Computer Science and Information Systems 12(2):707-728 DOI: 10.2298/CSI1S141217033S

Model-Driven Acceptance Test Automation Based on Use
Cases

Tomasz Straszak, Michat Smiatek

Warsaw University of Technology
Warsaw, Poland
Email: {straszat, smialek} @iem.pw.edu.pl

Abstract. Acceptance testing is highly dependent on the formulation of require-
ments, as the final system is tested against user requirements. It is thus highly de-
sirable to be able to automate transition from requirements to acceptance tests. In
this paper we present a model-driven approach to this issue, where detailed use case
models are transformed into test cases. Importantly, our approach facilitates syn-
chronising functional test cases with other types of tests (non-functional, domain
logic, user interface) and introducing test data. This leads to a unified approach
where requirements models of various kind drive the acceptance testing process.
This process is parallel to the development process which also involves automatic
transformations from requirements models to software development artefacts (mod-
els and code). To show validity of the approach we present a case study which uses
a new tool called ReDSeT, that transforms requirements formulated in the Require-
ments Specification Language (RSL) into tests in a newly proposed Test Specifica-
tion Language (TSL).

Keywords: acceptance testing, test generation, use cases, metamodel, model trans-
formation.

1. Introduction and related work

Acceptance testing is the ultimate step in every software development effort [15]. Accep-
tance tests are part of the overall testing process [16], and are usually performed with high
involvement of the customers who compare the final system’s operations with the original
contract between stakeholders and developers. This contract should be clear to both sides,
so that the stakeholders can formulate their real needs and the developers can produce
software compliant with these needs.

One of the most popular notations to specify functional requirements are use cases,
introduced initially by Jacobson [12]. Use cases are represented through scenarios that
define interactions between external actors and the system-to-be-built that lead to specific
goals of certain value to the actors [5]. Use case scenarios can be specified using differ-
ent notations, of which model-based ones have significant value [21]. Precise notations
consisting of models with runtime semantics can be processed automatically to produce
other software artifacts, including code [22].

Any system developed on the basis of use cases should normally be tested against
these use cases. There exist several approaches to automate the process of obtaining test
cases from use case models. The most basic ideas involve using activity notation for
representing use case scenarios and generating test scripts expressed with some other

708 Tomasz Straszak, Michal Smiatek

modelling notation, like interaction models (see work by Gutiérrez et al. [11] and by
Turner et al. [32]). Other proposed mechanisms involve analysis of use case contracts
(pre- and post-conditions) to create more complex testing scenarios that consider changes
of the system state (see work by Nebut et al. [17]). However, this approach works on a
more formal level and uses sequence diagrams to denote scenarios. To understand such
diagrams, a significant level of technical knowledge of UML is needed, which makes it
arguably hard to inspect by the end-users.

An interesting approach was proposed by El-Attar and Miller [9]. It involves gener-
ating acceptance test scripts from textual use case scenarios combined with domain and
robustness (class) models. The generated scripts contain test scenarios, description of the
input and the expected results. In another, similar approach, Somé and Cheng create test
cases through generating state machines [28]. State machines are also used by Jiang and
Ding [13]. Their approach goes a step further by proposing to express use case scenarios
using a formalised grammar with uniform subject-verb-object sentences.

Test cases based on use cases concentrate on verifying the functional requirements.
Still, also other important aspects need to be assured: meeting the business rules, UI look-
and-feel and various quality issues (performance, reliability etc.). These kinds of require-
ments should be verified by executing corresponding tests. A quite broad domain of test
generation approaches is GUI-based, as surveyed by Banerjee et al. [1]. In the context
of our work, an interesting approach was presented by Bertolini and Mota [3] who link
GUI-based testing with use cases. Of other relevant approaches, we can mention work
by Bizerra et al. [4] who introduce a method for generating tests from formally speci-
fied business rules associated with domain models and by Dyrkom and Wathne [8] who
propose a method to automate test generation from non-functional requirements.

Most of the above mechanisms use model transformations forming the area of Model-
Based Testing (MBT), which is an evolving technique for generating suites of test cases
from software models of various kind [6, 20]. It should be noted that although different
types of tests are generated from requirement models describing the same software sys-
tem, usually they are not related. To verify different aspects of the system we need to
use different methods which do not have direct interrelations. This paper aims at improv-
ing this situation. It focuses on automatic generation of different but interrelated types of
tests. These tests are integrated through functional test cases obtained from model-based
use case scenarios using an automated tool. The resulting test specification is expressed
with a metamodel-based language called the Test Specification Language (TSL). In this
language, every functional test case can integrate various other types of tests.

Such integrated test sets are generated on the basis of tightly interrelated requirements
models that describe many aspects of the developed software system, which makes this
idea MBT-compliant. The main idea of test automation is based on creating requirements
specifications with a modelling language called the Requirements Specification Language
(RSL) [14,25]. Models in this language are used as input to the process illustrated in
Figure 1 (see step 1).

The figure depicts two parallel model transformation paths that lead to acceptance
testing of a delivered software application:

— software application production — application logic code is generated automatically
on the basis of structured use case scenarios and interlinked domain models (step

Model-Driven Acceptance Test Automation 709

1. Formulating L 4. Testing of .
A . Reqirements i Test Execution
Requirements in —=| Specification deliverad Henodts
RSL = Software =

2a. Generation of :_-; Application Logic 3a. Update of % Working software
Application Logic code Domain Logic application

3b. Creation of Test

Instantation of Tests

Fig. 1. Model-based software generation and test case generation as parallel processes

;, Acceptance Test

Scripts

2b. Generation of = Set of Abstract
Abstract Tests Tests

2a); having the application logic, domain logic code is updated manually according
to given domain rules (step 3a);

— acceptance test script production — abstract tests are automatically generated on the
basis of use cases and other related requirements (step 2b); test scenarios are then
manually composed of instances of abstract tests (step 3b).

This process can be performed repeatedly according to incremental delivery of re-
quirements. RSL provides means to denote use case scenarios very precisely thus signif-
icantly facilitating the generative steps of the two parallel processes. Additional informa-
tion contained in scenario sentences (notions from the domain vocabulary) and other re-
lated requirements allow for generating other types of tests. All the tests generated on the
basis of RSL-based requirements form a complete and coherent test suite for acceptance
testing. The generation steps are performed using a tool called ReDSeT (Requirements-
Driven Software Testing) written as a plug for the RSL tooling environment called ReD-
SeeDS (Requirements-Driven Software Development System) [24, 27].

