Computer Science and Information Systems 11(2):697-721 DOI: 10.2298/CS1S140301038B

Agent Reasoning on the Web using Web Services

Costin Bidici!, Nick Bassiliades?, Sorin Ilie!, and Kalliopi Kravari?

L University of Craiova
Bvd. Decebal, 107, RO-200440, Craiova, Romania
{cbadica,silie} @software.ucv.ro
2 Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
{nbassili,kkravari } @csd.auth.gr

Abstract. In this paper we present an approach for reusing agent-based reasoning
capabilities by making them available for invocation as Web services. In this way,
we provide the missing link between the highly interoperable Web services and the
autonomicity and intelligence of agent-based systems, so that the latter can be seam-
lessly integrated into the knowledge-rich Semantic Web environment without being
compromised by isolated communication platforms and languages or restricted to
only one or just few reasoning formalisms. We have achieved this by extending
the EMERALD framework for agent based reasoning with a Web service interface.
Our approach is exemplified by the development of an online system for intelligent
brokering of apartment rentals. The broker intelligence is captured as a defeasible
knowledge base, while its problem solving process involves the invocation of third
party defeasible reasoning Web services included into the EMERALD framework.

Keywords: Web service, reasoning, software agent, UML.

1. Introduction

The Web was originally envisioned as a platform for information dissemination to human
consumers. The next generation of Web systems shifted its interest to make that informa-
tion available for machine consumption by realizing that Web data can be reused for var-
ious problem solving purposes. This idea was put into practice through the development
of the Semantic Web [2]] that promotes the enrichment of Web content with meaningful
semantic metadata.

In parallel with the progress of the Semantic Web, the field of distributed systems has
seen a progress by the proposal of a new approach known as service oriented architec-
ture. By promoting the new ideas of interoperability and integration, the adoption of this
approach enabled the development of significantly more complex distributed applications
by integration of various existing or new heterogeneous components.

Rapidly, this idea was embraced by the Web community resulting in the adoption of
the service oriented architecture as a method for developing more complex Web-based
applications using the Web services concepts, standards and technologies. Naturally, the
areas of the Semantic Web and Web services converged to the new concept of Semantic
Web services. They can be broadly understood either as Web services whose descrip-
tion is enhanced with semantic metadata to allow automated discovery and composition,
or as Web services capable of providing declarative semantics in the form of reasoning
methods, beyond the operational semantics of procedural invocation.

698 Costin Badica et al.

Software agents are defined as computer systems situated in an environment that are
able to achieve their objectives by: (i) acting autonomously, i.e. by deciding themselves
what to do, and (ii) being sociable, i.e. by interacting with other software or human
agents [33]. If we place software agents into the Web environment then we can easily
regard them as a potential incarnation of the Semantic Web vision. According to this
view, the Semantic Web is regarded as a Web of semantic services that are provided and
consumed by software agents over the Web protocols.

We already have service provisioning agents that act similarly with Web services be-
ing able to provide reasoning services [[18] or negotiation services [9]. However, we have
noticed that there are both conceptual and technological “missing links” between soft-
ware agents and Web services in the context of the Semantic Web. From the conceptual
point of view, services lack autonomy and they are rather passive components that be-
have reactively by waiting to be invoked by client software. They also lack social abili-
ties, as well as the ability to adapt and evolve. On the other hand agents have interesting
features regarding autonomy, sociability and adaptivity. From the technological point of
view, multi-agent systems are developed using specialized packages and deployed on dis-
tributed multi-agent platforms. Those platforms are providing appropriate middleware
services required for running distributed multi-agent systems [7]. Moreover, while avail-
able for invocation within the agent platform, agent services are not immediately available
for invocation over the Web. In this paper we propose a system that integrates and updates
existing software tools to enable the invocation of agent reasoning services over the Web.
In particular we highlight the problems, as well as our solution details of the integration
process of a defeasible reasoning service into a coherent system for supporting a realistic
e-commerce scenario in the domain of brokering apartment rental.

Our work contributes to bridging gap between software agents and Web services in
the context of the Semantic Web. Using our approach, a Web application can reuse a
set of declarative rules that capture valuable knowledge about the various constraints, re-
quirements and particularities of the problem domain. The knowledge can be represented
using one of the available rule-based knowledge representation formalisms. Using our
extension, Web applications can exploit this knowledge by invoking appropriate reason-
ing services over the Web protocols on specific sets of facts that capture the particular
instance of the problem in hand.

The main contributions reported in this paper can be summarized as follows:

(i) The extension of EMERALD multi-agent knowledge-based framework [17] to enable
the exposure of agent-based reasoning services as Web services.

