 

sparse PCA, Proceedings of the 17th ACM SIGKDD international conference on Knowledge 

discovery and data mining ACM, 886-894. (2011) 

21. Ziming, Z., Li, Y. Lan, Z.: Anomaly localization in large-scale clusters , IEEE International 

Conference on Cluster Computing, 322-330. (2007) 

22. Salhi, E., Lahoud, S., Cousin, B.: Localization of single link-level network  anomalies. 

International Conference on Computer Communications & Networks, Vol. 7204, No. 4, 

1291-1294. (2012) 

23. Yu, Y., Song, M., Fu, Y., Song, J.: Traffic prediction in 3G mobile networks based on 

multifractal exploration, Tsinghua Science and Technology,  Vol. 18, No. 4, ,398-405. (2013) 

 

 

 

Teng Sun received B.E. degree from Shangdong University and M.E. from Beijing 

Jiaotong University, China. His main research interests are network performance 

analysis. 

 

Hui Tian, Associate Professor in School of Electronics and Information Engineering, 

Beijing Jiaotong University. She received B. Eng. and M. Eng. degrees from Xidian 

University, China and Ph.D. from Japan Advanced Institute of Science and Technology. 

Her research interests include network performance evaluation, telecommunications and 

wireless sensor networks. Hui Tian is the corresponding author of this paper. 

 

Xuan Mei received B.E. degree from Neijiang Normal University. He is currently a 

master student in Beijing Jiaotong University, China. His main research interests are 

network performance analysis. 

 

 

Received: October 1, 2014; Accepted: May 20, 2015. 

 