This paper is a significant extension of our previous work [30], presented at the 5%
International Workshop on Automating Test Case Design (FedCSIS). It introduces the
TSL metamodel and related model transformation rules that allow for generating TSL
models from RSL models. Moreover, it presents the process of obtaining the final test
scripts from the generated abstract test cases and discusses a cases study performed to
validate the approach.

2. Detailed requirements expressed in RSL

As in other test generation solutions, the basis for automatic generation of tests is the pre-
cise specification of requirements. As mentioned above, our solution is based on creating
requirements models using RSL. The main feature of this language is the clear separa-
tion of descriptions of the system’s visible behaviour from descriptions of the system’s
domain. Functional requirements can be presented in three equivalent forms: structured
text with hyperlinks to domain elements, an activity diagram or a sequence diagram. The
elements describing the system’s domain are depicted as notions on so-called notion di-
agrams. Each notion has operations that can be performed in regard to the particular no-
tion. RSL allows for precise specification of requirements, which is understandable even

710 Tomasz Straszak, Michal Smiatek

Add new pet Create new visit

«invoke» «invoka» 7
-\\-\ -
~. N
user
«invoke»

_________ Show visits for pet

Fig. 2. Example use case model for the ‘Find pet’ use case

precondition:
1. Userselects find pet [Actor to Trigger '] ‘Select =
2. System shows pet search form [System to Screen v} ‘ Show v
3. Userenters pet search criteria {Actor to Simple View v} [n/a v]
4. User selects seek [Ador to Trigger '} [Select ']
5. System fetches pet list pet search criteria [System to List View v} [Read v]
=>cond: petsfound [1]
6. System closes pet search form [System to Screen vJ Close ~
7. System shows pet list screen [Sys\em to Screen v] Show ~+
=>invoke/INSERT [Create new visit J
=>invoke/INSERT [Add new pet |
=>invoke/INSERT [Show visits for pet |
final: success y
postcondition:
T TT

=>cond: no pets found [0]

511 System shows no pets found message System to Message v] [Show v

=>cond: user chooses [VES] to change search criteria

=>rejoin: | Find pet '} [User enters pet search criteria

=>cond: User chooses [NO] to cancel search
521 System closes pet search form [Sy;tgm to Screen v] [Close ']

final: failure
postcondition:

Fig. 3. Example scenarios for the ‘Find pet’ use case

for ordinary people who do not have technical expertise. The language has a precise spec-
ification of its syntax [14] and semantics [22] with methods of its use explained e.g. by
Nowakowski et al. [19].

To illustrate RSL we present a fragment of a requirements model for the Pet Clinic sys-
tem, adapted from the book by Smiatek and Nowakowski [25]. Figures 2, 3 and 4 contain
an elementary use case model with four use cases, scenarios for one of the use cases and
an associated domain model. As we can notice in Figure 3, scenarios basically consist of
numbered sentences in a simple ‘SVO(O)’ grammar, where sentences are sequences con-
taining a Subject, a Verb and one or two Objects. These sentences are constructed using
links to notions stored in the domain vocabulary presented in Figure 4.

Domain notions are referred to in scenario sentences through hyperlinks (see e.g.: pet
list, pet search form, find pet) and are presented in a notion diagram that is similar to a
class diagram. Relationships between notions, and the notion operations are defined auto-
matically according to the scenario sentences in which these notions appear. Alternatively,
they can be defined manually by the requirements engineer. Notions and their operations
used in use case scenarios describe business domain logic and user interface elements.

Model-Driven Acceptance Test Automation 711

frgger Fereen frigger ’“’]'
ind pet et search form eek et list screen
action param
impte View [ist View
et search criteria et list
[teribute (Text) Rrmbute (Text) Rrtribute (Text) Rreribute (Text) Rrribute (Date) Kreriburte (Text)
hone numberl bwner first name| bwner last name hame birth date bype name
o 1 * Koncept * 1 Foncepr
pwner et et type
Hessage
po pets found message| §
main concept

Fig. 4. Example domain model for the ‘Find pet’ use case

All the requirements in RSL can have relationships. To depict relations between use
cases, a special invoke relationship is used (see Figure 2). This relationship has precise
execution semantics. Each such relationship has to be associated with specific sentences
in scenarios of the invoking use case that refer to the invoked use case. We can notice
such sentences in the scenarios in Figure 3. These sentences have ‘call’ semantics and
they mean that the respective invoked use case starts execution at this point. More details
about semantics of invocations can be found in works by Nowakowski et al. [19] and
Smiatek et al. [26].

RSL offers much more capabilities than in the presented example. For instance, it
allows for constructing tree-like package structures and introducing simple free-text re-
quirements to describe business rules or quality (non-functional) aspects. Its formal spec-
ification [14] is based on a metamodel consisting of over 200 metaclasses. Detailed dis-
cussion of the metamodel and on developing transformations from RSL to UML and code
can be found in the already mentioned book by Smiatek and Nowakowski [25]. Instead,
the following sections contains an overview of the testing language whose metamodel is
derived from that of RSL. Next, we will present a transformation from RSL to this new
testing language.

3. Test Specification Language

To define the proposed acceptance test suite and to ensure accurate and automatic transi-
tion from RSL-based requirements to tests, a new language, called the Test Specification
Language (TSL) was developed. This language is based on a metamodel defined using
EMF (Eclipse Modeling Framework) [29].

712 Tomasz Straszak, Michal Smiatek

s 12 Requirements Specification 4 (= Abstract Tests
4 ([Use Cases 4 [Use Case Tests
4 (D Pets and owners 4 (= Pets and owners
© Add new owner (@ Add new owner
© Add new pet (D Add new pet
@ Delete pet (D Delete pet
a4 © Find pet 4 D Find pet
Find pet Find pet
Alternate 1 - no pets found £5] Altornatad te faiinel
Alternate 2 - cancel search Find pet scenario
@ List all owners
© Show pets 5. System fetches pet list according to pet search criteria
(9 Veterinarians Test Related tests: Duration of search operations
+ [l Visits parameter i
© Create new visit et lis
@ Edit visit
@ Show visit details pet search ariteria
@© Show visits for pet
4 Non-functional Requirements 4 (= Non Functional Tests
[Duration of search operations [Duration of search operations
[Pets Ul forms background 3 Responsive Ul
[Responsive UI 3 Pets Ul forms background

Fig. 5. Test specification derived from a requirements specification

The main idea of TSL is to provide notation for reusable tests, that are understandable
for non technical people (end-users, clients, stakeholders, etc.) and precise enough to
allow for verifying the software system in detail. All tests are grouped in a tree structure,
named the Test Specification (see Figure 5 - right). This structure is an implementation of
the metamodel shown in Figure 6. Each Test contained in the TestSpecification through
a TestPackage, represents a procedure for verification of a single software requirement.
Such a verification is performed by processing through all the check points defined inside
a test. Types of check points should be dedicated to each type of test as specialisations of
TestParameters. The general attribute of this metaclass (festingType) determines whether
the specific check point will be executed automatically or manually. Each specialisation of
TestParameter should also include an attribute determining the check point result value,
adequate for the test type.

