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Abstract. Many software engineering activities entail dealing with legacy 
information systems. When these systems become too costly to maintain, or when 
new technologies need to be incorporated, they need to be replaced or somehow 
reengineered. This can be done with significantly reduced amount of effort and 
cost if the conceptual models of these systems are available. Reverse engineering 

is the process of analyzing a subject system to create representations of the system 
at a higher level of abstraction. Relational databases are a common source of 
reverse engineering. Starting from a physical database schema, that is recorded 
into relational database schema data repository, the conceptual database schema or 
logical database schema could be extracted. The extraction process may be seen as 
a chain of model-to-model transformations that trace model elements from a 
model at the lower level of abstraction to a model at the higher level of 
abstraction, achieved through meta-modeling. In the paper we present generic and 
standard database constraint meta-models, focusing on multi-relational database 

constraints captured in a legacy database. These meta-models are aimed at support 
of model transformations to create conceptual models, as a useful source for the 
system reengineering process. 

Keywords: Model-driven Software Engineering, Meta-modeling, Inclusion 
Dependency, Database Reengineering. 

1. Introduction 

The evolution in organization procedures and objectives over the time significantly 

reduces the effectiveness of an information system implemented to fulfill organizational 

information requirements. Coupled with the technological development it becomes the 

major cause for a legacy information system replacement or any form of its 

reengineering. A new system can be redeveloped from scratch, but in that case the 

knowledge captured in the legacy system is lost. Legacy system replacement or 

reengineering can be done with significantly reduced amount of effort and cost if the 

conceptual models are reconstructed from them. Reverse engineering is the process of 

analyzing a subject system to create models of the system at a higher level of 
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abstraction. It encompasses a broad set of methods and tools related to understanding 

and modifying information systems. Relational databases are at the core of most 
company information systems, hosting critical information for the day to day operation 

of the company. The knowledge captured in them can serve as an important resource in 

a legacy information system modernization project and they are a common source of 

reverse engineering processes. Starting from a physical database schema, that is 

recorded into the relational database schema data repository, the conceptual database 

schema or logical database schema may be extracted. All of these database schemas 

represent models at different levels of abstraction. An extraction process may be seen as 

a chain of model-to-model (M2M) transformations that trace model elements from a 

model at the lower level of abstraction to a model at the higher level of abstraction. 

Models are widely used in engineering disciplines. In the model-driven approach to 

software engineering (MDSE) the idea of abstracting implementation details by 
focusing on models as first class entities is promoted in [30]. Models are used to 

specify, simulate, test, verify and generate code for the application to be built [9]. Each 

model is expressed by the concepts of a modeling language that is specified by means of 

a meta-model. A meta-model defines a set of valid models [5]. An M2M transformation 

is based on meta-models that are conformed by the source and target models of the 

transformation. These meta-models are said to be in support of M2M transformation. 

In a forward engineering process, designers start with a high-level model, abstracting 

from all kinds of platform issues. Through a chain of M2M transformations, ending up 

with a model-to-text (M2T) transformation, the initial platform independent model 

transforms iteratively to a series of models with less degree of platform independency, 

introducing more and more platform specific extensions. Conversely, in a reverse 

engineering process, the abstraction level of models and degree of platform 
independency are increasing throughout the chain of transformations. 

Here we present a part of our research efforts focused on meta-models relating to 

databases that we call database meta-models. These meta-models are in support of 

database M2M transformations. In [28] we proposed the classification of database meta-

models as follows: i) data model (dm) meta-models; ii) generic database schema meta-

models; iii) standard physical database schema meta-models; and iv) vendor-specific 

physical database schema meta-models.  

In [29] we have proposed a meta-model of relational database schema concerning 

inclusion dependency (IND) constraints. Both meta-model of the relational database 

schema and meta-model of the Universal Relational Schema (URS) are presented there. 

