
Computer Science and Information Systems 11(2):679–696 DOI:10.2298/CSIS140216037R

Generic and Standard Database Constraint Meta-Models

Sonja Ristić1, Slavica Aleksić2, Milan Čeliković2 and Ivan Luković2

1University of Novi Sad, Faculty of Technical Sciences,
Department for Industrial Engineering and Management

Trg Dositeja Obradovića 6
21000 Novi Sad, Serbia

sdristic@uns.ac.rs

2University of Novi Sad, Faculty of Technical Sciences,
Department of Computing and Control

Trg Dositeja Obradovića 6
21000 Novi Sad, Serbia

{slavica, ivan, milancel}@uns.ac.rs

Abstract. Many software engineering activities entail dealing with legacy
information systems. When these systems become too costly to maintain, or when
new technologies need to be incorporated, they need to be replaced or somehow
reengineered. This can be done with significantly reduced amount of effort and
cost if the conceptual models of these systems are available. Reverse engineering

is the process of analyzing a subject system to create representations of the system
at a higher level of abstraction. Relational databases are a common source of
reverse engineering. Starting from a physical database schema, that is recorded
into relational database schema data repository, the conceptual database schema or
logical database schema could be extracted. The extraction process may be seen as
a chain of model-to-model transformations that trace model elements from a
model at the lower level of abstraction to a model at the higher level of
abstraction, achieved through meta-modeling. In the paper we present generic and
standard database constraint meta-models, focusing on multi-relational database

constraints captured in a legacy database. These meta-models are aimed at support
of model transformations to create conceptual models, as a useful source for the
system reengineering process.

Keywords: Model-driven Software Engineering, Meta-modeling, Inclusion
Dependency, Database Reengineering.

1. Introduction

The evolution in organization procedures and objectives over the time significantly

reduces the effectiveness of an information system implemented to fulfill organizational

information requirements. Coupled with the technological development it becomes the

major cause for a legacy information system replacement or any form of its

reengineering. A new system can be redeveloped from scratch, but in that case the

knowledge captured in the legacy system is lost. Legacy system replacement or

reengineering can be done with significantly reduced amount of effort and cost if the

conceptual models are reconstructed from them. Reverse engineering is the process of

analyzing a subject system to create models of the system at a higher level of

680 Sonja Ristić et al.

abstraction. It encompasses a broad set of methods and tools related to understanding

and modifying information systems. Relational databases are at the core of most
company information systems, hosting critical information for the day to day operation

of the company. The knowledge captured in them can serve as an important resource in

a legacy information system modernization project and they are a common source of

reverse engineering processes. Starting from a physical database schema, that is

recorded into the relational database schema data repository, the conceptual database

schema or logical database schema may be extracted. All of these database schemas

represent models at different levels of abstraction. An extraction process may be seen as

a chain of model-to-model (M2M) transformations that trace model elements from a

model at the lower level of abstraction to a model at the higher level of abstraction.

Models are widely used in engineering disciplines. In the model-driven approach to

software engineering (MDSE) the idea of abstracting implementation details by
focusing on models as first class entities is promoted in [30]. Models are used to

specify, simulate, test, verify and generate code for the application to be built [9]. Each

model is expressed by the concepts of a modeling language that is specified by means of

a meta-model. A meta-model defines a set of valid models [5]. An M2M transformation

is based on meta-models that are conformed by the source and target models of the

transformation. These meta-models are said to be in support of M2M transformation.

In a forward engineering process, designers start with a high-level model, abstracting

from all kinds of platform issues. Through a chain of M2M transformations, ending up

with a model-to-text (M2T) transformation, the initial platform independent model

transforms iteratively to a series of models with less degree of platform independency,

introducing more and more platform specific extensions. Conversely, in a reverse

engineering process, the abstraction level of models and degree of platform
independency are increasing throughout the chain of transformations.

Here we present a part of our research efforts focused on meta-models relating to

databases that we call database meta-models. These meta-models are in support of

database M2M transformations. In [28] we proposed the classification of database meta-

models as follows: i) data model (dm) meta-models; ii) generic database schema meta-

models; iii) standard physical database schema meta-models; and iv) vendor-specific

physical database schema meta-models.

In [29] we have proposed a meta-model of relational database schema concerning

inclusion dependency (IND) constraints. Both meta-model of the relational database

schema and meta-model of the Universal Relational Schema (URS) are presented there.

In the context of forward engineering, these meta-models enable the platform
independent specification of a broad class of INDs and the development of M2M and

M2T transformations. The meta-model of INDs is important in the context of database

and information system reverse engineering, too. A discovery of inclusion dependencies

has attracted a lot of research interests together with methods for discovery of INDs. A

formal specification of discovered INDs by means of proposed IND meta-model

provides a better support of the automated reengineering and improvement of legacy

databases.

Here we shift focus on M2M transformation of a physical database schema to a

logical relational database schema. Therefore, we present one generic and one standard

physical database schema meta-model. Generic database schema meta-models are based

on theoretical foundations of a data model as it is, for example, relational data model.