(i) The development of a prototype system supporting a realistic scenario for intelligent
brokering of apartment rentals. The broker intelligence is captured as a defeasible
knowledge base, while its problem solving process involves the invocation of third
party defeasible reasoning Web services included into the EMERALD framework.
The prototype provides a Web-based user interface, incorporates a rule-based knowl-
edge base about user preferences and invokes external Web services for reasoning.
This prototype is intended as a proof-of-concept for checking the viability of our
proposed approach.

Note that, although in our experimental system we used the particular DR Reasoner
included into the EMERALD framework [[16] and the scenario involves an e-commerce

Agent Reasoning on the Web using Web Services 699

KC Model

AYPS
BJL

KC-Agents prototype,

............................ R
EMERALD ‘,-'
— . . !
o~ -~ A&
e = i
| =, !
Y AYPS \ !
f Trust Manager Lo
| v
@ «-——i{—p < S
Reasoning Engine - 1 .-" Reasoner- 1 Pérsonal agem-i:
User-1
. . A “J .
. . T .
- . A\ _.I i
. A
|)i
‘ foll
@"% i ﬁ@ '
| J/ i
¢ b i
Reasoning Engine - N Reasslf)er- N . Persol'f@!.z'gent - N
A L ! H User - N
AN N i
........... L BV N e SRR
———REQUEST—» ——Rule Base——»
«——INFORM -+—inference Results
Personal Agent Reasoner Reasoning Engine

Fig. 1. EMERALD abstract architecture.

brokering activity for apartments rental, the presented approach is general and customiz-
able so it can be also applied (i) to other types of reasoners, as well as (ii) to other appli-
cation domains.

The paper is structured as follows. In section [2] we give an overview of background
results and software tools that we have utilized to develop our prototype system and we
also provide a review of related works. Section [3] introduces our method for exposing
agent-based reasoners incorporated into EMERALD as Web services. The method was
used for the development of the DR Web Service for defeasible reasoning. In section[d] we
present our use case and we outline the design and implementation of an intelligent broker
for the domain of apartment rental. Section[3]presents the details of our experiment carried
out with the prototype system. The last section presents our conclusions and identifies a
number of paths for continuing this research.

2. Background and Related Works

In this section we provide a brief overview of software platforms and components used
in our proposed system, as well as an outlook to the results and related works from the
literature.

700 Costin Badica et al.

2.1. Background

EMERALD ([17], see Fig.[1) is a multi-agent knowledge-based framework, based on the
Semantic Web and FIPA standards [10]], that enables reusability and interoperability of
behavior between agents. It is built on Jade [4], a reliable and widely used framework.
EMERALD supported so far the implementation of various applications, like brokering
and agent negotiations. It provides a generic, reusable agent prototype for knowledge-
customizable agents (KC-Agents), consisted of an agent model (KC Model), a directory
service (AYPS - Advanced Yellow Pages Service) and external Java methods (Basic Java
Library). Hence, EMERALD supports service provisioning by allowing agent service de-
scriptions to be published onto the “yellow pages” service - known as Directory Facilitator
(DF) in FIPA and Jade. Whenever a consumer agent decides to outsource a certain func-
tion, it can search the AYPS for an appropriate service that meets its specific requirements.
AYPS actually provides a service retrieval ability, which groups and sorts the registered
(advertised) services according, among others, to their domain and their synonyms, allow-
ing (requesting) agents to make complex queries and receive the best available service.
Yet since trust has been recognized as a key issue in Semantic Web Multi-agent Systems,
EMERALD adopts a variety of reputation mechanisms, both decentralized and central-
ized [26].

Another important issue in this framework is reasoning interoperability. Agents do not
necessarily share a common rule or logic formalism, thus, it is vital for them to find a way
to exchange their position arguments seamlessly. To this end, EMERALD proposes the
use of Reasoners [18]], which are actually agents that offer reasoning services to the rest of
the agent community. This approach does not rely on translation between rule formalisms,
but on exchanging the results of the reasoning process of the rule base over the input data.
The receiving agent uses an external reasoning service to grasp the semantics of the rule
base, namely the set of entailments of the knowledge base. Thus, although Reasoners are
built as agents, actually they act more like Web services.