The basic structure of a TSL test specification consists of two packages: Abstract
Tests and Concrete Tests. The Abstract Tests package includes subtypes of AbstractTest.
This kind of tests are generated directly from the requirements specification and comprise
mostly use case tests and notion-based tests, but can also contain tests of other types. They
posses the requirementUid attribute that points to the source element in the requirements
model. A use case test corresponds to a use case, and includes use case test scenarios gen-
erated from RSL use case scenarios, like the ones illustrated in Figure 5. The metamodel
that represents this structure is shown in Figure 7.

A UseCaseTestScenario includes an initial condition (a precondition sentence) that
must be met before the execution of actions described in this scenario and a final condition
(a postcondition sentence) that describes the desired state of the system after the scenario
is executed. Both the precondition and the postcondition are represented by the Condition

Model-Driven Acceptance Test Automation 713

TestSpecification

- wersion: Siring

s

Test
TestPackage +childTests +chediFoints TestParameter
- - desoription: String
- name: String |1 0.5 name: String 0.%|- testingType: TestingType
T - wuid: String
+childPackages f? K
- T 1
0.
TestingType
Abstract Tests::AbsiractTest InstanceTests::
Tesinstance wENUM=
- requirementUid: String + manual
- abskactTestld: String + automatic
Fig. 6. TSL metamodel: test specification structure
Test
AbstractTest
- requirementUid: String
+scenaricSentence
UseCaseTest . |useCaseTestScenario _| UseCaseTestScenarieSentence
+scenarios 1 1.
- useCassMame: Siring - sentenceOrderMumber: int
- useCaseTrail: String |1 1.* - sentenceText: String
Pal————————————
1
1 1
+precondition |1 1| +postcendition i +checkFoints
- TeztFarsmeter
Condition +pogconditions i
UseCaseTestScenaricParameter
- desoiption: String | 4 1
- success: boolean

Fig. 7. TSL metamodel: use case tests

UseCaseTestScenarioSentence

5V0 Sentence E}- sentenceOrderNumber: int :ﬂ Control Sentence
- sentenceTed: String

- svoSentenceCrderMumber. int

1 T 1

+predicatey |1 +invecation 1

AbstractTest Condition Sentence

Te=ziRelationzhip

Domain Statement TestinwocationRelationship

Fig. 8. TSL metamodel: use case test scenario sentences

metaclass. The check points for UseCaseTestScenarios are postconditions pointed-at by
UseCaseTestScenarioParameters.

Every UseCaseTestScenario consists of several UseCaseTestScenarioSentences. A
dialogue between the primary actor and the system is a sequence of actions represented
by sentences in a simple subject-verb-object (SVO) grammar (see Graham [10] for an

714 Tomasz Straszak, Michat Smiatek

Test

Metion Ll
AbstractTest ‘:]7
- - - rsIMoticnMame :String
requiremeantlid :Sting - rsiMotionTrail :Sfring
&
f 1 0.1 ’1
+domainStatementsy - +athributes 0.+
Domain Statement +directMotion HoticnAttribute

1.7 - desoiption :Sting
name :String

+indirectNotion
)

type :String
1 0 1
+checkPoints (1 +chedkPoints (0.7
TestParameter TestParameter
DomainStatementTestParameter NotionTestParameter
success boolean - success boolean '

Fig. 9. TSL metamodel: notion tests

original idea). As shown in Figure 8, sentences describing single actions are represented
by SVOSentences. This kind of sentence is described with a DomainStatement, which
forms its predicate (the verb-object part of an SVO sentence).

The DomainStatement metaclass, as shown in Figure 9, is a specialisation of Ab-
stractTest and has check points represented by DomainStatementTestParameters. Each
DomainStatement is owned by some Notion that is generated on the basis of an RSL
notion. Notion tests can be verified according to NotionTestParameters that verify No-
tionAttributes.

In addition to action sentences, two additional sentence types were introduced: Con-
ditionSentences and ControlSentences. Analogously to RSL, they are used in scenarios
to express the flow of control between alternative scenarios of the same use case, as well
as between scenarios of different use cases (see Smialek et al. [21]).

In addition to use case tests that verify behaviour of the system, tests of other types
can verify the domain logic, the user interface, the non-functional aspects (performance,
usability, etc,) or any other aspect of the system that is described through requirements.
Figure 10 shows a taxonomy of such constructs which includes QualityTest, GUITest,
DomainLogicTest and respective specialisations of the TestParameter metaclass. This
metamodel template can be used for introducing other types of tests.

An important feature of a requirement specified with RSL, is the possibility to cre-
ate relationships with other requirements. Due to generation of test specifications on the
basis of these requirements, relationships between tests should be also created. Figure
11 presents metaclasses representing these relationships. The invocation relationships be-
tween use cases are translated to become relations between use case tests. This provides
information on the steps of a use case test scenario and on conditions under which sce-
narios of appropriate other use case tests should be called. Relationships to requirements
of other types are translated to relationships from use case tests to tests of other types.

Model-Driven Acceptance Test Automation

AbstractTest

Test

wenumerations =

QualityType

requirementlid :String

A

functionality
usability

reliability
performance

QualityTest

supportability

qualityType :QualityType

wenumersticn:
GUIFeatureType

behaviour

GUITest

design

festureType GUIFestureType

wenumersticns

DomainLogicType

DomainLogicTest

715

. TeztFammeter
+chedkPoints

GualityTestParameter

1.%

- qusalityValue :int

+chedkFoints TeziFarameter

GlUITestParameter

1.7
- success boolean

TestFarameter
+chedkPoints

DomainLogicTestParameter

exlusion
computaticn

ruleType

:DomainLogicType

Fig. 10. TSL metamodel: tests of other types

AbstractTest

Test

- regquirementUid :String

1 1.7
- success boclean

TestRelationship

i

UseCaseTest

- useCaseMame :String
- useCaseTrail Sting

+source

1 0.
+target

1

+source
[»————————————
1 0.~
+target

i

[TestinvocationRelationship

Fig. 11. TSL metamodel: test relationships

1. Creation of Test =
Specification structure 1

6. Processing of
Requirements of other
kinds

2. Processing of Notions

MNotions

3. Processing of
Domain Statements

Test Inwocation
Relaticnships

5. Processing of Use Case

Use Case Tests

4. Processing of Use
Cases

Fig. 12. RSL to TSL transformation procedure

4. Automatic test generation

Having RSL and TSL defined using metamodels, we can construct an automatic model
transformation from requirements to tests. Moreover, further acceptance test composition

is highly facilitated.