The relational data model is the focus of a continuous standardization process, and

Generic and Standard Database Constraint Meta-Models 681

therefore we have extracted the standard physical database schema meta-models

according to the specific SQL standard. We have developed a meta-model of relational
database schema (RDSMM), which can be classified as a generic database schema

meta-model. Also, we developed a meta-model of a standard physical database schema

(SPMM). We selected these meta-models, because they are in support of database

model transformations that capture logical database schemas based on RDSMM from

legacy databases based on SPMM. In this way, the extraction and conceptualization of a

database schema from a legacy database is provided. Then, it can be analyzed,

restructured or improved and it becomes the input of a forward engineering process to

get a modernized database schema.

To specify and manage RDSMM and SPMM, we used the Eclipse Modeling

Framework (EMF) [16]. Both of these two meta-models are complex, and here we focus

on their parts aimed at specifying multi-relational constraints, and particularly INDs. An
overview of a complete meta-model of the relational database schema may be found in

[28]. It comprises several modeling concepts, like: Attribute Constraint, Relation

Scheme, Universal Relational Schema (URS) and Relational Database Schema.

Apart from Introduction and Conclusion the paper has five sections. Section 2 is

devoted to the recall of basic notions. A generic database schema meta-model is

presented in Section 3. A standard physical database schema meta-model is explained in

Section 4. In Section 5 we present a case study of an M2M transformation. Related

work is presented in Section 6.

2. Relational Database Schema

In this section, we briefly recall some basic notions of the relational data model used in

the text to assist the reader in easier following the rest of the paper. They are borrowed

from many sources, as well as [13] and [15], and are slightly adapted to the needs of our

research.

Let R be a finite set of attributes. For each attribute A  R, the set of all its possible
values is called the domain of A. The domain associated with an attribute A is denoted

by Dom(A), and the set of possible values of attribute A (A-values) is denoted by

dom(A) [25]. A domain constraint restricts allowed values within a certain domain. A

tuple t over R = {A1, ..., Am} is a sequence of values (a1, ..., am) where: (i{1, …,

m})(ai  dom(Ai)). A relation over R, denoted with r(R), is a set of tuples over R.
A universal relational schema (URS) is a pair (R, UC), where R is a set that

contains all the attributes of the Universe of Discourse (UoD) with associated domain

constraints, and UC is a set of URS constraints that comprises a set of functional

dependencies and non-trivial inclusion dependencies. R is called universal attribute set

(UAS). A universal relation u(UAS) is a relation over the UAS. A functional

dependency (FD) is a relationship that exists when each X-value uniquely determines a

Y-value. Formally, given a set of attributes R, a functional dependency between attribute

sets X and Y is represented as X→Y, which specifies that Y is functionally dependent on

X. A non-trivial inclusion dependency is a statement of the form [X]  [Y], where X
and Y are non-empty sequences of attributes from UAS. The cardinalities of X and Y

have to be equal (unlike the cardinalities of attribute sets X and Y in FD), and the

corresponding sequence elements from X and Y have to be domain compatible (again,

682 Sonja Ristić et al.

unlike FD). A universal relation u is said to satisfy the non-trivial inclusion dependency

if for each tuple t  u exists at least one tuple s  u such that t[X] = s[Y], where
t[X] represents the projection of tuple t on X. There are different database design
approaches ([15], [25]). One of them is based on the URS assumption. Using the set of

FDs, the URS is decomposed into a set of relation schemes, resulting in a relational

database schema.

Formally, a relational database schema is a pair (S, I), where S is a finite set of

relation schemes and I a finite set of multiple relational constraints. A relation scheme

is a named pair N(R, C) where N is the name of relation scheme, R is a finite set of

attributes (from UAS) and C a finite set of relational constraints. C contains attribute

value constraints alongside with null constraints, tuple check constraints,

uniqueness constraints and key constraints. A set of multiple relational constraints

I, contains extended tuple constraints (an example can be seen in [28]) and inclusion

dependencies. Here we give only the definition of inclusion dependency.

Let Nl(Rl, Cl) and Nr(Rr, Cr) be two relation schemes, where Nl and Nr are their names,
Rl and Rr, their corresponding sets of attributes, and Cl and Cr their corresponding sets of

relation scheme constraints. An inclusion dependency (IND) is a statement of the form

Nl[LHS]  Nr[RHS], where LHS and RHS are non-empty sequences of attributes from Rl

and Rr respectively. Having the inclusion operator () orientated from the left to right
we say that relation scheme Nl is on the left-hand side of the IND, while the relation

scheme Nr is on its right-hand side. We use the indexes l and r, and the names of

attribute sequences LHS and RHS, in order to indicate the left and right hand side of the

IND, respectively. To define a validation rule of the IND we use the following notation:

(i) the relation r(Nl) is a set of tuples u(Rl) (or just u) satisfying all constraints from the

constraint set Cl; (ii) X-value is a projection of a tuple u on the set of attributes X; and

(iii) according to the aforementioned orientation of the inclusion operator, r(Nl) is called

the referencing relation, while r(Nr) is called the referenced relation. Informally, a

database satisfies the inclusion dependency if the set of LHS-values in the referencing

relation r(Nl) is a subset of the set of RHS-values in the referenced relation r(Nr).
There are two basic kinds of INDs: key-based INDs and non-key-based INDs. An

IND is said to be key-based if the RHS is a key of the relation scheme Nr. Otherwise, it

is a non-key-based. More often a key-based IND is called referential integrity

constraint (RIC). A non-key-based IND with a LHS that is a key of the relation scheme

Nl, where a RIC Nr[RHS]  Nl[LHS] is specified at the same time, is called inverse

referential integrity constraint (IRIC). The detailed explanation of these constraints

may be found in [4].