Currently, EMERALD implements a number of Reasoners that offer reasoning ser-
vices in two major reasoning paradigms: deductive rules and defeasible logic. Deduc-
tive reasoning is based on classical logic arguments, where conclusions are proved to be
valid, when the premises of the argument (i.e. rule conditions) are true. Defeasible reason-
ing [23]], on the other hand, constitutes a non-monotonic rule-based approach for efficient
reasoning with incomplete and inconsistent information, which is useful in many applica-
tions, such as security policies, business rules, e-contracting, personalization, brokering
and agent negotiations.

Among these Reasoners available in EMERALD, DR-Reasoner based on DR-DE-
VICE [3] has an exceptional interest. It is based on defeasible logic (DL), a nonmono-
tonic logic which is capable of modeling the way intelligent agents, like humans, draw
reasonable conclusions from inconclusive information. Knowledge in DL is represented
in the form of facts and rules. Facts are indisputable statements, represented either in form
of states of affairs or actions that have been performed. On the other hand, rules describe
the relationship between premises and conclusion. Three types of rules are available strict
rules, defeasible rules and defeaters. Strict rules (A4, ..., A,, — B) are rules in the clas-
sical sense: whenever the premises are indisputable then so is the conclusion. Thus, they
can be used for definitional clauses. Defeasible rules (A1,..., A, = B) are rules that
can be defeated by contrary evidence. Defeaters (A ~~ p), finally, are used to prevent

Agent Reasoning on the Web using Web Services 701

conclusions, not to support them which is actually the main concept in DL. This logic
does not support contradictory conclusions, instead seeks to resolve conflicts.

Hence, in cases where there is some support for concluding A but there is also support
for concluding — A, namely where there are conflicting (mutually exclusive) literals, no
conclusion can be derived unless one of them has priority over the other. This priority
is expressed through a superiority relation among rules which defines priorities among
them; namely where one rule may override the conclusion of another rule. For example,
suppose that there is a conflict set {(c(z), c(d)|z # d}; it is consisted of two compet-
ing rules 71 (rl1 : a(X) = ¢(X)) and 72 (r2 : b(X) = (X)), where 2 could be
superior (2 > r1). To this end, DR Reasoner in order to exploit the DL’s capabilities
uses, as already mentioned, the DR-DEVICE inference system. DR-DEVICE is capable
of reasoning about RDF metadata over multiple Web sources using defeasible logic rules.
More specifically, DR-DEVICE accepts as input the address of a defeasible logic rule
base, written in DR-RuleML language, an extension of the OORuleML syntax. The rule
base contains the rules and one or more RDF documents that contain the facts for the rule
program, while the final conclusions are exported as an RDF document. Furthermore,
DR-DEVICE supports all defeasible logic features, like rule types, rule superiorities etc.,
applies two types of negation (strong, negation-as-failure) and conflicting (mutually ex-
clusive) literals. DR-DEVICE is based on a CLIPS-based implementation of deductive
rules. The core of the system consists of a translation of defeasible knowledge into a
set of deductive rules, including derived and aggregate attributes. The implementation is
declarative as it interprets the not operator using Well-Founded Semantics [11].

An important aspect of our approach was the integration of multi-agent technolo-
gies with Web services. Authors of [25] provide a good overview of such possibilities
with a special focus on interoperability between FIPA (Foundation for Intelligent Phys-
ical agents) and Web services. Among them, a useful tool for our own work is the Jade
Web service Integration Gateway — WSIG (see [4], chapter 10). It allows the provision of
Jade agent services as Web services. In particular, services provided by Reasoner agents
available in EMERALD framework can be exposed as Web services. This allows the con-
venient incorporation of reasoning functions into complex Semantic Web applications.

2.2. Related Works

Concerning interoperability, Rule Responder [3]] is quite similar to EMERALD. It builds
a service-oriented methodology and a rule-based middleware for interchanging rules in
virtual organizations. It demonstrates the interoperation of distributed platform-specific
rule execution environments, with Reaction RuleML as a platform-independent rule inter-
change format. It has a similar view of reasoning service for agents and usage of RuleML
but it is not based on FIPA specifications. EMERALD supports multiple rule formalisms
via trusted third-party reasoning services rather than a single rule interchange language.
In EMERALD, Reasoners instead of interchanging rule bases using a specific rule lan-
guage, they have a simpler, but more general interface, that requires just the URL or the
file path of the rulebase, in the form of Java Strings. This information is exchanged via
ACL messages either from a requesting agent to a rule engine or from the rule engine to
the requesting agent. Hence, it is up to the requesting agent to provide the appropriate
files, by taking each time into consideration the rule engines’ specifications. For instance,
an agent who wants to use the DR-DEVICE rule engine has to provide valid RuleML

702 Costin Badica et al.

files. To this end, whenever a Reasoner receives a new valid request, it launches a new in-
stance of the associated reasoning engine that performs inference. Reasoners actually act
like proxies, allowing other agents to contact with the appropriate rule engines with low
computational and time cost. Otherwise, each single agent should have had hard-coded
rule engines for every rule or logic formalism, which is infeasible. Moreover, EMERALD
provides trust mechanisms that ensure the reliability of each agent or Reasoner, in par-
ticular, acting in the environment. Hence, it is ensured that Reasoners in EMERALD are
trusted parties that have no access or interference in agents’ internal information.

