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Abstract. Data reduction techniques improve the efficiency of k-Nearest Neigh-
bour classification on large datasets since they accelerate the classification process
and reduce storage requirements for the training data. IB2 is an effective prototype
selection data reduction technique. It selects some items from the initial training
dataset and uses them as representatives (prototypes). Contrary to many other tech-
niques, IB2 is a very fast, one-pass method that builds its reduced (condensing) set
in an incremental manner. New training data can update the condensing set without
the need of the “old” removed items. This paper proposes a variation of IB2, that
generates new prototypes instead of selecting them. The variation is called AIB2
and attempts to improve the efficiency of IB2 by positioning the prototypes in the
center of the data areas they represent. The empirical experimental study conducted
in the present work as well as the Wilcoxon signed ranks test show that AIB2 per-
forms better than IB2.
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1. Introduction

The k-Nearest Neighbour (k-NN) algorithm is an effective lazy classifier [12]. For each
new, unclassified item x, it searches in the available training database and retrieves the k
nearest items (neighbours) to x according to a distance metric (e.g., Euclidean distance).
Then, x is assigned to the class where most of the retrieved k nearest neighbours belong
to. The k-NN classifier has some properties that make it a popular classifier: (i) it is
considered to be an accurate classifier, (ii) it has many applications, (iii) it is very easy
to implement, (iv) it is analytically tractable, and, (v) for k = 1 and unlimited items the
error rate is asymptotically never worse than twice the minimum possible, which is the
Bayes rate [11].

On the other hand, the k-NN classifier has two main drawbacks. The first one is the
high computational cost involved. Since all distances between an unclassified item and
the available training data must be estimated, the computational cost is high, and thus,
classification is a time consuming process. In cases of very large datasets, using the k-
NN classifier may be prohibitive. The second drawback is the high storage requirements
for the training set. Contrary to the eager classifiers that can discard the training data
after the construction of the classification model, the k-NN classifier needs all training
data available for accessing when a new item has to be classified. These two weaknesses
render the k-NN classifier inefficient for large datasets.
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Multi-attribute indexes [30] can efficiently accelerate the nearest neighbours search
and speed-up the k-NN classifier. However, storage requirements increase, since in addi-
tion to the training data, the index must be stored, too. Moreover, indexes can be applied
only on datasets with moderate dimensionality (e.g., 2-10). In higher dimensions, the
phenomenon of the dimensionality curse makes even sequential scans more effective than
indexes [34], thus, it is essential to first apply a dimensionality reduction technique.

Many Data Reduction Techniques (DRTs) have been proposed to address both weak-
nesses. DRTs are distinguished into prototype selection [18] and prototype abstraction
[32] algorithms. Prototype selection algorithms select items from the training set, whereas,
prototype abstraction algorithms generate prototypes by summarizing similar training
items. Prototype selection algorithms are also divided into two categories. They can be
either condensing or editing algorithms. Prototype abstraction and condensing algorithms
have the same motivation. They aim to build a small representative set, usually called
condensing set, of the initial training data. Usage of a condensing set has the benefits of
low computational cost and storage requirements and at the same time keeps classification
accuracy at high levels. On the other hand, editing algorithms aim to improve accuracy
rather than achieve high reduction rates. To do this, they improve the quality of the train-
ing set by removing outliers, noisy and mislabelled items as well as by smoothing the
decision boundaries between classes.

Although editing has a completely different goal than prototype abstraction and con-
densing, it can be used to improve their efficiency by increasing their reduction rates
and/or accuracy levels. More specifically, the reduction rates of many prototype abstrac-
tion and condensing algorithms highly depend on the level of noise in the training set.
Actually, the higher the level of noise in the training set, the lower the reduction rates
achieved. Consequently, effective data reduction implies removal of noise from the data,
i.e., application of an editing algorithm beforehand [13, 24]. Note that some condensing
algorithms integrate the idea of editing. These algorithms are called Hybrid [18].

A great number of DRTs have been proposed and are available in the literature. Also,
many the state-of-the-art surveys have been published since 2000. Prototype abstraction
and prototype selection algorithms are recently reviewed in [18, 32]. Moreover, the par-
ticular papers present interesting taxonomies and experimental results. Other well-known
surveys can be found in [9, 21, 23, 25].