In Fig. 1, a simplified part of a University database is given. The database satisfies

inclusion dependencies:

Ind1: Course[DepID]  Department[DepID]

Ind2: Department[DepID]  Course[DepID]

Ind3: Employed_At[EID]  Employee[EID]

Ind4: Employee[EID]  Employed_At[EID]

Ind5: Employed_At[DepID]  Department[DepID]

Ind6: Taught_By[DepID + CID]  Course[DepID + CID]

Ind7: Employee[SupervisorId]  Employee[EID]

Ind8:Taught_By[EID + DepID]  Position = ‘Prof.’ or Position = ‘Ass.’

 Employed_At  Employee[EID + DepID].

Generic and Standard Database Constraint Meta-Models 683

Ind1, Ind3, Ind5, Ind6 and Ind7 are the RICs since DepID, EID, DepID,

DepID + CID and EID on the RHS of INDs are the keys of relation schemes
Department, Employee, Department, Course and Employee, respectively. Ind1, Ind3,

Ind5 and Ind7 are unary RICs, since the cardinality of the attribute sequence is 1, while

Ind6 is a binary RIC since the cardinality of the attribute sequence is 2. Generally, if the

cardinality of attribute sequence is n, an IND is said to be n-ary. Ind7 from the

relational database schema is the consequence of a non-trivial IND from URS:

[SupervisorId]  [EID], while other RICs are the consequence of the decomposition of
URS. Ind2 and Ind4 are the IRICs since: i) there are specified RICs Ind1 and Ind3,

respectively; and ii) DepID and EID on the LHS of Ind2 and Ind4 are the keys of

relation schemes Department and Employee, respectively.

Employee Department

EID FName LName Position SupervisorID DepID DName

003 Iva Ilic Ass. 007 D1 Comp.

007 Aca Jovic Prof. 009 D2 Mech.

009 Ina Ras Prof. D3 Art

010 Mila Kun PR 009

Employed_At Course

EID DepID Percent DepID CID CName

003 D1 100 D1 001 Java

007 D1 70 D1 002 Databases

007 D3 30 D2 003 Robotics

009 D2 100 D3 001 Painting

010 D1 100

Taught_By

EID DepID CID ClassPerWeek

003 D1 001 3

007 D1 002 2

007 D3 001 2

009 D2 003 4

Fig. 1. A part of University database

IND Ind8 requires further explanation. This type of IND is called extended IND [28]

due to the fact that at least on the one side of the IND there is the natural join of two or

more relation schemes. In our example, the RHS of the IND contains the natural join of

two relation schemes Employed_At  Employee. Ind8 is also an example of selective

(conditional) IND ([8], [17], [28]). An IND is said to be selective if there is a selection

condition at least on the one side of the IND. The semantics of constraint Ind8 is that a

course can be taught only by an employee that is employed at the department that

contains the course, and that the employee must be either professor or assistant.
Therefore, a database with a relation Taught_by that would contain one of the tuples:

(003, D3, 001, 1) or (010, D1, 002, 2) would not obey the constraint Ind8 and would not

be formally consistent. The first tuple insertion would fail due to the fact that employee

with EID = 003 is not employed at department D3, and the second due to the fact that

employee with EID = 010 has the position of PR, and is neither a professor nor an

assistant.

684 Sonja Ristić et al.

Integrity has always been an important issue for database design and implementation.

Its importance grows with increasing demands regarding the quality and reliability of
data. Integrity constraint specifications are translated into constraint enforcing

mechanisms provided by the Database Management System (DBMS) used to

implement a database. Most of the commercial DBMSs offer efficient declarative

support for the domain constraints, null value constraints, uniqueness constraints and

RICs (by means of foreign key constraints). On the contrary, non-key-based INDs are

completely disregarded by actual RDBMSs, obliging the users to manage them via

custom procedures or triggers. That is the reason why these kinds of constraints are

ignored by database designers in a way that they do not recognize, specify and

implement them. In the paper we present two meta-models of relational database

constraints: the Generic Constraint Meta-Model (GCMM) and the Standard Constraint

Meta-Model (SCMM). In that way two abstract syntaxes of two modeling languages are
defined to enable database schema specification. That is a prerequisite for the

development of M2M transformations that would enable automated transformation of a

physical database schema extracted from a database to a relational database schema

based on theoretical foundations of the relational data model. These specifications may

be transformed into declarative scripts, procedures or triggers for integrity constraint

enforcement supported by a DBMS. These transformations are M2T transformations. In

the following section the fundamental GCMM concepts are presented.