716 Tomasz Straszak, Michal Smiatek

The transformation is performed in several steps. The top-level transformation steps of
the transformation procedure are presented in Figure 12. At the beginning of the transfor-
mation, a new TestSpecification structure is created (step 1). The basic TestSpecification
structure consists of a root node named using the scheme of “Software Case Name - date”
and two child TestPackages named “Abstract Tests” and “Concrete Tests”. The Abstract
Tests package is constructed to reflect the source use case model structure. The Concrete
Tests package is empty — Test Scenarios will be created here.

All SVOSentences within UseCaseTestScenarios are composed of DomainStatements
(e.g. ‘enter pet search criteria’) which are parts of specific Notions (e.g. ‘pet search cri-
teria’). For this reason, RSL notions should be processed first (step 2). For each RSL
notion, a TSL Notion is created and placed in the proper package. The name, description
and attached notion attributes are transferred, with the NotionTestParameters pointing at
the NotionAttributes.

For all the Notions, domain statements taken from respective RSL notions are created
(step 3). For each created DomainStatement a DomainStatementParameter is also cre-
ated. The phrases contained in the RSL domain statement notions, used as the direct and
the indirect object are found and pointed-at by the directNotion and the indirectNotion
attributes.

Having processed the Notions and the DomainStatements, the transformation can
now process use cases(step 4). For each RSL use case, a UseCaseTest is created and
placed in a proper TestPackage within the use case test structure. The name and the de-
scription are transferred accordingly. All the scenarios contained in a RSL use case are
transferred into a UseCaseTestScenario. On the basis of the use case scenario’s pre- and
postcondition, adequate pre- and postconditions are created as Condition instances and
attached to the respective UseCaseTestScenarios. In addition, UseCaseTestScenarioPa-
rameters pointing at the postconditions are attached. Sentences of the processed RSL
scenarios are transferred into appropriate instances of classes that specialise from Use-
CaseTestScenarioSentence. For every SVOSentence, the respective DomainStatement
is found and a relation to the corresponding DomainStatement is created. For every con-
trol sentence, a TestInvocationRelationship is created with an empty UseCaseTest as its
target.

Target UseCaseTests of the TestInvocationRelationships are set after all the use cases
are transformed into UseCaseTests (step 5). For each TestInvocationRelationship con-
tained in a ControlSentence, a correct UseCaseTest is found and set.

At the end of the transformation (step 6), AbstractTests of other types are created.
Each RSL requirement that is not a use case and is classified as a requirement of spe-
cific type (e.g. domain logic requirement, user interface requirement, non-functional re-
quirement) is the basis for generating an AbstractTest. This test supplements a Use-
CaseTest, a UseCaseTestSenario, a UseCaseTestSenarioSentence or a Notion. RSL’s re-
lationships between use cases, notions and requirements of specific types are transformed
into TestRelationships. As RSL currently does not support all the requirements types,
only non-functional requirements are automatically transformed into QualityTests.

Model-Driven Acceptance Test Automation 717

Generated automatically

4 (= Abstract Tests
4 [Use Case Tests
4 (= Pets and owners Add new pet
¢ Addnewowner - =— ="~ " " Alternate 1
@A .
= Add new pet instances
(D Delete pet .
- *

D Findpet =~ < _ _ _ Find pet ‘e,
D List all owners T=== Alternate 1 - no pets found *
~ -
D Show pets Alternate 2 - cancel search :-

= Visits K

(= Veterinarians .,'

>
- -
4 (= Concrete Tests »
4 (= Test Scenarios & 1. Add new pet - Add new pet

@ Create new visitforanewpet + = — = = 4 (@ 2.Find pet - Find pet

- Create new visit with adding owner and pet @ 21. Create new visit - Create new visit

@& Cancel all visits to the chosen vet 4 (@ 3. Show visits for pet - Show visits for pet

@ 3.1. Show visit details - Show visit details

Fig. 13. Test scenarios composed of test cases

5. Test instantiation

A scenario of a use case test determines conditions, steps and check points that will verify
implementation for a given use case. These elements will be used to perform acceptance
tests after placing them in test scenarios and assigning specific test data values. Test sce-
narios are grouped into second-level packages within the general structure of a TestSpec-
ification (see Figure 13). They are defined by a test engineer as a set of ordered instances
of use case test scenarios, that are called “test cases”. A test case describes a single proce-
dure for verifying system’s functionality. It is composed of ordered sentences describing
actions, conditions and invocations of other test cases. This structure is represented by the
metamodel shown in Figure 14.

To examine the result of executing a whole TestScenario, a TestScenarioCheckPoint
is used. The expectedResult attribute is used to denote the success or failure of scenario
execution according to some given conditions. The overall result depends on the results
of individual TestCases, forming the steps of the TestScenario. Each TestCase is exam-
ined in relation to the TestCaseCheckPoint that refers to the postcondition of the given
TestCase.

TestCases are composed of TestCaseSentences, as illustrated in Figure 15. Actions
taken by the main actor or by the system are represented by SVOSentencelnstances and
contain SVOSentencelnstanceCheckPoints. Such check points represent places where
execution of related actions needs to be examined. The result of checking an SVOSen-
tencelnstance depends on the states of DomainObjects that are determined by respective
DomainObjectCheckPoints. These check points focus on the values of the DomainOb-
JectAttributes.