IB2 belongs to the popular family of Instance-Based Learning (IBL) algorithms [3,
4]. IB2 is an one-pass incremental condensing algorithm. Actually, it is based on the
earliest and well known condensing algorithm, CNN-rule [22]. Contrary to CNN-rule
and many other state-of-the-art DRTs, IB2 can build its condensing set in an incremental
manner1. It can take into consideration new training items after the construction of the
condensing set and without needing the old removed items. Hence, it can be used in
dynamic/streaming environments [1] where new training data is gradually available. In
addition, the incremental nature of IB2 allows its execution on training sets that cannot fit
into main memory.

1 In the literature [18, 32], DRTs can be incremental or decremental depending on the way they
build their condensing set. An incremental technique begins with an empty condensing set and
adds items to it, whereas a decremental technique uses all training data as the initial condensing
set and then removes items. In this paper, the use of term incremental refers to the ability of the
DRT to update an already constructed condensing set.
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(a) Training set (b) Condensing set

Fig. 1. Initial training data and close-class-border data

In this paper, we attempt to improve the performance of IB2 by considering the idea of
prototype abstraction. Our contribution is the development and evaluation of a prototype
abstraction version of IB2 that we call Abstraction IB2 (AIB2). The proposed prototype
abstraction algorithm retains all the properties of IB2, but it is faster and achieves higher
reduction rates and improved accuracy.

CNN-rule and IB2 are presented in Section 2. Section 3 describes in detail the pro-
posed AIB2 algorithm. Section 4 presents an experimental study where k-NN is applied
on the original training sets and the corresponding condensed sets built by CNN, IB2 and
AIB2 on nine datasets. The experimental study is complemented by the statistical compar-
ison of the three DRTs through the Wilcoxon signed ranks test [14]. Section 5 concludes
the paper.

2. CNN-rule and IB2

The Condensing Nearest Neighbour (CNN) rule [22] is the earliest and also a reference
condensing algorithm. CNN-rule (and many other DRTs) builds its condensing set based
on the following simple idea. Items that lie in the “internal” data area of a class (i.e., far
from class decision boundaries) are useless during the classification process. Thus, they
can be removed without loss of accuracy. By adopting this idea, CNN-rule tries to place
into the condensing set only the items that lie in the close-class-border data areas. These
are the only essential items for the classification process. Figure 1 depicts this strategy.
The idea is that the k-NN classifier will be able to have similar accuracy using either
the training set (Figure 1(a)) or the condensing set (Figure 1(b)). However, a scan of the
condensing set involves much lower computational cost than that of the training set.

CNN-rule tries to keep the close-class-border items as follows (see Algorithm 1).
Initially, a random item from the training set (TS) is moved to the condensing set (CS)
(line 2). Then, CNN-rule applies the single nearest neighbour rule and classifies the items
of TS by scanning the items of CS (line 6). If an item is misclassified, it is moved from
TS to CS (lines 7–11). The algorithm continues until there are no moves from TS to CS
during a complete scan of TS (lines 3,4,10,13). This ensures that the content of TS is
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Algorithm 1 CNN-rule
Input: TS
Output: CS

1: CS ← ∅
2: pick a random item of TS and move it to CS
3: repeat
4: stop← TRUE
5: for each x ∈ TS do
6: NN ← Nearest Neighbour of x in CS
7: if NNclass ̸= xclass then
8: CS ← CS ∪ {x}
9: TS ← TS − {x}

10: stop← FALSE
11: end if
12: end for
13: until stop == TRUE {no move during a pass of TS}
14: discard TS
15: return CS

correctly classified by the content of CS. The remaining content of TS is discarded (line
14) to save space.

CNN-rule considers that misclassified items are probably close to decision boundaries
and so they must be included in the condensing set. An advantage is that it is a non-
parametric approach. It determines the number of the prototypes automatically, without
user-defined parameters. A drawback is that the resulting condensing set depends on the
order in which class labels of items enter the condensing set. Therefore, CNN-rule builds
a different condensing set by examining the same training data in a different order.

Furthermore, CNN-rule cannot handle new training data, i.e., is non-incremental. The
algorithm involves multiple passes over the data and it cannot use training data available
at a later time to update its condensing set. To construct an updated condensing set, CNN-
rule needs the complete training set (new and old data), thus, the training items that do
not enter the original condensing set should be retained. In addition, CNN-rule requires
that all training items are memory resident.