3. Fundamental Generic Constraint Meta-Modeling Concepts

There are two approaches to perform relational database design: top-down (design by

analysis) and bottom-up (design by synthesis). Top-down design methodology involves

conceptual schema design (e.g., using Entity-Relational data model) followed by its

mapping into relational database schema that can be improved in the subsequent

analysis process. Bottom-up approach presupposes that the set of UoD attributes and

functional dependencies among them have been given as a URS. Several algorithms

may be used to decompose URS into a relational database schema. Our meta-model

comprises modeling concepts to specify both: URS and relational database schema. Our
main motive to design a meta-model of URS was to support the database design

approaches based on the URS assumption and appliance of a synthesis algorithm to

generate relational database schema starting with a URS. In our ongoing research we

develop M2M transformations of legacy relational database schema into URS. We use

our IIS*Studio development environment (presented in [3] and [22]) aimed at relational

database schema generation and integration, to reengineer relational database schema

and to further generate application prototype.

Fundamental GCMM concepts are presented in Fig. 2. Project concept encompasses

URS concept and RelationDBSchema concept.

Generic and Standard Database Constraint Meta-Models 685

Fig. 2. Fundamental GCMM concepts

The Constraint is an abstract concept that has two properties: Deferrability and
InitiallyDefer. Deferrability is aimed to specify whether or not constraint checking can

be deferred until the end of the transaction. InitiallyDefer is used to specify the default

686 Sonja Ristić et al.

checking behavior for constraints that are deferrable. The Constraint is specialized as:

URS constraint (abstract concept URSCon), relation scheme constraint (abstract concept
RelationCon) or multi relation constraint (abstract concept ManyRelationCon). There

are three types of URS constraints: domain, functional dependency and non-trivial

inclusion dependency. A detailed description of URS constraint meta-model may be

found in [29]. Relation scheme constraints are specialized as: attribute value constraints

(AttValCon), uniqueness constraints (UniqueCon), key constraints (KeyCon) and check

constraints (CheckCon). Inclusion dependencies (InclusionDependency) and extended

tuple constraint concept (ExTupleCon) specialize ManyRelationCon concept.

Hereinafter we give a detailed description of inclusion dependency meta-model.

3.1. Inclusion Dependency Meta-Model

The InclusionDependency modeling concept is abstract and it generalizes concepts for

modeling several kinds of INDs listed in Section 2. As can be seen in Fig. 3,

InclusionDependency is first specialized with ReferentialIntegrityCon and

NonKeyBased IND. The first is a concrete modeling concept aimed at modeling RICs.

The second concept is abstract and is further specialized with concrete modeling

concepts: InverseReferentialIntegrityCon and NonInverseReferentialIntegrityCon aimed

at modeling IRICs and other INDs (that are neither RIC nor IRIC), respectively. Each of
these three concrete concepts is further specialized with concrete concepts aimed at

modeling: extended RICs, extended IRICs and others extended INDs. The

InclusionDependency modeling concept has two properties: SelectionCon_L and

SelectionCon_R that are used to specify selection conditions on the left or right side of

IND. These properties are optional and if at least one of them is specified that implies

that the modeled constraint is selective (conditional) IND. The third property

ReferencingType is used to specify whether the referencing is default, partial or full, for

n-ary INDs. For unary INDs there are no differences between these referencing types.

The relation schemes specified in an IND may have two roles: referencing, if it is on

the LHS of the IND and referenced, if it is on the RHS of the IND. In Fig. 3, roles are

modeled with concrete concepts RoleReferenced and RoleReferencing. For the

referenced role, critical database operations that may violate the IND constraint are
deletes and updates, and for the referencing role, critical operations are inserts and

updates. The RoleReferenced and RoleReferencing concepts contain properties aimed at

specifying the actions that would take place to preserve database from violation of an

IND constraint in case when a critical operation occurs.

For an IND it has to be specified at least one relation scheme in each of the roles. If

an IND is an extended RIC, than at least one more relation scheme must be specified as

the referencing role of the IND. In the case of extended IRICs at least one more relation

scheme must be specified as the referenced role of IND. For other extended INDs at

least one more relation schema has to be specified as the referencing or as the

referenced role of the IND.

For each IND, the attribute sequences on the LHS and RHS of the IND must be
specified. In particular, for a RIC on the RHS is specified a key of a referenced relation

scheme and for an IRIC on the LHS is specified a key of a referencing relation scheme,

instead of an arbitrary attribute sequence.

Generic and Standard Database Constraint Meta-Models 687

Fig. 3. Meta-model of Inclusion dependency concept

3.2. OCL Invariants to Improve Constraint Meta-Model Semantics

A meta-model defines the modeling language, i.e. the constructs that can be used to

make a model and, consequently, defines a set of valid models [5]. Meta-models

presented in Fig. 2 and Fig. 3 comprise a lot of knowledge about the real system

(relational database schema) that would be modeled by means of it. But, it is still not

enough. In order to improve the semantics of our meta-model we use Object Constraint

Language (OCL) to specify constraints concerning modeling concepts that can not be

expressed solely by means of UML class diagram concepts. Here we present some

OCL constraint examples.