The metaclasses TestScenario, TestCase, SVOSentencelnstance, and DomainObject
are specialisations of TestInstance. Thus, they can have TestInstances of other types at-

718 Tomasz Straszak, Michal Smiatek

Test Specification Structure:: Abstract Tests::
TestParameter ‘fﬂ UseCaseTestScenarioParameter
- testingType :TestingType - success :boolzan
Test
A Testinstance
- gbstractTestld :String
Test TestCase . TestCaseCheckPoint
TestScenario +testCases +chedPeoints
- orderMumber :int - expectedResult :boclean
- deswiption :String [0..% 1 1 1
- name :Sting
1.% 1 1 1
+chedPoints |1 +precondition |1 1 +postcondition
TestScenarioCheckPeint InstanceCondition
|- =xpectedResult - desoiption :String
- success :boolean 1
Fig. 14. TSL metamodel: test scenario and test cases
Test 7] TestCase
—L‘:> Testinstance
|- ordeshumber :int
- abstractTestld :String 1+sentences 1o
TestCaseSentence 1
- orderMumber :int
- szentenceText :String
1
5V0Sentencelnstance Condition Sentencelnstance Control Sentencelnstance
0.1
1 1
+indirectChjed 1
L *directObject +eneciPoints DomsinStatementTastParamatar
DomainObject
1 1| SVOSentencelnstanceCheckPoint
DomainObjectAttribute - expectedResult b
+atiributes
- type :Sting
0.” 1]- walue :Sting

1
1
Notion TestFParameter
DomainObjectCheckPoint

+chediPoints

- expectedResult ‘boolean

Fig. 15. TSL metamodel: test case sentences and domain objects

tached. By analogy with the abstract tests metamodel, we can declare NonFunctional-

Model-Driven Acceptance Test Automation 719

Test

Testinstance Non-FunctionalTestinstance +checFoints QualityTestParameter

R :] |- Non-FunctionalTestinstanceCheckPoint
- abstraciTestld: String - gualityType: QualityType 1 .

T
L GlUTestlinstance +chedkPoints GUTesziFarameter

GUITestinstanceCheckPoint

featureType: GUIFeatureType |1 1.7

DemainLogicTestinstance +chediPoints DomsinlogicTestParameter
DomainLegicTestinstanceCheckPoint
[

ruleType: DomainlLogicType |1 1.7

Fig. 16. TSL metamodel: test instances of other types

Another Test Case?

. Creation est Scenario . Creation est Case
1. Creation of Test 5 }M/ {21: tion of Test C.
¥es
no

Fig. 17. Test Scenario creation procedure

TestInstances, GUITestInstances and DomainLogicTestInstances, as shown in Figure
16. TestInstances of these other types are automatically created during execution of the
instantiation procedure. They have their own check points, and their results affect the
results of their parent tests.

Test scenarios constructed with test cases also build the context for the test data. The
initial test data values are set by the test engineer as the precondition values of the test
scenarios. Test data values describe basic business objects as well as GUI elements. Test
data in scope of one test scenario is passed between test cases as its pre- and postcondition
values. The test data values change according to the functionality and the business logic
that is being tested. It can be noted that although test cases cannot be formally related
to each other, within the manually created test scenarios they indirectly refer to business
processes that are implemented within the system under test.

The instantiation procedure of a use case test scenario consists of adding consecutive
test cases. This simple process is illustrated in Figure 17. First, we create a TestScenario,
give it a name and a description, and situate it in an instance of a TestPackage. Then,
we attach to it consecutive TestCases. The available test cases depend on compatibility of
their pre- and postconditions.

For each newly added TestCase, an automatic instantiation procedure is performed.
The procedure is presented in Figure 18. At its beginning the TestCase is assigned a con-
secutive number. For a nested TestCase, its number is segmented (e.g.: 2.3.1). The name of
the chosen UseCaseTestScenario and the description of the corresponding UseCaseTest
are transferred into the TestCase (step 1). The same is done for the UseCaseTestSce-
nario’s precondition and postcondition (step 2).

Having a given TestCase created, appropriate SVOSentencelnstances, ConditionSen-
tencelnstances and InvokeSentencelnstances are created. All the TestCaseSentences
(step 3) are transferred with their orderNumbers and sentenceTexts. All AbstractTests

720

Tomasz Straszak, Michal Smiatek

H1. Creation of Basic Test Case :Iaia)

v

(

2. Creation of Precondition and

Postcondition

)

Test Case
Sentence

SVO SEnt:—n ce

N4

._.:}n::lm:}n Sentence

Control Sentence

2. Creation of 5WVO 7. Creation of Condition 8. Creation of Control
S-Entence Sentence Sentence
4. Creation of 5WV0 9. Creation of invoked
Sentence at‘ta ched Tests Test Case
5. Creations of Predicate
Objects
[6. Creation of Predicate] Any other
Objects aﬂached Tests \\SLE—I"ItE—I'I ces?
yes) no

G 0. Test Case attached tests crﬂtinlﬂ%@

Fig. 18. Test Case instantiation procedure

of other types related to the DomainStatement pointed-at by the predicate relation are
transferred into adequate TestInstance specialisations. These TestInstances are inserted
as parts of appropriate SVOSentencelnstances (step 4). In the next step, directObjects and
indirectObjects of sentence predicates are created as DomainObjects on the basis of di-
rect and indirect Notions of the appropriate DomainStatement (step 5). All AbstractTests
related to Notions pointed-at by the Domain statements’ directNotion and indirectNo-
tion relations are transferred into adequate TestInstance specialisation instances. These
TestInstances of other types are contained as directObjects or indirectObjects (step 6).

In case of condition sentences, respective ConditionSentencelnstances are gener-
ated with their orderNumber and sentenceText preserved (step 7). Also, appropriate Con-
trolSentencelnstances are generated with appropriate orderNumber and sentenceText (step
8). Depending on the test engineer’s decision, a nested TestCase can be created on the
basis of the UseCaseTest related through a TestInvocationRelationship to the currently
processed UseCaseTest (step 9). If a use case test invocation is used, one of the invoked
UseCaseTestScenarios has to be instantiated recursively.

After creating test instances related to individual sentences, the procedure creates
TestInstances for all the AbstractTests related to the processed UseCaseTestScenario
(step 10). These TestInstances are contained in the appropriate TestCases. For each TestIn-
stance, specialisation check points are created as subtypes of relevant test parameters.

Model-Driven Acceptance Test Automation 721

Requirements

System Developer Test Developer

X

Application Logic in RSL interprets

transformation generation derives
derives
v
UML Model
gy stem Test Code
ode .
L Generation
Derivation
v v
System Test Execution System
(Under Test) (Under Test)

Fig. 19. TSL as a complement for the UML Testing Profile

6. TSL as an extension of the UML Testing Profile

TSL can be seen as a stand-alone language but it can be easily interfaced with other
languages for model-based testing. Specifically, it can be used in conjunction with UML-
based testing. UML is commonly used for software modelling but it lacks constructs
specific to software testing. To supplement UML in the area of testing, the UML Test-
ing Profile (UTP) was introduced by the OMG (Object Management Group) [33]. It uses
typical UML profiling mechanisms and offers a domain-independent specification of var-
ious test concepts based on the UML notation. UTP allows for creation, documentation,
visualization, specification and exchange of model-based test specifications.