A similar to EMERALD architecture for intelligent agents is presented in [32], where
reasoning engines are employed as plug-in components, while agents intercommunicate
via FIPA-based communication protocols. The framework is build on top of the OPAL
agent platform [24] and, similarly to EMERALD, features distinct types of reasoning
services that are implemented as reasoner agents. The featured reasoning engines are
3APL [8]], JPRS (Java Procedural Reasoning System) and ROC (Rule-driven Object-
oriented Knowledge-based System). 3APL agents incorporate BDI logic elements and
first-order logic features, providing constructs for implementing agent beliefs, declarative
goals, basic capabilities and reasoning rules. JPRS agents perform goal-driven procedu-
ral reasoning and each JPRS agent is composed of a world model (agent beliefs), a plan
library, a plan executor (reasoning module) and a set of goals. Finally, ROC agents are
composed of a working memory, a rule-base (consisting of first-order, forward-chaining
production rules) and a conflict set. The primary difference between the two frameworks
lies in the variety of reasoning services offered by EMERALD. While the three reasoners
featured in [8]] are all based on declarative rule languages, EMERALD proposes a variety
of reasoning services, including deductive, defeasible and modal defeasible reasoning,
thus, comprising a more integrated solution. Furthermore, EMERALD not only features
trust and reputation mechanisms but also it is based on the Semantic Web standards, like,
for rule and data interchange.

The One Ring project [22]] on the other hand is a promising scripting rules engine ser-
vice. It aims to be used as a Web service (SOA) for multiple applications to gain access to
scripted processing of arbitrary parameters. It centralizes processing of common or busi-
ness rules for multiple applications that need access to the same rules. Rules are defined
using a simple language understood by domain experts. The primary difference between
One Ring and EMERALD lies in the variety of reasoning services offered by EMERALD.
While One Ring supports only a simple but not widely understood language, EMERALD
proposes a variety of reasoning services, including deductive, defeasible and modal de-
feasible reasoning. Yet EMERALD, featuring additionally trust mechanisms, comprises
a more integrated solution complying with the Semantic Web standards. However, both
approached share a similar view of rule importance and usage.

Our literature review revealed also a number of systems and approaches that combine
distributed multi-agent systems, reasoning services and the Semantic Web technologies
for the development of application in several areas including: medical rehabilitation, agent
auctions, supply-chain management, and service personalization.

Reference [29]] proposes an ontology-based medical rehabilitation system called On-
toRis that provides rehabilitation-related expertise to patients and therapists. The system
uses agent technology for exploring and integrating external knowledge resources into
the application. Sharing of users experience is encouraged in OntoRis with the help of an

Agent Reasoning on the Web using Web Services 703

Web 2.0-enabled discussion forum. To ensure a certain level of correctness of information,
the users experience in the forum is filtered by evidence-based medicine, thus only cer-
tified information will be integrated into OntoRis. The OntoRis component incorporates
an ontology and a reasoning engine. Nevertheless, while OntoRis agents are useful for
information searching and knowledge enhancement, they have no role in the automation
of reasoning processes, requiring either the manual intervention of the OntoRis adminis-
trator, as well as knowledge certification via methods of evidence-based medicine.

Knowledge-based declarative approaches are also useful for the specification of in-
teraction mechanisms between software agents. Reference [21] proposes a declarative
framework for auctions mechanisms in multi-agent systems. The key point of the pro-
posal is the factoring of the model into two architectural components, the auction host
and the auction participants. Their interaction is governed by a protocol with a declarative
specification decomposed into: generic negotiation protocol (GNP), declarative negoti-
ation mechanism (DNM) and custom negotiation mechanism (CNS). The GNP makes
possible the interaction between auction host and auction participants. The specific rules
of a particular auction are described using the DNM, while the CNS captures the strategic
behavior which is private to each auction participant. A prototype implementation of this
model is proposed using the Jason agent programming language [6]. This implementa-
tion benefitted from several features of Jason including: Belief-Desire-Intention model,
Prolog-style rule-based reasoning, meta-programming and extensibility. Nevertheless, a
cleaner separation between the CNS and DNM is desirable, especially taking into account
that negotiation strategies could require more specialized types of reasonings, for example
to account for priorities or conflicts between strategy rules.