In the context of forward engineering, these meta-models enable the platform 
independent specification of a broad class of INDs and the development of M2M and 

M2T transformations. The meta-model of INDs is important in the context of database 

and information system reverse engineering, too. A discovery of inclusion dependencies 

has attracted a lot of research interests together with methods for discovery of INDs. A 

formal specification of discovered INDs by means of proposed IND meta-model 

provides a better support of the automated reengineering and improvement of legacy 

databases.  

Here we shift focus on M2M transformation of a physical database schema to a 

logical relational database schema. Therefore, we present one generic and one standard 

physical database schema meta-model. Generic database schema meta-models are based 

on theoretical foundations of a data model as it is, for example, relational data model. 

The relational data model is the focus of a continuous standardization process, and 
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therefore we have extracted the standard physical database schema meta-models 

according to the specific SQL standard. We have developed a meta-model of relational 
database schema (RDSMM), which can be classified as a generic database schema 

meta-model. Also, we developed a meta-model of a standard physical database schema 

(SPMM). We selected these meta-models, because they are in support of database 

model transformations that capture logical database schemas based on RDSMM from 

legacy databases based on SPMM. In this way, the extraction and conceptualization of a 

database schema from a legacy database is provided. Then, it can be analyzed, 

restructured or improved and it becomes the input of a forward engineering process to 

get a modernized database schema.   

To specify and manage RDSMM and SPMM, we used the Eclipse Modeling 

Framework (EMF) [16]. Both of these two meta-models are complex, and here we focus 

on their parts aimed at specifying multi-relational constraints, and particularly INDs. An 
overview of a complete meta-model of the relational database schema may be found in 

[28]. It comprises several modeling concepts, like: Attribute Constraint, Relation 

Scheme, Universal Relational Schema (URS) and Relational Database Schema. 

Apart from Introduction and Conclusion the paper has five sections. Section 2 is 

devoted to the recall of basic notions. A generic database schema meta-model is 

presented in Section 3. A standard physical database schema meta-model is explained in 

Section 4. In Section 5 we present a case study of an M2M transformation. Related 

work is presented in Section 6. 

2. Relational Database Schema 

In this section, we briefly recall some basic notions of the relational data model used in 

the text to assist the reader in easier following the rest of the paper. They are borrowed 

from many sources, as well as [13] and [15], and are slightly adapted to the needs of our 

research.  

Let R be a finite set of attributes. For each attribute A  R, the set of all its possible 
values is called the domain of A. The domain associated with an attribute A is denoted 

by Dom(A), and the set of possible values of attribute A (A-values) is denoted by 

dom(A) [25].  A domain constraint restricts allowed values within a certain domain. A 

tuple t over R = {A1, ..., Am} is a sequence of values (a1, ..., am) where: (i{1, …, 

m})(ai  dom(Ai)). A relation over R, denoted with r(R), is a set of tuples over R.  
A universal relational schema (URS) is a pair (R, UC), where R is a set that 

contains all the attributes of the Universe of Discourse (UoD) with associated domain 

constraints, and UC is a set of URS constraints that comprises a set of functional 

dependencies and non-trivial inclusion dependencies. R is called universal attribute set 

(UAS). A universal relation u(UAS) is a relation over the UAS. A functional 

dependency (FD) is a relationship that exists when each X-value uniquely determines a 

Y-value. Formally, given a set of attributes R, a functional dependency between attribute 

sets X and Y is represented as X→Y, which specifies that Y is functionally dependent on 

X. A non-trivial inclusion dependency is a statement of the form [X]  [Y], where X 
and Y are non-empty sequences of attributes from UAS. The cardinalities of X and Y 

have to be equal (unlike the cardinalities of attribute sets X and Y in FD), and the 

corresponding sequence elements from X and Y have to be domain compatible (again, 
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unlike FD). A universal relation u is said to satisfy the non-trivial inclusion dependency 

if for each tuple t  u exists at least one tuple s  u such that t[X] = s[Y], where 
t[X] represents the projection of tuple t on X.  There are different database design 
approaches ([15], [25]). One of them is based on the URS assumption. Using the set of 

FDs, the URS is decomposed into a set of relation schemes, resulting in a relational 

database schema.  