The UTP-based validation can be used in conjunction with TSL-based testing. Figure
19 presents a relevant scenario. Starting from requirements, a system developer delivers
UML models, which are the basis for developing a given system. The same requirements
are used for manual creation of UTP models. On the basis of these test models, detailed
unit and integration tests can be executed [34]. However, this does not include high-level
acceptance tests. Here, TSL offers an extension allowing to derive such tests directly and
automatically from functional requirements.

The usage of RSL for defining application logic allows for automatic transforma-
tion of requirements into code and into acceptance tests in TSL. During these transfor-
mations, requirements-to-UML models and requirements-to-TSL-test traces are created.
These traces facilitate linking of UTP models with corresponding acceptance tests in TSL
through appropriate UML models. This allows to deliver a complete test suite, where
overall acceptance tests of a complex software system are expressed in TSL and tests of
other software project artefacts are expressed in UTP.

722 Tomasz Straszak, Michat Smiatek

41 Back

Pet search criteria

name

birth date m Select
Seek

<0:EI Back

Pet list

ID | NAME | BIRTH DATE | TYPE NAME OWNER FIRST NAME OWNER LAST NAME PHONE NUMBER

11| Max | 2014-02-20 | dog George Kowalsky 480-001-387
12 | Rex 2010-08-14 | cat George Kowalsky 480-001-387
13 | Iggy | 2011-11-06 | rabbit Melinda Samsara 433-659-884

visit

Add new pet Show wisits for
pet

Create new ‘

Fig. 20. Example screens produced from requirements in RSL

7. Case study

To validate the presented approach, we have conducted a case study. It is based on ex-
tended Pet Clinic requirements briefly introduced in Figures 2, 3 and 4. Figure 20 shows
example screens produced from the domain model in Figure 4. The upper screen reflects
the ‘pet search form’ element with the associated ‘pet search criteria’ and attributes. Anal-
ogously, the lower screen reflects the ‘pet list” element. These two screens should be pre-
sented to the user at appropriate times during use case execution (see sentences 2 and 5 in
Figure 3).

To perform the case study, we have developed a tool called ReDSeT (Requirements
Driven Software Testing). It is based on the Eclipse Rich Client Platform. It is closely inte-
grated with the ReDSeeDS tool (www.redseeds.eu [27]) which provides advanced editors
for RSL models (use cases, scenarios, notions and other requirements). The generated test
specifications can be included in the same Eclipse project as the source requirements spec-
ification and code. This enables integration of activities at different stages of the software
development project.

The ReDSeT tool is designed as a set of integrated plug-ins, which are responsible
for: automatic generation of tests, test management, use case test viewing, test scenario
editing, composing sequences of test cases and test data value editing. Test viewers and
test data value editors for the tests of other types can be additionally attached to the tool.

For the RSL to TSL model transformation, a dedicated transformation engine was
developed. It reads the RSL model stored in the ReDSeeDS repository (it uses a Java-
based graph technology [31]), executes the RSL to TSL transformation rules implemented
in Java and writes the TSL model into an EMF-based repository. Due to the use of the
EMF technology [29], the TSL meta-model can be easily extended in order to handle
other types of tests that are adapted to different types of requirements associated with use

Model-Driven Acceptance Test Automation 723

cases. For the test specification repository, XML files are used. This provides for technical
capabilities to easily extract test scripts when executing acceptance tests.

During the cases study, we first transformed the Pet Clinic requirements specification
into a test specification using the ReDSeT tool. When the automatic transformation was
complete, it was possible to manage the generated test specification organised in a tree
structure using the Test Specification Browser and dedicated editors available through
the ReDSeT perspective of the ReDSeeDS tool. Figure 5 shows parts of the structure of
the generated abstract tests corresponding to the requirements model for the Pet Clinic
system. The created use case tests and use case test scenarios could be reviewed in the
Test Editor. A dedicated Detailed Test View can be used for viewing test check points.

Having abstract tests generated, we created test scenarios composed of instantiated use
case test scenarios, using dedicated wizards. Figure 13 shows the ‘Create new visit for a
new pet’ test scenario structure in the Test Specification Browser. The wizards allowed
to make decisions on including optionally invoked use cases in the test scenario. In the
example test scenario, test cases ‘2.1 Create new visit - Create new visit” and ‘3.1 Show
visit details - Show visit details’ have been chosen to be instantiated as being invoked
from the respective two invoking use cases. Test cases could be viewed in the Test Editor,
while test values contained in test cases and included test of all types were edited in the
Detailed Test View.

In order to perform acceptance tests according to test scenarios defined in the ReDSeT
tool, test execution scripts were generated. These test scripts contain detailed steps for
the testers in the form of structured text. Each line represents one test with its name,
description, input data values and expected state of the system for the specified elements.
Part of a test execution script for the ‘Create new visit for a new pet’ is presented in Figure
21 in the form of a CSV text file. The rows that represent steps in a test scenario have filled
background and are shown as numbered test cases.

Each sentence in a test case is numbered with a test case number and an SVO sen-
tence number. Additional tests are included below respective test case sentences as shown
in Figure 21. For example, sentences 3 SVO 2 and 3.1 SVO 2 have additional tests which
define test data values consistent with appropriate domain elements (‘pet’ and ‘visit’)
attached to these particular sentences. A Non Functional Test is attached to the step ‘Sys-
tems fetches visit list for pet’ to examine performance of the search operation. In turn, a
GUI test is presented below the step 3 SVO 4 and is attached to the step’s direct object
(“visit list screen’) which is a Ul element.

On the basis of such test execution scripts, we have verified the developed Pet Clinic
software system. The results of each test step were noted in an additional column. In the
cases when tests have failed, the corresponding requirement could be easily found by
tracing to the appropriate requirements element. The implementation units were precisely
located then by examining traces to code, as described in the work by Smiatek et al. [23].

During the case study, several test scenarios, like: ‘Create new visit for a new pet’,
‘Create new visit with adding an owner and a pet’ or ‘Cancel all visits to the chosen
vet’ were created manually and automatically with the ReDSeT tool from the Pet Clinic
requirements specification.

The most visible advantage of using the ReDSeT tool in comparison to a fully manual
approach is a visible reduction of effort used to prepare tests. We did not need to manually
re-write (copy-paste with significant modifications) use case scenarios into test scenarios.