Authors of reference [31]] propose an ontology-based approach for capturing nego-
tiation knowledge in supply chain management multi-agent systems. Similarly to [21],
negotiation knowledge is partitioned into shared negotiation ontology and private nego-
tiation ontology to ensure agent communicative interoperability and privacy of strategic
knowledge. The agents’ negotiation ability is further enhanced with private inference rules
defined on top of private negotiation ontology. Nevertheless, although conceptually quite
similar to [21], the implementation approach is different. It is based on Jade multi-agent
platform and Jess expert system shell [12]], as well as on the Semantic Web technologies
OWL and SWRL [30].

Personalization is an important concern in context-aware applications. Authors of [27]
propose a method that combines ontological modeling of user profiles, rule-based person-
alization mechanisms and service-oriented architecture for providing personalized Help-
on-Demand services to mobile users in pervasive environments. The flexibility of the
method is achieved by using an intelligent personalization service that incorporates a
rule-based knowledge and a reasoning engine. While interesting, one limitation of this
approach is that it is restricted to a single type of reasoning based on standard forward
chaining for determining cause-effect relationships.

Reference [20] proposes the use of agent-based Web services to enhance collabora-
tion within a supply chain of retailers, manufacturers and suppliers. However, rather than
looking at the possibilities for integrating agent and Web services technologies to enhance
flexibility of reasoning, the paper is focused on defining and experimentally evaluating
of two scenarios: (i) independence level, where collaboration is kept minimal by letting
agents have individual goals and communicate minimally by peer-to-peer information

704 Costin Badica et al.

exchange, and (ii) collaboration level, by letting partner agents develop strategic relation-
ships through intense communication thus allowing to achieve global goals for the entire
supply chain.

3. Agent-Based Reasoning Web Services

The aim of this section is to introduce the design and implementation of a Reasoning Web
Service. An external Web-based application will be able to invoke this Web service by
providing a rulebase and an initial set of facts. The Web service returns the output of the
reasoning process to the invoker application as a set of resulted facts.

3.1. Architecture and Design

Our design presents a method for wrapping an EMERALD reasoning service as a Web
service using the Jade WSIG. For that purpose we exploit:

— The architecture and interoperability protocols of Reasoner agents inside EMERALD
framework.
— The architecture of Jade WSIG.

The Reasoning Web Service takes as input a rule base represented in RuleML and
outputs a result file using a simple request-reply interaction protocol. The meaning of the
rulesbase, as well as of the initial set of facts is application dependent. It must be appro-
priately defined and interpreted by the client application in the context of the application
domain of the system that is using the reasoning process.

The rulebase will specify a link to an RDF file containing an initial set of facts using
the rdf-import attribute of RuleML. The output of the reasoning process is determined
as an RDF file and saved by the Reasoning Web Service in a temporary location on the
service side, while its URL is returned to the client. Consequently, the client will be able to
download the result file and further process it according to the application requirements.

The architecture of the Reasoning Web Service is shown in Fig. 2] In particular, this
diagram shows the relation between EMERALD, Jade, WSIG and the “outside world”.
The Reasoning Web Service is hosted by a Web server and implemented with the help of
a WSIG servlet that handles reasoning requests. The servlet is interfaced with Jade via a
special agent — the WSIG agent using a special component known as the Jade Gateway.
The WSIG agent is able to pass reasoning requests to the appropriate Reasoner agent of
the EMERALD framework, as well as to return reasoning results to the WSIG servlet.

For the design of the Reasoning Web Service we have produced an UML activity dia-
gram that shows the activities of the client application and the reasoning platform, shown
in Fig. 3] as well as an UML sequence diagram detailing the interactions between them,
shown in FigH] For the reasoning platform we show two actors, namely the Reasoning
Web Service which was developed by us, as well as the Reasoner which is part of EMER-
ALD. The system functioning can be better understood if we follow both diagrams.

The Client Application invokes the Reasoning Web Service (interaction 1 in Fig[)) by
passing it the rulebase. The Reasoning Web Service simply extracts the rulebase from
the request and forwards it to the Reasoner Agent (interaction 2 in FigH). The result

Agent Reasoning on the Web using Web Services 705

————ma

I
]
e L e 1
- i T
‘I‘ I 1 .