Formally, a relational database schema is a pair (S, I), where S is a finite set of 

relation schemes and I a finite set of multiple relational constraints. A relation scheme 

is a named pair N(R, C) where N is the name of relation scheme, R is a finite set of 

attributes (from UAS) and C a finite set of relational constraints. C contains attribute 

value constraints alongside with null constraints, tuple check constraints, 

uniqueness constraints and key constraints. A set of multiple relational constraints 

I, contains extended tuple constraints (an example can be seen in [28]) and inclusion 

dependencies. Here we give only the definition of inclusion dependency.  

Let Nl(Rl, Cl) and Nr(Rr, Cr) be two relation schemes, where Nl and Nr are their names, 
Rl and Rr, their corresponding sets of attributes, and Cl and Cr their corresponding sets of 

relation scheme constraints. An inclusion dependency (IND) is a statement of the form 

Nl[LHS]  Nr[RHS], where LHS and RHS are non-empty sequences of attributes from Rl 

and Rr respectively. Having the inclusion operator () orientated from the left to right 
we say that relation scheme Nl is on the left-hand side of the IND, while the relation 

scheme Nr is on its right-hand side. We use the indexes l and r, and the names of 

attribute sequences LHS and RHS, in order to indicate the left and right hand side of the 

IND, respectively. To define a validation rule of the IND we use the following notation: 

(i) the relation r(Nl) is a set of tuples u(Rl) (or just u) satisfying all constraints from the 

constraint set Cl; (ii) X-value is a projection of a tuple u on the set of attributes X; and 

(iii) according to the aforementioned orientation of the inclusion operator, r(Nl) is called 

the referencing relation, while r(Nr) is called the referenced relation. Informally, a 

database satisfies the inclusion dependency if the set of LHS-values in the referencing 

relation r(Nl) is a subset of the set of RHS-values in the referenced relation r(Nr). 
There are two basic kinds of INDs: key-based INDs and non-key-based INDs. An 

IND is said to be key-based if the RHS is a key of the relation scheme Nr. Otherwise, it 

is a non-key-based. More often a key-based IND is called referential integrity 

constraint (RIC). A non-key-based IND with a LHS that is a key of the relation scheme 

Nl, where a RIC Nr[RHS]  Nl[LHS] is specified at the same time, is called inverse 

referential integrity constraint (IRIC). The detailed explanation of these constraints 

may be found in [4]. 

In Fig. 1, a simplified part of a University database is given. The database satisfies 

inclusion dependencies: 

Ind1: Course[DepID]  Department[DepID]  

Ind2: Department[DepID]  Course[DepID]   

Ind3: Employed_At[EID]  Employee[EID]   

Ind4: Employee[EID]  Employed_At[EID]   

Ind5: Employed_At[DepID]  Department[DepID]   

Ind6: Taught_By[DepID + CID]  Course[DepID + CID]  

Ind7: Employee[SupervisorId]  Employee[EID]  

Ind8:Taught_By[EID + DepID]  Position = ‘Prof.’ or Position = ‘Ass.’ 

                                                                    Employed_At  Employee[EID + DepID]. 
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Ind1, Ind3, Ind5, Ind6 and Ind7 are the RICs since DepID, EID, DepID, 

DepID + CID and EID on the RHS of INDs are the keys of relation schemes 
Department, Employee, Department, Course and Employee, respectively.  Ind1, Ind3, 

Ind5 and Ind7 are unary RICs, since the cardinality of the attribute sequence is 1, while 

Ind6 is a binary RIC since the cardinality of the attribute sequence is 2. Generally, if the 

cardinality of attribute sequence is n, an IND is said to be n-ary. Ind7 from the 

relational database schema is the consequence of a non-trivial IND from URS: 

[SupervisorId]  [EID], while other RICs are the consequence of the decomposition of 
URS.  Ind2 and Ind4 are the IRICs since: i) there are specified RICs Ind1 and Ind3, 

respectively; and ii) DepID and EID on the LHS of  Ind2 and Ind4 are the keys of 

relation schemes Department and Employee, respectively. 