Although IB2 is based on CNN-rule, it is faster and incremental. Therefore, it can
handle new training data or datasets that cannot fit into memory. Actually, IB2 is an one-
pass version of CNN-rule (see Algorithm 2) and works as follows. When a new item x
of the training set (TS) arrives (line 3), it is classified by the single nearest neighbour
rule by scanning the contents of the current condensing set (CS) (line 4). If x is wrongly
classified, it is placed in CS (lines 5-7). Then, x is discarded since it has been examined
(line 8).

Similarly to CNN-rule, IB2 is non-parametric and its condensing set depends on the
order of training items. Contrary to CNN-rule, there is no guarantee that the condensing
set built by IB2 can correctly classify all examined training data. IB2 is very fast because
it is a one pass algorithm. Training data segments can update an existing condensing set
in a simple manner and without considering the “old” (removed) data that had been used
for the construction of the condensing set. Each new training item can be examined, be
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Algorithm 2 IB2
Input: TS
Output: CS

1: CS ← ∅
2: pick a random item of TS and move it to CS
3: for each x ∈ TS do
4: NN ← Nearest Neighbour of x in CS
5: if NNclass ̸= xclass then
6: CS ← CS ∪ {x}
7: end if
8: TS ← TS − {x}
9: end for

10: return CS

placed or not in the condensing set, and then, removed. Additionally, IB2 can handle
new class labels. All these properties render IB2 an appropriate condensing algorithm for
dynamic/streaming environments where new training data may be gradually available or
for training databases that cannot fit into the device’s memory.

Although many DRTs have been proposed during the past decades, here, we present
only CNN-rule and IB2 because they are ancestors of the proposed algorithm. There are
many other condensing algorithms that either extend the CNN-rule or are based on the
same idea, i.e., the removal of the non-close-border data. Some of the these algorithms are
the Reduced Nearest Neighbour (RNN) rule [20], the Selective Nearest Neighbour (SNN)
rule [29], the Modified CNN rule [15], the Generalized CNN rule [10], the Fast CNN
algorithms [6, 7], Tomek’s CNN rule [31], the Patterns with Ordered Projection (POP)
algorithm [2, 28], the recently proposed Template Reduction for k-NN (TRkNN) [16],
the Prototype Selection by Clustering (PSC) algorithm [26, 27] and of course the IB2
algorithm [3, 4].

3. The proposed AIB2 algorithm

The proposed Abstraction IB2 (AIB2) algorithm is a prototype abstraction version of IB2.
Therefore, AIB2 is a non-parametric, fast, one-pass prototype abstraction algorithm. It is
also appropriate for dynamic/streaming environments and can handle new class labels.
Like IB2, it can be applied on very large datasets that cannot fit into main memory or on
devices with limited main memory (e.g., sensor networks), without transferring data to
a server over a network for processing. The latter is usually costly and time-consuming.
Certainly, like IB2, AIB2 does not take into account the phenomenon of concept drift [33]
that may exist in data streams. IBL-DS [8] is based on the idea of IBL family of algorithms
that can effectively deal with this phenomenon.

The main difference between AIB2 and IB2 is the following. The items that are cor-
rectly classified by the 1-NN rule are not ignored. They contribute to the construction of
the condensing set by updating their nearest prototype. The main idea behind AIB2 is that
prototypes should be at the center of the data area they represent. To achieve this, AIB2
adopts the concept of prototype weight. Each prototype has a weight value as an extra
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Algorithm 3 AIB2
Input: TS
Output: CS

1: CS ← ∅
2: pick a random item y of TS and move it to CS
3: yweight ← 1
4: for each x ∈ TS do
5: NN ← Nearest Neighbour of x in CS
6: if NNclass ̸= xclass then
7: xweight ← 1
8: CS ← CS ∪ {x}
9: else

10: for each attribute attr(i) do
11: NNattr(i) ←

NNattr(i)×NNweight+xattr(i)

NNweight+1

12: end for
13: NNweight ← NNweight + 1
14: end if
15: TS ← TS − {x}
16: end for
17: return CS

attribute that denotes the number of training items it represents. The weight values are
used for updating the prototype attributes in the multidimensional space.