In Fig. 4, an OCL invariant is presented that enables checking if the sequence of
attributes on the LHS of a RIC belongs to the set of attributes of the relation scheme that

is specified as the referencing in the RIC. In addition, it checks if the key specified at

the RHS of a RIC is a key of the relation scheme specified as referenced in the RIC.

A similar OCL invariant for the extended RIC can be seen in Fig. 5. The difference is

in the fact that attributes for attribute sequence must belong to at least one of the relation

schemes specified as referencing in the RIC.

In addition to checking of conformance between attribute sets and specified relation

schemes, in Fig. 6 is presented an OCL invariant that checks if the appropriate RIC is

specified for an IRIC.

688 Sonja Ristić et al.

invariant CheckLHSAttributeRIC:
LHS_Attr_RIC->forAll(a : ConstraintRDM::AttValCon |
 a.Attr_BelongsRS = self.LHS_RS.LHS_RS_IND);
invariant CheckRHSAttributeRIC:
RHS_Key->forAll(a : ConstraintRDM::KeyCon |
 a.Key_BelongsRS = self.RHS_RS.RHS_RS_IND);

Fig. 4. OCL invariant for RIC attribute checking

invariant CheckLHSAttributeExRIC:
LHS_Attr_RIC->forAll(a : ConstraintRDM::AttValCon |

 a.Attr_BelongsRS = self.LHS_RS.LHS_RS_IND or
 a.Attr_BelongsRS = LHS_RS_Ex_RIC.LHS_RS_IND);

invariant CheckRHSAttributeExRIC:
RHS_Key->forAll(a : ConstraintRDM::KeyCon |

 a.Key_BelongsRS = self.RHS_RS.RHS_RS_IND);

Fig. 5. OCL invariant for extended RIC attributes checking

invariant CheckRIC:
LHS_Key = RIC.RHS_Key and RHS_Attr_NKB_IND = RIC.LHS_Attr_RIC;
invariant CheckRHSAttributeIRIC:
RHS_Attr_NKB_IND->forAll(a : ConstraintRDM::AttValCon |

 a.Attr_BelongsRS = self.RHS_RS.RHS_RS_IND);
invariant CheckLHSAttributeIRIC:
LHS_Key->forAll(a : ConstraintRDM::KeyCon |

 a.Key_BelongsRS = self.LHS_RS.LHS_RS_IND);

Fig. 6. OCL invariant for the RIC – IRIC pair existence checking

4. Fundamental Standard Constraint Meta-Model Concepts

The relational data model is a superior logical data model and the acceptance of

RDBMSs is widespread, too. Structured Query Language (SQL) is currently available

in most commercial and open-source RDBMSs. It is also the focus of a continuous

standardization process, resulting in SQL standards (the current revision is: SQL:2011,
ISO/IEC 9075:2011). RDBMS products more or less comply with an SQL standard.

Here we propose a standard physical database schema meta-model (Fig. 7). Instead of

attribute and relation scheme concepts from GCMM, in SCMM there are column

(Column) and table (Table) concepts, respectively. The Constraint abstract concept has

the same properties, as the corresponding concept in GCMM. There are four concepts

to specialize the Constraint concept: check constraint (CheckCon), primary key

constraint (PrimaryKeyCon), uniqueness constraint (UniqueCon) and foreign key

constraint (ForeignKey). The UniqueCon and PrimaryKeyCon concepts indirectly

specialize the Constraint concept, via their generalization (PKeyUnique). A detailed

description of SCMM, alongside with appropriate OCL invariants may be found in [3].

Generic and Standard Database Constraint Meta-Models 689

In the next section an illustration of an M2M transformation is presented. The

transformation is based on SCMM and GCMM.

Fig. 7. Fundamental SCMM concepts

690 Sonja Ristić et al.

5. Case Study – Model-To-Model Transformation

To specify and manage presented meta-models we used the Eclipse Modeling

Framework (EMF), Eclipse Juno 4.2.1. and OCL 3.2.1. After specifying the meta-

model, a fully functional Eclipse editor can be generated for it. The editor guides a

database schema specification process and ensures the conformance of the database

schema with the proposed meta-model. By means of such an editor, we have specified a

relational database scheme of the University database whose part is presented in Section

2. In Fig. 8, the conceptual database schema of the University database is visually

represented by means of a UML class diagram to facilitate better understanding of

database constructs and relationships between them. The relational database schema

University contains the set of relation schemes: Employee, University, Department,
WorkSite, Course, EmployedAt and Taught_By, accompanied with the set of multi-

relational constraints. The detailed specification of the aforementioned relational

database schema may be found in [28].

Fig. 8. The conceptual database schema of University database

A part of University_PDBS database schema modeled by means of the Eclipse editor

generated from presented SCMM is shown in Fig. 9 (a). In this example it is captured

from database repository.

In Fig. 9 (b) a part of the University_SDBS is presented. It is the output of the
University_PDBS2University_SDBS model-to-model transformation that is based on

SCMM and GCMM. The transformation will transform a vendor specific physical

database schema that conforms to the SQL standard database schema, into generic,

relational database schema. The Atlas Transformation Language (ATL) is used to

implement University_PDBS2University_SDBS transformation.