 
Employee     Department 

EID FName LName Position SupervisorID  DepID DName 

003 Iva Ilic Ass.   007  D1 Comp. 

007 Aca Jovic Prof.   009  D2 Mech. 

009 Ina Ras Prof.   D3 Art 

010 Mila Kun PR   009    

        

Employed_At    Course   

EID DepID Percent   DepID CID CName 

003 D1 100   D1 001 Java 

007 D1 70   D1 002 Databases 

007 D3 30   D2 003 Robotics 

009 D2 100   D3 001 Painting 

010 D1 100      

        

Taught_By      

EID DepID CID ClassPerWeek  

003 D1 001 3     

007 D1 002 2     

007 D3 001 2     

009 D2 003 4     

 

Fig. 1. A part of University database 

IND Ind8 requires further explanation. This type of IND is called extended IND [28] 

due to the fact that at least on the one side of the IND there is the natural join of two or 

more relation schemes. In our example, the RHS of the IND contains the natural join of 

two relation schemes Employed_At  Employee. Ind8 is also an example of selective 

(conditional) IND ([8], [17], [28]). An IND is said to be selective if there is a selection 

condition at least on the one side of the IND. The semantics of constraint Ind8 is that a 

course can be taught only by an employee that is employed at the department that 

contains the course, and that the employee must be either professor or assistant. 
Therefore, a database with a relation Taught_by that would contain one of the tuples: 

(003, D3, 001, 1) or (010, D1, 002, 2) would not obey the constraint Ind8 and would not 

be formally consistent. The first tuple insertion would fail due to the fact that employee 

with EID = 003 is not employed at department D3, and the second due to the fact that 

employee with EID = 010 has the position of PR, and is neither a professor nor an 

assistant. 
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Integrity has always been an important issue for database design and implementation. 

Its importance grows with increasing demands regarding the quality and reliability of 
data. Integrity constraint specifications are translated into constraint enforcing 

mechanisms provided by the Database Management System (DBMS) used to 

implement a database. Most of the commercial DBMSs offer efficient declarative 

support for the domain constraints, null value constraints, uniqueness constraints and 

RICs (by means of foreign key constraints). On the contrary, non-key-based INDs are 

completely disregarded by actual RDBMSs, obliging the users to manage them via 

custom procedures or triggers. That is the reason why these kinds of constraints are 

ignored by database designers in a way that they do not recognize, specify and 

implement them. In the paper we present two meta-models of relational database 

constraints: the Generic Constraint Meta-Model (GCMM) and the Standard Constraint 

Meta-Model (SCMM). In that way two abstract syntaxes of two modeling languages are 
defined to enable database schema specification. That is a prerequisite for the 

development of M2M transformations that would enable automated transformation of a 

physical database schema extracted from a database to a relational database schema 

based on theoretical foundations of the relational data model. These specifications may 

be transformed into declarative scripts, procedures or triggers for integrity constraint 

enforcement supported by a DBMS. These transformations are M2T transformations. In 

the following section the fundamental GCMM concepts are presented. 