724 Tomasz Straszak, Michat Smiatek
1 t ch teris |Expects
Test Type Step Test Name Test Data RIEE) S
Values tictotest |d result
Test Case 3 Show visits for pet [N/A MNSA N/A N/&
U lects sh
SVO Sentence |3SvO1 SErSElert SeW N/A N/A N/A
visits
Domain Object|3 SVO 1 DirObj [show visits — N/A N/&
System gets pet data
SVO Sentence |3 5v0 2 ¥ gstsp N/A M/A M/A /A
for pet
Domain Object|3 SVO 2 DirObj] |pet data — N/A N/&
Eomain Object|3 SvO 2 IndirOhj|pet name lggy N/A N/A
System fetch isit
SVO Sentence |3 SvO 3 YSTEM TELERES VISIE i N/A N/A /A
list for pet
Duration of search .
NF Test 3 SV0 5 NF Test i NJA MSA search time |<1s
operations
ber of
omain Object|3 sv0 3 Dirokj |visit list nUmMBEr o 1|nfa /A
fetched
Domain Object|3 SVO 3 IndirObj|pet - MJ/A N,/A
Syst h isit
5VO Sentence |3 SVO 4 YSIEM SNOWS VIS N/A N/A /A
list screen
Domain Object|3 SVO 4 DirObj |visit list screen — N/A N/&
3 5V0 4 DirObj |Pets UIf b d
Ul Test Sl A orms N/A N/A ackground |,
GUI Test background color
Test Case 31 Show visit details |N/A M/A M/A N/A
SVO Sentence [3.15vO1 User selects show 1, N/A NfA N/A
visit details
Domain Object|3.1 W0 1 DirObj|show visit details - N/A N/A
SVO Sentence [3.15vO 2 System retrieves | N/A NfA N/A
visit details for visit
Domain Object|3.1 VO 2 DirObj|visit details - M/A N,/A
name; birth lggy; 2011
date; pet type; |11-06;
in Object 3.15V0 2 it visit date; is |rabbit; N/A N/A
emain BB ndirohj visl the first visit; |2015-04-
vet first name; [23; Helen;
vet [=ct name || eary

Fig. 21. Test execution script - attached test and SVO sentence object test

We just had to pick coarse-grained steps in the test scenario and the rest was done by the
tool. Due to requirements relationships transferred into the test specification, there was
no need to seek for all the related requirements to enclose them in the test scenarios. The
ReDSeT tool automatically transformed requirements of all types into abstract tests and
during instantiation they became part of test cases. Moreover, based on the tight coupling
of the behavioural specification with the separate domain vocabulary, the ReDSeT tool
could include all the required test data to be examined during testing. We could notice
that the test specification created purely manually had problems with determining all the
necessary paths that needed to be traversed to verify the developed system. By contrast,
through using the ReDSeT tool we could ensure that all the interrelated use cases and

other requirements are consistently traversed.

Model-Driven Acceptance Test Automation 725

The only drawback we have noticed when using the ReDSeT tool was that complete
tests could be executed only after completing a significant portion of the requirements
specification. Lacking sentences in test scenarios could be completed only by extending
the requirements model and re-transforming it into abstract tests and then recomposing
test scenarios. Thus knowledge and good management of the source RSL model was cru-
cial to successful test execution. Moreover, we have also noticed that the process could
significantly benefit from implementing partial generation and linking algorithms simi-
larly to those used for incremental code generation.

8. Conclusion

Our conclusion of the case study is that the proposed solution can be successfully used for
quick creation of tests that focus on intensive interaction between software systems and
their users. The obtained test scenarios define high quality instructions that can be easily
followed to verify the developed system from both functional and non-functional points
of view. Moreover, it assures that the created tests are coherent in terms of data that needs
to be provided and expected at the various check-points in the test scenarios.

The proposed idea and the ReDSeT tool offer a complete solution for creating accep-
tance tests suitable for interactive systems. The basis for creating sets of test scenarios are
detailed use case models with precisely specified scenarios. Requirements defined using
RSL significantly facilitate automatic test generation, and TSL allows for expressing in-
terrelated tests of different types in a way that should be comprehensible to the audience
responsible for acceptance testing.

The automatically generated tests can be re-used in various test scenarios. Preparation
of such generated tests can be done in parallel to formulation of requirements thus facil-
itating various test-driven approaches. Every change in requirements can be quickly rep-
resented in tests through their re-generation, retaining high level of detail of the changed
requirements.

It can be noted that the proposed method consists in black box testing and is inde-
pendent of the implementation technology of the system under test. Since RSL and TSL
are defined using metamodels, various other models can be generated from RSL and TSL
models. Also, traces from requirements to test cases can be used for automatic processing.
For example, test coverage reports can be generated which also associates this approach
with the problems of regression testing. Analysis of various possibilities and creation of
appropriate methods and tools will be subject to further research.

Another area of further research is to use RSL, TSL and their transformations [26]
as an implementation of Test Driven Development (TDD) [2] and Behaviour Driven De-
velopment (BDD) [18]. These ideas assume that software development is driven by tests
developed already at early stages of the software increments. The proposed solution seems
to have high potential to facilitate such approaches by making the whole process of test
creation very agile through automation of the transition from the user needs (cf. models
in RSL) to the tests that drive development.

Since TSL is built using an EMF-compliant metamodel and the ReDSeT tool is con-
structed as an Eclipse plug, the solution can be easily extended. To support other types of
tests, the metamodel and appropriate editor plug-ins should be developed. In the future, it
is planned to extend the solution by including detailed tests for the business logic and the

726 Tomasz Straszak, Michal Smiatek

graphical user interface. It is also planned to extend the tool with the mechanisms for gen-
erating test scripts in formats acceptable by test automation tools like e.g. IBM Rational
Functional Tester [7] or Selenium. This would allow for even higher levels of automation
in black-box testing.