In Fig. 10 (a), ATL rules for mapping the ForeignKey concept onto

ReferentialIntegrity Con are presented. Rules for mapping the ForeignKey concept onto

the NonInvReferentialIntegrityCon concept are shown in Fig. 10 (b).

Generic and Standard Database Constraint Meta-Models 691

a) Model of University_PDBS

conformant with SCMM

b) Model of University_RDBS conformant

with GCMM

Fig. 9. Models of University_PDBS and University_RDBS

a)ATL rules to map ForeignKey concept
onto ReferentialIntegrityCon concept

b) ATL rules to map ForeignKey concept onto
NonInvReferentialIntegrityCon concept

Fig. 10. ATL transformation rules

6. Related Work

Meta-modeling is widely spread area of research. OMG's Model-Driven Architecture
(MDA) [26] currently is the most mature formulation of the MDSE paradigm. It refers

to a high-level description of an application as a Platform Independent Model (PIM) and

a more concrete implementation-oriented description as a Platform Specific Model

(PSM) [26]. The OMG's Meta Object Facility (MOF) defines the metadata architecture

that lies at the heart of MDA [24]. MOF is used to define semantics and structure of

692 Sonja Ristić et al.

generic meta-models or domain specific ones. There are numerous references covering

MOF based meta-models.
In the paper [14], Eessaar explained why it is advantageous to create meta-model of a

data model. He demonstrated that a meta-model could be used in order to find

similarities and differences between other data models. Polo, Garcia-Rodriguez and

Piattini in [27] propose a very simplified relational and object-oriented meta-model. A

similar, simplified RDBMS meta-model is presented in [32], by Wang, Shen and Chen.

Vara et al. in [31] presented Oracle 10g meta-model that can be classified as vendor-

specific physical database schema meta-model. Lano and Kolahdouz-Rahimi in [20]

and [21] propose a rather simplified relational database model not discerning standard

and vendor specific constructs. SQL standard meta-models can be found in Calero et al.

[11] and del Castillo et al. [12]. The importance of generic models is emphasized by

Atzeni, Gianforme and Cappellari in [1] and [2]. Cabot and Teniente in [10] and Cabot
et al. in [9] present an OCL meta-model and a case study where they used a simplified

UML class meta-model, that can be classified as a generic database schema meta-

model. The paper of Gogolla et al. [18] is interesting in another context: it presents the

intensional and extensional ER/relational meta-models. The relational database schema

meta-models that we presented in this paper are intensional meta-models. Our future

research has to consider extensional database meta-models, too.

Most of the presented database meta-models can be classified as standard physical

database schema meta-models or vendor-specific physical database schema meta-

models. On the contrary, our relational database schema meta-model is generic database

schema meta-model and it comprises a broader set of concepts with more properties

then the aforementioned database meta-models. Such a meta-model will enable the

creation of semantically rich models of relational database schemas. Such models can
be further transformed through the chain of M2M and M2T transformations, ending up

with automatically generated executable program code for the implementation of all

specified database constraints.

There is one more issue that is important in the context of results presented in this

paper. Inclusion dependency discovery has attracted a lot of research interests from the

communities of database design, machine learning and knowledge discovery.

Bauckmann, Leser, and Naumann in [6], Koeller and Rundensteiner in [19] and De

Marchi, Lopes and Petit in [23] propose different techniques to discover INDs. In recent

years, some studies to extend traditional inclusion dependencies have been made, like

Bravo, Fan and Ma in [8] and Fan in [17]. The methods for conditional IND discovery

are suggested, too. Bi and Shan in [7] notify new interest in dependencies to extend
traditional dependencies, such as conditional functional dependencies and conditional

inclusion dependencies. They state that data dependencies play an important role in data

repair, too. Once discovered, INDs would be properly specified by means of a meta-

model that is semantically rich enough. We have developed our meta-models keeping

that in mind.

7. Conclusion

Some kinds of relational database constraints are well-known and can be implemented

by the declarative DBMS mechanisms, like the key constraint and the referential

Generic and Standard Database Constraint Meta-Models 693

integrity constraint. However, some kinds of constraints are not recognized by

contemporary DBMSs and have to be implemented through the procedural mechanisms.
Very often these kinds of constraints are ignored by database designers in a way that

they do not recognize, specify and implement them. The striking examples are some

kinds of inclusion dependency (IND) constraints, like: inverse referential integrity

constraint, conditional IND and extended IND. In the paper we present a part of our

research efforts focused on meta-models relating to databases. We developed a generic

meta-model of relational database schema and a standard physical database schema

meta-model. Here we deal with their parts concerning multi-relational constraints:

inclusion dependencies in the generic meta-model and foreign key constraint in the

standard meta-model. We consider all kinds of constraints as important to be specified

and implemented. In the context of forward engineering, the proposed generic database

meta-model will enable platform independent specification of a broad class of INDs and
development of further M2M and M2T transformations ending up with executable

program code. On the other side, a meta-model of INDs is important in the context of

database and information system reengineering, too. Considering growing interest in

IND discovery in legacy databases, we plan to integrate these results with our

IIS*Studio development environment. That would enable the reconstruction of a

relational database schema and its improvement through the mechanisms implemented

in IIS*Studio.