3. Fundamental Generic Constraint Meta-Modeling Concepts 

There are two approaches to perform relational database design: top-down (design by 

analysis) and bottom-up (design by synthesis). Top-down design methodology involves 

conceptual schema design (e.g., using Entity-Relational data model) followed by its 

mapping into relational database schema that can be improved in the subsequent 

analysis process. Bottom-up approach presupposes that the set of UoD attributes and 

functional dependencies among them have been given as a URS. Several algorithms 

may be used to decompose URS into a relational database schema. Our meta-model 

comprises modeling concepts to specify both: URS and relational database schema. Our 
main motive to design a meta-model of URS was to support the database design 

approaches based on the URS assumption and appliance of a synthesis algorithm to 

generate relational database schema starting with a URS. In our ongoing research we 

develop M2M transformations of legacy relational database schema into URS. We use 

our IIS*Studio development environment (presented in [3] and [22]) aimed at relational 

database schema generation and integration, to reengineer relational database schema 

and to further generate application prototype. 

Fundamental GCMM concepts are presented in Fig. 2. Project concept encompasses 

URS concept and RelationDBSchema concept.  
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Fig. 2. Fundamental GCMM concepts 

The Constraint is an abstract concept that has two properties: Deferrability and 
InitiallyDefer. Deferrability is aimed to specify whether or not constraint checking can 

be deferred until the end of the transaction. InitiallyDefer is used to specify the default 
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checking behavior for constraints that are deferrable. The Constraint is specialized as: 

URS constraint (abstract concept URSCon), relation scheme constraint (abstract concept 
RelationCon) or multi relation constraint (abstract concept ManyRelationCon). There 

are three types of URS constraints: domain, functional dependency and non-trivial 

inclusion dependency. A detailed description of URS constraint meta-model may be 

found in [29]. Relation scheme constraints are specialized as: attribute value constraints 

(AttValCon), uniqueness constraints (UniqueCon), key constraints (KeyCon) and check 

constraints (CheckCon). Inclusion dependencies (InclusionDependency) and extended 

tuple constraint concept (ExTupleCon) specialize ManyRelationCon concept. 

Hereinafter we give a detailed description of inclusion dependency meta-model. 

3.1. Inclusion Dependency Meta-Model 

The InclusionDependency modeling concept is abstract and it generalizes concepts for 

modeling several kinds of INDs listed in Section 2. As can be seen in Fig. 3, 

InclusionDependency is first specialized with ReferentialIntegrityCon and 

NonKeyBased IND. The first is a concrete modeling concept aimed at modeling RICs. 

The second concept is abstract and is further specialized with concrete modeling 

concepts: InverseReferentialIntegrityCon and NonInverseReferentialIntegrityCon aimed 

at modeling IRICs and other INDs (that are neither RIC nor IRIC), respectively. Each of 
these three concrete concepts is further specialized with concrete concepts aimed at 

modeling: extended RICs, extended IRICs and others extended INDs. The 

InclusionDependency modeling concept has two properties: SelectionCon_L and 

SelectionCon_R that are used to specify selection conditions on the left or right side of 

IND. These properties are optional and if at least one of them is specified that implies 

that the modeled constraint is selective (conditional) IND. The third property 

ReferencingType is used to specify whether the referencing is default, partial or full, for 

n-ary INDs. For unary INDs there are no differences between these referencing types. 

The relation schemes specified in an IND may have two roles: referencing, if it is on 

the LHS of the IND and referenced, if it is on the RHS of the IND. In Fig. 3, roles are 

modeled with concrete concepts RoleReferenced and RoleReferencing. For the 

referenced role, critical database operations that may violate the IND constraint are 
deletes and updates, and for the referencing role, critical operations are inserts and 

updates. The RoleReferenced and RoleReferencing concepts contain properties aimed at 

specifying the actions that would take place to preserve database from violation of an 

IND constraint in case when a critical operation occurs. 

For an IND it has to be specified at least one relation scheme in each of the roles. If 

an IND is an extended RIC, than at least one more relation scheme must be specified as 

the referencing role of the IND. In the case of extended IRICs at least one more relation 

scheme must be specified as the referenced role of IND. For other extended INDs at 

least one more relation schema has to be specified as the referencing or as the 

referenced role of the IND. 