AIB2 is presented in Algorithm 3. Initially, the condensing set (CS) is populated by
a random item of the training set (TS) whose weight is initialized to 1 (lines 2–3). For
each item x of TS, AIB2 searches in CS and retrieves its nearest prototype NN (line
5). If x is misclassified, it is placed in CS and its weight is initialized to one (lines 6–
8). If x is correctly classified, NN ’s attributes are updated by taking into consideration
its current weight and the attributes of x. Effectively, NN “moves” towards x in the
multidimensional space (lines 10–12). Finally, the weight of NN is increased by 1 (line
13) and x is removed (line 15).

Figures 2 and 3 illustrate two-dimensional examples of AIB2 execution. Suppose that
the current condensing set includes three prototypes, two of class circle and one of class
square (Figure 2(a) and Figure 3(a)). Suppose that a new square item, a, arrives (Fig-
ure 2(b)). AIB2 should decide whether a will enter the condensing set or it will be used to
update an existing prototype. Since a is closer to a prototype of a different class, a enters
the condensing set and its weight value is initialized to one (Figure 2(c)). In contrast, sup-
pose that the new item a is a circle item (Figure 3(b)). Since a is closer to P , which is a
prototype of the same class, a updates P . Therefore P moves towards a and its weight is
increased by one (Figure 3(c)). In our example, the updated P lies in between the original
P and a because the weight of P was 1).

By updating the prototypes, AIB2 ensures that each prototype lies near the center of
the data area it represents. Notice that the weight of a prototype practically denotes the
population of the original items that it represents. Thus, although each time a new training
item arrives and is assigned to an existing prototype, it causes the prototype to “move”
towards the new item, the larger the weight of the prototype is, the smaller the “move”
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(a) Current condensing
set (3 prototypes)

(b) New item arrival (c) The new item enters
the condensing set

Fig. 2. AIB2 example: new prototype enters the condensing set

(a) Current condensing
set (3 prototypes)

(b) New item arrival (c) Updating of nearest
prototype

Fig. 3. AIB2 example: repositioning an existing prototype

is towards the new training item. Like IB2, AIB2 prototypes depend on the order of the
training items. It is possible that over time and because of a non-uniform arrival of training
data items, an AIB2 prototype will gradually move far away from some of the original
training items that it represents. Still, AIB2 prototypes with large weights will move very
slowly towards the new training data items. This is also a problem with IB2 that contrary
to CNN-rule cannot guarantee correct classification of all examined training data.

The idea is that a condensing set built by AIB2 will contain better prototypes com-
pared to the condensing set built by IB2 and will achieve higher classification accuracy.
In addition, we expect that updating the prototypes will reduce the number of items that
enter the condensing set (lines 6–8), and thus, AIB2 will achieve higher reduction rates
and lower preprocessing cost compared to IB2.

4. Performance Evaluation

4.1. Experimental setup

The three presented DRTs were evaluated using eight datasets distributed by the KEEL
repository2 [5] and summarized in Table 1. Seven datasets (all except KDD) were used

2 http://sci2s.ugr.es/keel/datasets.php
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without applying data normalization. Datasets MGT, SI and TXR are distributed sorted
on the class label. This affects all examined DRTs because their performance depends on
the order of data in the training set. Therefore, we randomized the items of these datasets.
The three algorithm implementations were written in C and Euclidean distance was the
distance metric used.

Table 1. Datasets description

Dataset Size Attributes Classes
Letter Recognition (LR) 20000 16 26

Magic Gamma Telescope (MGT) 19020 10 2
Pen-Digits (PD) 10992 16 10
Sat Image (SI) 6435 36 6
Shuttle (SH) 58000 9 7

Texture (TXR) 5500 40 11
Phoneme (PH) 5404 5 2

KddCup (KDD) 141481 23 36

The KDD dataset includes 494,020 items and 41 attributes. However, huge amounts
of data are duplicates and some attributes are unnecessary (three nominal and two fixed-
value attributes). We removed all duplicates and the five unnecessary attributes. Conse-
quently, the transformed KDD dataset includes 141,481 items and 36 attributes. It is worth
mentioning that duplicates are useless especially for k-NN classification with k = 1. They
do not influence the accuracy and negatively affect the computational cost. Although,
for k > 1, duplicates may influence the accuracy, they should be removed, especially
when fast execution of classification is required. In addition, the value ranges of the KDD
dataset attributes vary extremely. Therefore, we normalized all attributes to the interval
[0, 1] as follows. Assume that the dataset includes n items and an attribute e should be
normalized to [0, 1]. The normalized attribute value of the i-th item, i = 1, . . . , n is:

norm(ei) =
ei − Emin

Emax − Emin

where Emin and Emax are the minimum and maximum values for attribute e, respectively.
Finally, we randomized the dataset.