Acknowledgements. Research presented in this paper was supported by Ministry of Science and
Technological Development of Republic of Serbia, Grant III-44010, Title: Intelligent Systems for
Software Product Development and Business Support based on Models.

References

1. Atzeni, P., Cappellari, P., and Gianforme, G.: MIDST: model independent schema and data

translation. In Proceedings of the 2007 ACM SIGMOD international Conference on
Management of Data (Beijing, China, June 11 - 14, 2007). SIGMOD '07. ACM, New York,
NY, 1134-1136. (2007)

2. Atzeni, P., Gianforme, G., Cappellari, P.: A universal meta-model and its dictionary. T.
Large-Scale Data and Knowledge-Centered Systems 1, 38–62. (2009)

3. Aleksic, S. Methods of Database Schema Transformations in Support of the Information
System Reengineering Process, Ph.D thesis, University of Novi Sad, Faculty of Technical
Sciences (2013).

4. Aleksic, S., Ristic, S., Lukovic, I., Celikovic, M.: A Design Specification and a Server

Implementation of the Inverse Referential Integrity Constraints. Computer Science and
Information Systems (ComSIS), Consortium of Faculties of Serbia and Montenegro,
Belgrade, Serbia, ISSN: 1820-0214, Vol. 10, No.1, pp. 283-320. (2013)

5. Assmann, U., Zchaler and S., Wagner, G.: Ontologies, Meta-Models, and the Model-Driven
Paradigm. In: Calero, C., Ruiz, F., Piattini, M. (eds.) Ontologies for Software Engineering
and Software Technology (2006)

6. Bauckmann, J., Leser, U., and Naumann, F.: Efficiently Computing Inclusion Dependencies
for Schema Discovery. Proc. Second Int'l Workshop Database Interoperability. (2006)

7. Bi, Z., and Shan, M.: Review of Data Dependencies in Data Repair. Journal of Information
& Computational Science 9: 15 4623–4630. (2012)

694 Sonja Ristić et al.

8. Bravo, L., Fan, W., and Ma, S. Extending dependencies with conditions. In Proceedings of
the 33rd international conference on Very large data bases (VLDB '07). VLDB Endowment
243-254. (2007)

9. Cabot, J., Clarisó, R., Guerra, E., and De Lara, J.: Verification and validation of declarative
model-to-model transformations through invariants. Journal of Systems and Software, 83(2),
283-302. (2010)

10. Cabot, J. and Teniente, E.: Incremental integrity checking of uml/ocl conceptual schemas.
Journal of Systems and Software, 82(9), 1459–1478. (2009)

11. Calero, C., Ruiz, F., Baroni, A., Brito e Abreu, F. , Piattini, M.: An ontological approach to
describe the SQL:2003 object-relational features. Computer Standards & Interfaces, Volume
28, Issue 6, September 2006, Pages 695–713. (2006)

12. del Castillo, R.P., García-Rodríguez, I., and Caballero, I.: PRECISO: a reengineering process
and a tool for database modernization through web services. In: Jacobson Jr., M.J., Rijmen,
V., Safavi-Naini, R. (eds.) SAC 2009. LNCS, vol. 5867, pp. 2126–2133. Springer,
Heidelberg. (2009)

13. Date, C.J. and Darwen, H.: Types and the Relational Model. The Third Manifesto, 3rd ed.

Addison Wesley, Reading. (2006)
14. Eessaar, E.: Using Meta-modeling in order to Evaluate Data Models. In Proceedings of the

6th WSEAS Int. Conf. on Artificial Intelligence, Knowledge Engineering and Data Bases,
Corfu Island, Greece, February 16-19. (2007)

15. Elmasri R., Navathe B. S.: Database Systems: Models, Languages, Design and Application
Programming, Sixth Edition, Pearson Global Edition, ISBN 978-0-13-214498-8. (2011)

16. Eclipse Modeling Framework, [Online] Available: http://www.eclipse.org/modeling/emf/.
(retrieved February, 2014).

17. Fan, W.: Extending dependencies with conditions for data cleaning, Computer and
Information Technology, 2008. CIT 2008. 8th IEEE International Conference on, pp.185-
190. (2008)

18. Gogolla, M., Lindow, A., Richters, M. and Ziemann, P.: Meta-model transformation of data
models. Position paper. WISME at the UML (2002)

19. Koeller, A., and Rundensteiner, E.A.: Heuristic Strategies for Inclusion Dependency
Discovery, On the Move to Meaningful Internet Systems 2004: Proc. Int'l Conf. CoopIS,
DOA, and ODBASE, pp. 891-908. (2004)

20. Lano, K., and Kolahdouz-Rahimi, S.: Model-driven development of model transformations.
Theory and Practice of Model Transformations, 47-61. (2011)

21. Lano, K., and Kolahdouz-Rahimi, S.: Constraint-based specification of model
transformations Journal of Systems and Software, Volume 86, Issue 2, Pages 412–436.
(2013)