For each IND, the attribute sequences on the LHS and RHS of the IND must be 
specified. In particular, for a RIC on the RHS is specified a key of a referenced relation 

scheme and for an IRIC on the LHS is specified a key of a referencing relation scheme, 

instead of an arbitrary attribute sequence. 
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Fig. 3. Meta-model of Inclusion dependency concept 

3.2. OCL Invariants to Improve Constraint Meta-Model Semantics 

A meta-model defines the modeling language, i.e. the constructs that can be used to 

make a model and, consequently, defines a set of valid models [5]. Meta-models 

presented in Fig. 2 and Fig. 3 comprise a lot of knowledge about the real system 

(relational database schema) that would be modeled by means of it. But, it is still not 

enough. In order to improve the semantics of our meta-model we use Object Constraint 

Language (OCL) to specify constraints concerning modeling concepts that can not be 

expressed solely by means of UML class diagram concepts.  Here we present some 

OCL constraint examples. 

In Fig. 4, an OCL invariant is presented that enables checking if the sequence of 
attributes on the LHS of a RIC belongs to the set of attributes of the relation scheme that 

is specified as the referencing in the RIC. In addition, it checks if the key specified at 

the RHS of a RIC is a key of the relation scheme specified as referenced in the RIC. 

A similar OCL invariant for the extended RIC can be seen in Fig. 5. The difference is 

in the fact that attributes for attribute sequence must belong to at least one of the relation 

schemes specified as referencing in the RIC.  

In addition to checking of conformance between attribute sets and specified relation 

schemes, in Fig. 6 is presented an OCL invariant that checks if the appropriate RIC is 

specified for an IRIC. 
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invariant CheckLHSAttributeRIC: 
LHS_Attr_RIC->forAll(a : ConstraintRDM::AttValCon |                   
                                                                 a.Attr_BelongsRS = self.LHS_RS.LHS_RS_IND); 
invariant CheckRHSAttributeRIC: 
RHS_Key->forAll(a : ConstraintRDM::KeyCon |  
                                                                 a.Key_BelongsRS = self.RHS_RS.RHS_RS_IND); 

Fig. 4. OCL invariant for RIC attribute checking 

invariant CheckLHSAttributeExRIC: 
LHS_Attr_RIC->forAll(a : ConstraintRDM::AttValCon |  

                                                                a.Attr_BelongsRS = self.LHS_RS.LHS_RS_IND or  
                                                                a.Attr_BelongsRS = LHS_RS_Ex_RIC.LHS_RS_IND); 

invariant CheckRHSAttributeExRIC: 
RHS_Key->forAll(a : ConstraintRDM::KeyCon | 

                                                                      a.Key_BelongsRS = self.RHS_RS.RHS_RS_IND); 

Fig. 5. OCL invariant for extended RIC attributes checking 

invariant CheckRIC: 
LHS_Key = RIC.RHS_Key and RHS_Attr_NKB_IND = RIC.LHS_Attr_RIC; 
invariant CheckRHSAttributeIRIC: 
RHS_Attr_NKB_IND->forAll(a : ConstraintRDM::AttValCon |  

                                                                      a.Attr_BelongsRS = self.RHS_RS.RHS_RS_IND); 
invariant CheckLHSAttributeIRIC: 
LHS_Key->forAll(a : ConstraintRDM::KeyCon | 

                                                                        a.Key_BelongsRS = self.LHS_RS.LHS_RS_IND); 

Fig. 6. OCL invariant for the RIC – IRIC pair existence checking 

4. Fundamental Standard Constraint Meta-Model Concepts 

The relational data model is a superior logical data model and the acceptance of 

RDBMSs is widespread, too. Structured Query Language (SQL) is currently available 

in most commercial and open-source RDBMSs. It is also the focus of a continuous 

standardization process, resulting in SQL standards (the current revision is: SQL:2011, 
ISO/IEC 9075:2011). RDBMS products more or less comply with an SQL standard. 