We did not include more DRTs in our experimentation because our purpose was to
focus on incremental and non-parametric DRTs. Of course, CNN-rule is non-incremental,
but it is considered a reference DRT and is being used in many papers for comparison
purposes. In addition, CNN-rule is the ancestor of IB2 and AIB2 and it makes sense to
use it in our experiments.

DRTs were evaluated by estimating three measurements: (i) classification accuracy,
(ii) reduction rate, and, (iii) preprocessing cost in terms of distance computations. Ac-
curacy measurements were estimated by executing the k-NN classifier with k = 1 over
the condensing set built by each DRT. For each dataset and DRT, we report the average
values of these measurements obtained via five-fold cross-validation. With the exception
of the KDD dataset, we used the five already constructed pairs of training and testing
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sets distributed by the KEEL repository. For the transformed KDD dataset, we created the
appropriate for cross-validation training/testing pairs. Of course, all measurements were
estimated after the arrival of all training items.

The original form of the MGT dataset contains high levels of noise. Noisy items are
misleading for the three DRTs and negatively affect reduction rates and the corresponding
accuracies. Thus, we tried to build a noise-free version of the MGT dataset. To achieve
this, we ran an editing algorithm before the execution of the DRTs. In particular, we
coded in C the Edited Nearest Neighbour (ENN) rule [36], which is the reference editing
algorithm. ENN-rule removes noisy items by using the following rule: a training item is
removed if its class label does not agree with the majority of its k nearest neighbours in
the initial training set. Consequently, ENN-rule needs to compute all distances among the
training items, i.e., N∗(N−1)

2 distances, where N is the number of the training items. By
applying ENN-rule (with k = 3, see [19, 25, 35]) on each training portion of each fold,
we built an extra dataset that we call MGT-ENN. Of course, the testing portions were not
edited by the ENN-rule. We tested the three DRTs on both forms of the MGT dataset.

4.2. Comparisons

The results of our experimental study are presented in Table 2. Each column lists the
results related to a classifier. Best measurements are in bold. The preprocessing cost mea-
surements are in million distance computations. For reference, Table 2 presents the accu-
racy measurements obtained by the conventional 1-NN classifier on the original training
set under the label Conv-1-NN.

We should clarify that the reduction rates of MGT-ENN do not take into account the
items removed by editing. They concern the size of the condensing set in relation to that of
the edited set. Note that ENN-rule considered as noise 20.08% of MGT items on average.
Therefore, the training portions of MGT-ENN include 20.08% fewer items than MGT on
average.

Although the three DRTs did not reach the accuracy levels of Conv-1-NN, they were
very close to them. With the exception of LR, SI and TXR, CNN-rule was more accurate
than IB2 and AIB2. However, it required much higher preprocessing cost and it achieved
lower reduction rates than IB2 and AIB2.

As we anticipated, the proposed algorithm performed better than IB2 in most datasets
and in terms of all comparison criteria. KDD is the only dataset where IB2 seems to be
better than AIB2. In the LR, SI and TXR datasets, AIB2 was more accurate than CNN-
rule. Although we expected even better performance, we believe that the improvements
achieved by AIB2 are noteworthy.

Moreover, as we expected, ENN-rule improved the efficiency of the classification pro-
cess on MGT data. Accuracies and reduction rates achieved by the three DRTs on MGT-
ENN (edited data) are higher than the corresponding measurements for MGT (non edited
data).