22. Luković, I., Mogin, P., Pavićević, J. and Ristić, S.: An Approach to Developing Complex
Database Schemas Using Form Types, Software: Practice and Experience, John Wiley &
Sons Inc, Hoboken, USA, ISSN: 0038-0644, DOI: 10.1002/spe.820 Vol. 37, No. 15, pp.
1621-1656. (2007)

23. De Marchi, F., Lopes, S., and Petit, J.-M.: Unary and N-Ary Inclusion Dependency
Discovery in Relational Databases, J. Intelligent Information Systems, vol. 32, no. 1, pp. 53-
73. (2009)

24. Meta-Object Facility, [Online] Available: http://www.omg.org/mof/. (retrieved February,
2014)

25. Mogin, P., Luković, I., Govedarica, M.. Database Design Principles, University of Novi Sad,
Faculty of Technical Sciences & MP "Stylos", Novi Sad, Serbia. (2004)

26. Mukerji, J. and Miller, J., 2003. MDA Guide Version 1.0.1, document omg/03-06-01 (MDA

Guide V1.0.1), http://www.omg.org/, (retrieved February, 2014)
27. Polo, M., Garcia-Rodriguez, I., and Piattini, M.: An MDA-based approach for database

reengineering. J. Softw. Maint. Evol. 19, 6 (November 2007), 383-417. (2007)

Generic and Standard Database Constraint Meta-Models 695

28. Ristic, S., Aleksic, S., Celikovic, M., and Lukovic, I.: An EMF Ecore based relational dB
schema meta-model. In Proceedings of the 6th International Conference on Information
Technology ICIT 2013. Amman, Jordan. (2013).

29. Ristic, S., Aleksic, S., Celikovic, M., and Luković, I. Meta-modeling of inclusion
dependency constraints. In Proceedings of the 6th Balkan Conference in Informatics (BCI
'13). ACM, New York, NY, USA, 114-121. (2013)

30. Stahl T, Völter M, Bettin J, Haase A, Helsen S.: Model Driven Software Development:
Technology, Engineering, Management. John Wiley & Sons, Ltd. (2006)

31. Vara, J., Vela, B., Bollati, V.A. and Marcos, E.: Supporting model-driven development of
object-relational database schemas: a case study, in: R. Paige (Ed.), Theory and Practice of
Model Transformations, Heidelberg, Springer Berlin, pp. 181–196. (2009)

32. Wang, H., Shen, B. and Chen, C.: Model-Driven Reengineering of Database. Software
Engineering, 2009. WCSE '09. WRI World Congress on , vol.3, no., pp.113-117. (2009)

Sonja Ristić works as an associate professor at the University of Novi Sad, Faculty of

Technical Sciences, Serbia. She received two bachelor degrees with honors from

University of Novi Sad (UNS), one in Mathematics, Faculty of Science in 1983, and the
other in Economics from Faculty of Economics, in 1989. She received her Mr (2 year)

and Ph.D. degrees in Informatics, both from Faculty of Economics (UNS), in 1994 and

2003. From 1984 till 1990 she worked with the Novi Sad Cable Company

NOVKABEL–Factory of Electronic Computers. From 1990 till 2006 she was with High

School of Business Studies – Novi Sad, and since 2006 she has been with the Faculty of

Technical Sciences (UNS). Her research interests are related to Database Systems,

Information Systems and Software Engineering.

Slavica Aleksić received her M.Sc. degree from the Faculty of Technical Sciences, at

University of Novi Sad in 1998. She received her Mr (2 year) degree in 2006 and Ph.D.

degree in 2013, at the University of Novi Sad, Faculty of Technical Sciences. Currently,
she works as a assistant professor at the Faculty of Technical Sciences at the University

of Novi Sad, where she lectures in several Computer Science and Informatics courses.

Her research interests are related to Information Systems, Database Systems and

Software Engineering.

Milan Čeliković graduated in 2009 at the Faculty of Technical Sciences, Novi Sad, at

the Department of Computing and Control. Since 2009 he has worked as a teaching

assistant at the Faculty of Technical Sciences, Novi Sad, at the Chair for Applied

Computer Science. In 2010, he started his Ph.D. studies at the Faculty of Technical

Sciences, Novi Sad. His main research interests are focused on: Domain specific

modeling, Domain specific languages, Databases and Database management systems.

At the moment, he is involved in the projects concerning application of DSLs in the
field of software engineering.

696 Sonja Ristić et al.

Ivan Luković received his M.Sc. degree in Informatics from the Faculty of Military and

Technical Sciences in Zagreb in 1990. He completed his Mr (2 year) degree at the
University of Belgrade, Faculty of Electrical Engineering in 1993, and his Ph.D. at the

University of Novi Sad, Faculty of Technical Sciences in 1996. Currently, he works as a

Full Professor at the Faculty of Technical Sciences at the University of Novi Sad, where

he lectures in several Computer Science and Informatics courses. His research interests

are related to Database Systems and Software Engineering. He is the author or co-author

of over 100 papers, 4 books, and 30 industry projects and software solutions in the area.

Received: February 16, 2014, Accepted: May 28, 2014.