Here we propose a standard physical database schema meta-model (Fig. 7). Instead of 

attribute and relation scheme concepts from GCMM, in SCMM there are column 

(Column) and table (Table) concepts, respectively. The Constraint abstract concept has 

the same properties, as the corresponding concept in GCMM.  There are four concepts 

to specialize the Constraint concept: check constraint (CheckCon), primary key 

constraint (PrimaryKeyCon), uniqueness constraint (UniqueCon) and foreign key 

constraint (ForeignKey). The UniqueCon and PrimaryKeyCon concepts indirectly 

specialize the Constraint concept, via their generalization (PKeyUnique). A detailed 

description of SCMM, alongside with appropriate OCL invariants may be found in [3]. 
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In the next section an illustration of an M2M transformation is presented. The 

transformation is based on SCMM and GCMM. 

 

Fig. 7. Fundamental SCMM concepts 
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5. Case Study – Model-To-Model Transformation  

To specify and manage presented meta-models we used the Eclipse Modeling 

Framework (EMF), Eclipse Juno 4.2.1. and OCL 3.2.1. After specifying the meta-

model, a fully functional Eclipse editor can be generated for it. The editor guides a 

database schema specification process and ensures the conformance of the database 

schema with the proposed meta-model. By means of such an editor, we have specified a 

relational database scheme of the University database whose part is presented in Section 

2. In Fig. 8, the conceptual database schema of the University database is visually 

represented by means of a UML class diagram to facilitate better understanding of 

database constructs and relationships between them. The relational database schema 

University contains the set of relation schemes: Employee, University, Department, 
WorkSite, Course, EmployedAt and Taught_By, accompanied with the set of multi-

relational constraints. The detailed specification of the aforementioned relational 

database schema may be found in [28]. 

 

 

Fig. 8. The conceptual database schema of University database 

A part of University_PDBS database schema modeled by means of the Eclipse editor 

generated from presented SCMM is shown in Fig. 9 (a). In this example it is captured 

from database repository.  

In Fig. 9 (b) a part of the University_SDBS is presented. It is the output of the 
University_PDBS2University_SDBS model-to-model transformation that is based on 

SCMM and GCMM. The transformation will transform a vendor specific physical 

database schema that conforms to the SQL standard database schema, into generic, 

relational database schema. The Atlas Transformation Language (ATL) is used to 

implement University_PDBS2University_SDBS transformation. 

In Fig. 10 (a), ATL rules for mapping the ForeignKey concept onto 

ReferentialIntegrity Con are presented. Rules for mapping the ForeignKey concept onto 

the NonInvReferentialIntegrityCon concept are shown in Fig. 10 (b). 
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a) Model of University_PDBS 

conformant with SCMM 

b) Model of University_RDBS conformant 

with GCMM 

Fig. 9. Models of University_PDBS and University_RDBS 

 
 

a)ATL rules to map ForeignKey concept 
onto ReferentialIntegrityCon concept 

b) ATL rules to map ForeignKey concept onto 
NonInvReferentialIntegrityCon concept 

Fig. 10. ATL transformation rules 

6. Related Work 

Meta-modeling is widely spread area of research. OMG's Model-Driven Architecture 
(MDA) [26] currently is the most mature formulation of the MDSE paradigm. It refers 

to a high-level description of an application as a Platform Independent Model (PIM) and 

a more concrete implementation-oriented description as a Platform Specific Model 

(PSM) [26]. The OMG's Meta Object Facility (MOF) defines the metadata architecture 

that lies at the heart of MDA [24]. MOF is used to define semantics and structure of 
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generic meta-models or domain specific ones. There are numerous references covering 

MOF based meta-models.  
In the paper [14], Eessaar explained why it is advantageous to create meta-model of a 

data model. He demonstrated that a meta-model could be used in order to find 

similarities and differences between other data models. Polo, Garcia-Rodriguez and 

Piattini in [27] propose a very simplified relational and object-oriented meta-model. A 

similar, simplified RDBMS meta-model is presented in [32], by Wang, Shen and Chen. 