. | : "
rf : ! ‘l
[JADE | | :
' : | :
0 [[i
H 1] '
' ' WATG Agent S i
0 STTTTTTETT T I e N :
[] r]
I b
o P

! i

| | EMERALD b

[! [

o Lo

" :. ! Feasonery FReasonery ,,' J
b R - o

Fig. 2. Block diagram of Reasoning Web Service.

706 Costin Badica et al.

Client Application Reasoning Web Service Reasoner Agent
- e N Receives the URL of rulebase file and
Invokes f;GSS;‘EQf 9‘ DSEW'?IQ Y passes itto Reasoner agent inside 9' Receives the URL of rulebase file]
passing ine EFEEES 0E Emerald and asks for performing

reasoning task J/

Performs the reasoning task
and saves results in RDF
format into a temporary file

Returns the content of results
[Receives the results RDF file]% RDF file to reasoning Web
Service

Publishes the results RDF file to a
temporary URI which will be active
for a finite amount of time

Returns URI of results RDF file
[Receives URI of RDF resdlts file F‘{ to Broker

<<signal receipt>>
Lifetime of results file expired
| Purge RDF results file |

Fig. 3. Roles and activities in the Reasoning Web Service.

Client Application Reasoning Web Service Reasoner Agent

I
: 1: invoke-reasoning(rulebaselURL) |
|; U 2: invoke-reasoning(rulebaseURL)
I
I
1

I
|
3: return(resultsRDF) J
I
I
I
I
|

I
|
4 return(resultsURL) J
I
I
I

Fig. 4. Roles interaction in the Reasoning Web Service.

Agent Reasoning on the Web using Web Services 707

<wsdl:definitions ... declarations of namespaces>
<wsdl:types>
<xsd:schema xmlns:impl="urn:Defeasible_Reasoning_Service"
declarations of namespaces>
<xsd:annotation/>
<xsd:element name="DRReasoning">
<xsd:complexType>
<xsd:sequence><xsd:element
name="inputRulemlPath" type="xsd:string"/></xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="DRReasoningResponse">
<xsd:complexType>
<xsd:sequence><xsd:element
name="DRReasoningReturn" type="xsd:string"/></xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>
</wsdl:types>
<wsdl:message name="DRReasoningRequest">
<wsdl:part name="parameters" element="impl:DRReasoning"></wsdl:part>
</wsdl:message>
<wsdl:message name="DRReasoningResponse">
<wsdl:part name="parameters" element="impl:DRReasoningResponse"></wsdl:part>
</wsdl:message>
<wsdl:portType name="Defeasible_Reasoning_ServicePort">
<wsdl:operation name="DRReasoning">
<wsdl:input message="impl:DRReasoningRequest"></wsdl:input>
<wsdl:output message="impl:DRReasoningResponse"></wsdl:output>
</wsdl:operation>
</wsdl:portType>
<wsdl:binding
name="Defeasible_Reasoning_ServiceBinding"
type="impl:Defeasible_Reasoning_ServicePort">
<wsdlsoap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
<wsdl:operation name="DRReasoning">
<wsdlsoap:operation soapAction="urn:Defeasible_Reasoning_ServiceAction"/>
<wsdl:input><wsdlsoap:body use="literal"/></wsdl:input>
<wsdl:output><wsdlsoap:body use="literal"/></wsdl:output>
</wsdl:operation>
</wsdl:binding>
<wsdl:service name="Defeasible_Reasoning_ServiceService">
<wsdl:port name="Defeasible_Reasoning_ServicePort"
binding="impl:Defeasible_Reasoning_ServiceBinding">
<wsdlsoap:address location=
"http://ids.software.ucv.ro:8080/KSWAN/ws/Defeasible_Reasoning_Service"/>
</wsdl:port>
</wsdl:service>
</wsdl:definitions>

Fig. 5. WSDL of the DR Web service.

of the reasoning process expressed in RDF (resultsRDF) is returned to the Reasoning
Web Service (interaction 3 in Fig[). The Reasoning Web Service publishes the RDF file
to a temporary URL and then returns this URL (resultsURL) to the Client Application
(interaction 4 in Fig[). The Client Application receives the URL and consequently can
download the RDF file and further process it according to the application requirements.
The temporary RDF file containing the reasoning results will reside on the Web server
that hosts the Reasoning Web Service for a preestablished finite amount of time. When
this time elapses the results file will be automatically purged, as can be seen in Fig[3]

708 Costin Badica et al.

3.2. Implementation

For demonstration purposes we have only addressed the integration of the DR Reasoner
agent available in EMERALD into our prototype system. Nevertheless, the principles
behind this integration process are the same for any other Reasoner that is part of the
EMERALD platform. As a general procedure, a Reasoner (including the DR Reasoner):
(i) receives a rulebase that contains the knowledge base as a set of rules expressed for
interoperability purposes using RuleML, as well as possibly one or more RDF files con-
taining initial facts that are required for the reasoning process, (ii) performs the reasoning
and (iii) returns the reasoning result as an RDF file.