4.3. Non-parametric statistical test

In this subsection, we provide the results of a Wilcoxon signed ranks test [14]. We ran the
test four times: once on the nine measurements of each comparison criterion (classifica-
tion accuracy (ACC), reduction rate (RR), preprocessing cost (PC)), and once on the nine
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Table 2. DRTs Comparison in terms of Accuracy (Acc(%)), Reduction Rate (RR(%)) and Prepro-
cessing Cost (PC(M))

Dataset Conv-1-NN CNN-rule IB2 AIB2

LR
Acc: 95.83 92.84 91.98 94.12
RR: - 83,54 85.66 88.12
PC: - 163.03 23.37 20.10

MGT
Acc: 78.14 74.54 71.97 73.36
RR: - 60.08 70.60 71.90
PC: - 281.49 34.61 33.05

MGT-ENN
Acc: 80.44 79.26 78.01 78.81
RR: - 87.62 90.07 91.06
PC: - 68.61 8.48 7.65

PD
Acc: 99.35 98.68 98.04 98.33
RR: - 95.36 96.23 97.19
PC: - 11.75 1.78 1.38

SI
Acc: 90.60 88.21 86.87 89.42
RR: - 80.22 84.62 86.72
PC: - 17.99 2.22 1.92

SH
Acc: 99.82 99.76 99.73 99.72
RR: - 99.37 99.44 99.46
PC: - 45.30 8.26 7.89

TXR
Acc: 99.02 97.16 96.35 97.69
RR: - 91.90 93.33 94.95
PC: - 5.65 0.84 0.66

PH
Acc: 90.10 87.82 85.57 84.92
RR: - 76.04 80.85 81.75
PC: - 13.45 1.96 1.84

KDD
Acc: 99.71 99.66 99.48 99.41
RR: - 99.12 99.26 99.21
PC: - 384.90 55.58 58.78

measurements of an extra criterion that estimates the overall classification performance
of an algorithm. Our criterion adopts the idea presented in the statistical comparissons
in [17, 18]. More specifically, the overall classification performance measurements were
computed by averaging the normalized (to the range [0, 1]) measurements of the three
criteria. Note that since the higher the preprocessing cost, the lower the classification
performance, we used 1− normalized(PC) as the preprocessing cost. The overall clas-
sification performance criterion combines the three criteria by considering all of them as
having the same significance.

Table 3 illustrates the results of the Wilcoxon test. The columns with label “W/L”
count the number of wins and loses, respectively. The columns with label “Wilcoxon”
list the Wilcoxon significance level. When that value is lower than 0.05, one can safely
claim that the difference between the compared algorithms is statistically significant. We
observe that this is true in most cases. In terms of accuracy, CNN-rule has more wins
than AIB2 and AIB2 has more wins than IB2. However, there is no statistical difference
between the corresponding algorithms. In addition, AIB2 is statistically better than both
CNN-rule and IB2 in terms of reduction rate, and AIB2 is statistically better than CNN-
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rule in terms of preprocessing cost. On the other hand, although it is clear that AIB2 is
faster than IB2, this is not statistically supported (note that we have adopted the strict
threshold Wilc. = 0.05). Finally, we observe that AIB2 is statistically better than the
other algorithms in terms of the overall classification performance.

Concerning CNN-rule and IB2 (last table row), we observe that IB2 is statistically
better than CNN-rule in terms of reduction rate and preprocessing cost. In contrast, CNN-
rule is statistically better than IB2 in terms of accuracy.

Table 3. Results of Wilcoxon signed ranks test

Methods ACC RR PC Overall performance
W/L Wilcoxon W/L Wilcoxon W/L Wilcoxon W/L Wilcoxon

AIB2 vs CNN 3/6 0.767 9/0 0.008 9/0 0.008 9/0 0.008
AIB2 vs IB2 6/3 0.066 8/1 0.015 8/1 0.086 7/2 0.028
IB2 vs CNN 0/9 0.008 9/0 0.008 9/0 0.008 9/0 0.008

5. Conclusions

Data reduction is an important research issue in the context of k-NN classification. This
paper proposed the AIB2 algorithm, an abstraction DRT that is based on the well-known
condensing IB2 algorithm. The main concept behind AIB2 is that each generated pro-
totype should be near to the center of the data area it represents. Like IB2 and contrary
to CNN-rule and many other DRTs, AIB2 is an incremental DRT. This property renders
AIB2 appropriate for dynamic domains where new training data is gradually available
and for datasets that cannot fit into main memory.

The experimental results illustrate that AIB2 can achieve higher reduction rates and
classification accuracy and lower preprocessing cost than IB2. In addition, AIB2 is prefer-
able to CNN-rule when preprocessing cost and/or reduction rates are more critical criteria
than accuracy and, of course, when an incremental DRT is required. The improvement
offered by AIB2 was statistically confirmed by the Wilcoxon signed ranks test.
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