Vara et al. in [31] presented Oracle 10g meta-model that can be classified as vendor-

specific physical database schema meta-model. Lano and Kolahdouz-Rahimi in [20] 

and [21] propose a rather simplified relational database model not discerning standard 

and vendor specific constructs. SQL standard meta-models can be found in Calero et al.  

[11] and del Castillo et al. [12]. The importance of generic models is emphasized by 

Atzeni, Gianforme and Cappellari in [1] and [2]. Cabot and Teniente in [10] and Cabot 
et al. in [9] present an OCL meta-model and a case study where they used a simplified 

UML class meta-model, that can be classified as a generic database schema meta-

model. The paper of Gogolla et al. [18] is interesting in another context: it presents the 

intensional and extensional ER/relational meta-models. The relational database schema 

meta-models that we presented in this paper are intensional meta-models. Our future 

research has to consider extensional database meta-models, too. 

Most of the presented database meta-models can be classified as standard physical 

database schema meta-models or vendor-specific physical database schema meta-

models. On the contrary, our relational database schema meta-model is generic database 

schema meta-model and it comprises a broader set of concepts with more properties 

then the aforementioned database meta-models. Such a meta-model will enable the 

creation of semantically rich models of relational database schemas. Such models can 
be further transformed through the chain of M2M and M2T transformations, ending up 

with automatically generated executable program code for the implementation of all 

specified database constraints.    

There is one more issue that is important in the context of results presented in this 

paper. Inclusion dependency discovery has attracted a lot of research interests from the 

communities of database design, machine learning and knowledge discovery. 

Bauckmann,  Leser, and Naumann in [6], Koeller and Rundensteiner in [19] and De 

Marchi, Lopes and Petit in [23] propose different techniques to discover INDs. In recent 

years, some studies to extend traditional inclusion dependencies have been made, like 

Bravo, Fan and Ma in [8] and Fan in [17]. The methods for conditional IND discovery 

are suggested, too. Bi and Shan in [7] notify new interest in dependencies to extend 
traditional dependencies, such as conditional functional dependencies and conditional 

inclusion dependencies. They state that data dependencies play an important role in data 

repair, too. Once discovered, INDs would be properly specified by means of a meta-

model that is semantically rich enough. We have developed our meta-models keeping 

that in mind. 

7. Conclusion 

Some kinds of relational database constraints are well-known and can be implemented 

by the declarative DBMS mechanisms, like the key constraint and the referential 
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integrity constraint. However, some kinds of constraints are not recognized by 

contemporary DBMSs and have to be implemented through the procedural mechanisms. 
Very often these kinds of constraints are ignored by database designers in a way that 

they do not recognize, specify and implement them. The striking examples are some 

kinds of inclusion dependency (IND) constraints, like:  inverse referential integrity 

constraint, conditional IND and extended IND. In the paper we present a part of our 

research efforts focused on meta-models relating to databases. We developed a generic 

meta-model of relational database schema and a standard physical database schema 

meta-model. Here we deal with their parts concerning multi-relational constraints: 

inclusion dependencies in the generic meta-model and foreign key constraint in the 

standard meta-model. We consider all kinds of constraints as important to be specified 

and implemented.  In the context of forward engineering, the proposed generic database 

meta-model will enable platform independent specification of a broad class of INDs and 
development of further M2M and M2T transformations ending up with executable 

program code. On the other side, a meta-model of INDs is important in the context of 

database and information system reengineering, too. Considering growing interest in 

IND discovery in legacy databases, we plan to integrate these results with our 

IIS*Studio development environment. That would enable the reconstruction of a 

relational database schema and its improvement through the mechanisms implemented 

in IIS*Studio. 
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