For the implementation we have used the Jade WSIG add-on [13] that gives the pos-
sibility of invoking agent services exposed as Web services from Web service clients.
WSIG provides the standard Web services stack including: WSDL service descriptions,
SOAP message transport and UDDI “yellow pages” repository. WSIG runs as part of a
Web application powered by a Web server and a servlet container. WSIG incorporates the
WSIG servlet and the WSIG agent and acts as a gateway between the Web application and
the Jade multi-agent system. The WSIG servlet handles SOAP over HTTP requests, ex-
tracts the SOAP content, maps it to an agent action and passes it to the WSIG agent. After
the action execution, WSIG servlet converts the result received from the WSIG agent to
SOAP, prepares a SOAP over HTTP reply and sends it back to the Web client (see Fig. [2).
The implementation follows the architecture diagram shown in Fig.[2]

The WSIG add-on provides a method for exposing Jade agent services whose de-
scriptions are published in the Directory Facilitator (DF) agent as Web services. For this
purpose, the DF description of an agent service is automatically mapped by WSIG onto
an WSDL description. For example, the WSDL for the reasoning service provided by DR
Reasoner is shown in Fig. 5] Analyzing this example we observe that this WSDL file
defines a Web service named Defeasible_Reasoning_Service that was derived from the
description of the Defeasible_Reasoning_Service service provided by DR Reasoner agent.

The WSDL is structured in an abstract part, containing data types, messages and
operations specification, followed by a concrete part, containing bindings and services
specification [1]. The abstract part contains: (i) type definitions specified using XML
Schema — the wsdl:type section; (ii) message types, specified as wsdl:message sections;
and (iii) port types that represent service interfaces (expressed using wsdl:portype ele-
ment) made up of sets of operations, represented as wsdl:operation elements. For exam-
ple our Defeasible_Reasoning_Service Web service has an interface with a single opera-
tion that takes two parameters: an input parameter representing a DRReasoningRequest
message and an output parameter representing a DRReasoningResponse message. Go-
ing deeper, for example the DRReasoningRequest message transports an object of type
DRReasoning that encapsulates a value named inputRulemlPath representing the URL
of the rulebase that is passed to the service. The concrete part contains bindings for op-
erations and messages (element wsdl:binding) and service endpoints specification (el-
ement wsdl:port). For example, Defeasible_Reasoning_Service Web service exchanges
messages that are specified in “document” style and are formatted using SOAP and trans-
ported over HTTP. This binding is combined with the URL where this service is available:
http://ids.software.ucv.ro:8080/KSWAN/ws/Defeasible_Reasoning Service.

Agent Reasoning on the Web using Web Services 709

4. Web-Enabled Intelligent Broker

This section contains the details of the use case, as well as the design and implementa-
tion of our prototype Web-enabled Intelligent Broker that is using third party reasoning
services provided by our Reasoning Web Service.

4.1. Use Case

We consider the intelligent broker use case introduced in [3]] and we adapt it for the Web
environment. The actors of this use case are:

(i) The User that represents a buyer interested to purchase or rent an apartment.

(i1) The Broker that matches buyer requested features with seller capabilities and recom-
mends one or more possible transactions that meet the requirements of both trading
parties.

(iii) The EMERALD framework that provides on-demand third party reasoning services
for supporting the “intelligence” of the Broker.

Placing the actors in the Web environment, the situation presents as follows. The User
is using a Web browser to connect to the Broker Web site and to search for apartment
offers. The business of the Broker is powered by a Web application that provides at least
the following two functionalities: (i) to assist the human users looking for renting apart-
ments to search for suitable offers according to their requirements; (ii) to allow landlords
to describe and publish their offers. Apartment offers will be registered and saved in a
database that is available to the Web application of the Broker. In this work we assume
the existence of this database and we shall only focus on the User side that is looking for
renting or buying a suitable apartment.

The intelligence of the Broker is driven by a knowledge base. However, taking into
account the large variety of knowledge representation formalisms, in particular based on
rules, the Broker decided to outsource its reasoning functions to a third party reasoning
platform (EMERALD in this case) that provides trusted reasoning capabilities that can
be invoked over the Web as Web services. Separating the representation of the Broker
intelligence from the reasoning services has the advantage that the Broker can update the
knowledge-base according to the interests of the User. This update can either involve the
update of the rules, as well as the adoption of a new rule representation formalism that
better fits the User needs.