References

1. Banerjee, 1., Nguyen, B., Garousi, V., Memon, A.: Graphical user interface (GUI) testing:
Systematic mapping and repository. Information and Software Technology 55(10), 1679-1694
(2013)

2. Beck, K.: Test Driven Development: By Example. Addison-Wesley (2002)

3. Bertolini, C., Mota, A.: A framework for GUI testing based on use case design. In: Proc. Third
International Conference on Software Testing, Verification, and Validation: Workshops. pp.
252-259 (2010)

4. Bizerra Junior, E.M., Silva Silveira, D., Lencastre Pinheiro Menezes Cruz, M., Araujo Wan-
derley, F.: A method for generation of tests instances of models from business rules expressed
in OCL. Latin America Transactions, IEEE (Revista IEEE America Latina) 10(5), 2105-2111
(2012)

5. Cockburn, A.: Writing Effective Use Cases. Addison-Wesley (2000)

6. Dalal, S.R., et al.: Model-based testing in practice. In: Proc. 21st International Conference on
Software Engineering (ICSE °99). pp. 285-294. ACM (1999)

7. Davis, C., Chirillo, D., Gouveia, D., et al.: Software Test Engineering with IBM Rational Func-
tional Tester: The Definitive Resource. IBM Press (2009)

8. Dyrkorn, K., Wathne, F.: Automated testing of non-functional requirements. In: Companion
23rd Conference on Object-Oriented Programming Systems Languages and Applications. pp.
719-720. ACM (2008)

9. El-Attar, M., Miller, J.: Developing comprehensive acceptance tests from use cases and robust-
ness diagrams. Requirements Engineering 15(3), 285-306 (2010)

10. Graham, I.M.: Task scripts, use cases and scenarios in object-oriented analysis. Object-Oriented
Systems 3(3), 123-142 (1996)

11. Gutiérrez, J.J., Escalona, M.J., Mejias, M., Torres, J.: An approach to generate test cases from
use cases. In: Proc. 6th International Conference on Web Engineering. pp. 113-114. ACM
(2006)

12. Jacobson, I., Christerson, M., Jonsson, P., C)vergaard, G.: Object-Oriented Software Engineer-
ing: A Use Case Driven Approach. Addison-Wesley (1992)

13. Jiang, M., Ding, Z.: Automation of test case generation from textual use cases. In: 4th Interna-
tional Conference on Interaction Sciences. pp. 102—-107 (2011)

14. Kaindl, H., Smiatek, M., Wagner, P, et al.: Requirements specification language definition.
Project Deliverable D2.4.2, ReDSeeDS Project (2009), http://www.redseeds.eu/

15. Marciniak, J.J., Shumskas, A.: Encyclopedia of Software Engineering, chap. Acceptance Test-
ing. Wiley, 2 edn. (2002)

16. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing. Wiley Publishing, 3 edn.
(2011)

17. Nebut, C., Fleurey, F., Le Traon, Y., Jézéquel, J.M.: Automatic test generation: A use case
driven approach. IEEE Transactions on Software Engineering 32, 140-155 (2006)

18. North, D.: Introducing BDD. Better Software Magazine (Mar 2006)

19. Nowakowski, W., gmialek, M., Ambroziewicz, A., Straszak, T.: Requirements-level language
and tools for capturing software system essence. Computer Science and Information Systems
10(4), 1499-1524 (2013)

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

Model-Driven Acceptance Test Automation 727

Shirole, M., Kumar, R.: UML behavioral model based test case generation: A survey. SIGSOFT
Softw. Eng. Notes 38(4), 1-13 (2013)

§mialek, M., Bojarski, J., Nowakowski, W., Ambroziewicz, A., Straszak, T.: Complementary
use case scenario representations based on domain vocabularies. Lecture Notes in Computer
Science 4735, 544-558 (2007), MODELS’07

Smiatek, M., Jarzebowski, N., Nowakowski, W.: Runtime semantics of use case stories. In:
2012 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). pp.
159-162 (2012)

Smialek, M., Jarzebowski, N., Nowakowski, W.: Translation of use case scenarios to Java code.
Computer Science 13(4), 35-52 (2012)

Smialek, M., Kalnins, A., Ambroziewicz, A., Straszak, T., Wolter, K.: Comprehensive system
for systematic case-driven software reuse. Lecture Notes in Computer Science 5901, 697-708
(2010), SOFSEM’10

§mialek, M., Nowakowski, W.: From Requirements to Java in a Snap: Model-Driven Require-
ments Engineering in Practice. Springer (2015)

Smialek, M., Nowakowski, W., Jarzebowski, N., Ambroziewicz, A.: From use cases and their
relationships to code. In: Second IEEE International Workshop on Model-Driven Requirements
Engineering. pp. 9-18. IEEE (2012)

gmialek, M., Straszak, T.: Facilitating transition from requirements to code with the ReDSeeDS
tool. In: 20th IEEE International Requirements Engineering Conference. pp. 321-322. IEEE
(2012)

Somé, S.S., Cheng, X.: An approach for supporting system-level test scenarios generation from
textual use cases. In: Proc. 2008 ACM Symposium on Applied Computing. pp. 724-729. ACM
(2008)

Steinberg, D., Budinsky, E., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework
2.0. Addison-Wesley, 2 edn. (2009)

Straszak, T., Smiatek, M.: Automating acceptance testing with tool support. In: 2014 Federated
Conference on Computer Science and Information Systems. pp. 1569-1574 (2014)

Team, J.: JGraLab: The Java Graph Laboratory. http://jgralab.uni-koblenz.de

Turner, D.A., Park, M., Kim, J., Chae, J.: An automated test code generation method for web
applications using activity oriented approach. In: Proc. 23rd IEEE/ACM International Confer-
ence on Automated Software Engineering. pp. 411-414 (2008)

UML Testing Profile (UTP) Version 1.2. Tech. Rep. formal/2013-04-03, Object Management
Group (2012)

Zander, J., Dai, Z., Schieferdecker, 1., Din, G.: From U2TP models to executable tests with
TTCN-3: An approach to model driven testing. Lecture Notes in Computer Science 3502, 289—
303 (2005), TestCon’05

Tomasz Straszak is a researcher interested in software modeling, requirements engineer-
ing and test engineering. He currently finalises his PhD work at the Warsaw University of
Technology. He gained professional experience in telco and banking sectors working as a
system/business analyst, software and solution architect and programmer.

Michat Smiatek currently holds the position of a Professor. He obtained a habilitation
(higher doctorate) degree in informatics from the Warsaw Military University and has
graduated the Warsaw University of Technology (MSc and PhD) and the University of
Sheffield (MSc). Prof. Smialek has more than 20 years of experience in software develop-
ment mainly using object-oriented methods. For several years he worked in the industry

728 Tomasz Straszak, Michal Smiatek

as a software developer and project manager. He teaches software modelling and require-
ments engineering in academia and for the major Polish companies. He published two
books: on UML modelling and model-driven requirements, and over 70 articles in na-
tional and international refereed journals and conference proceedings. He is a member of
program committees of international conferences in the area of software engineering, and
did reviews for major software engineering journals. His research interests include meta-
modelling, model transformations, scenario-based requirements engineering and object-
oriented development methods.

Received: December 17, 2014, Accepted: June 19, 2015.