Briefly, the brokering use case proceeds as follows. In the first step the User connects
to the Broker Web site and receives a form where he or she can fill-in his or her request.
When the input process is finished, the Broker generates a parameterized rulebase rep-
resented using RuleML and an RDF file that contains parameter values specified by the
User. Parameters can specify for example: minimum number of bedrooms, maximum
floor, minim size of the garden (in m?), if pets are allowed or not, maximum price for
a central or suburb location, extra price per m? (above the minimum preferred size), the
minimum preferred size, the available budget.

A more difficult task is however to provide the User with the facility of describing
his or her general preferences, like for example: main preference is the cheapest option,
second preference is the presence of a garden, and third preference is additional space,

710 Costin Badica et al.

or preferences that cannot be easily parameterized, like for example: “if the flat is on the
374 floor or above the presence of an elevator is necessary”. Therefore we have simplified
the scenario by restricting our attention to a “prototypical user” for whom we defined
a rulebase characterized by a given fixed set of parameters. The rulebase captures the
“intelligence” of the Broker in understanding the preferences of a typical User, while the
specific values of the parameters are input by the User at run-time using the form provided
by the Broker. Eventually, an “experienced user” can still be provided with the possibility
to visualize and update the rulebase. Moreover, if the user does not provide values for
some of the preference parameters, then the corresponding rules will not be added to the
generated rulebase.

In the second step the Broker will consult its internal database to retrieve a set of
apartments which are relevant for the User request. In the third step, the User preferences
(captured as the rulebase accompanied by a set of parameter-value pairs), together with
the set of relevant apartments are submitted by the Broker to the reasoning service. Finally,
the reasoning service returns to the Broker a set of available options. The Broker converts
them into a meaningful presentation (eg. HTML) and sends it to the User for visualization
in the browser.

4.2. Design

For the system design we have produced an UML activity diagram that shows the activ-
ities of the User, Broker and the reasoning service, shown in Fig.[6] as well as an UML
sequence diagram detailing the interactions between them, shown in Fig[7] The reasoning
service is named DR Web service and it is based on the DR Reasoner which is part of
EMERALD reasoning platform. The system functioning can be better understood if we
follow both diagrams.

The User connects to the Web site of the Broker by submitting the URL. The Bro-
ker delivers back to the User a Web page containing a form for preference input as a
set of parameter-value pairs describing his options concerning the rental of an apartment.
The User fills-in this form and submits it to the Broker Web site. Behind this form the
Broker preprocesses the preferences and produces a rulebase represented in RuleML no-
tation, following the example from [3]]. The rulebase contains a set of defeasible rules that
are used by the Broker to capture the generic preferences of a typical User. Differently
from [3]], the rulebase is kept separate from the set of parameter-value pairs (called pref-
erences in Fig[J] interaction 3). This approach simplifies the operation of instantiating a
particular scenario with the specific values input by the User. Intuitively, the rulebase rep-
resents the “intelligence” of the Broker in understanding and formalizing the requirements
and preference of a prototypical user regarding the rental of apartments.

The Broker receives the preferences, converts them to RDF and publishes them to a
temporary RDF file inside the Web server of the Broker Web site at a given URL. Next,
the Broker determines an initial set of relevant apartments for the User request, maps this
list to RDF using the method already shown in [3]], and publishes it to a temporary RDF
file inside the Web server of the Broker Web site at a given URL. These two RDF files
are included into the rulebase using the rdf_import attribute of RuleML, thus creating an
updated rulebase that contains the generic rules as well as the two RDF files that specify
the initial set of facts for the reasoning process.

Agent Reasoning on the Web using Web Services

User

Broker

DR Web Service

Connects to
Broker Web site

Inputs preferences
and submit

Visualizes the resuits
inside the browser

Returns Web form
for preferences input

Gets user preferences
Converts user
preferences into RDF

Publishes the
preferences RDF file
and determines its URI

Retrieves RDF file with
available appartments

Publishes the appartments RDF
file and determines its URI

)

|

Adds import statements for
preferences and appartments
RDF files to the rulebase file

|2

Invokes DR reasoning Web service
by passing the URL of rulebase file

[Receives URI of RDF results file

J

-

Converts RDF file into meaningful
HTML and retums it as a result
Web page to the user

6

Receives the URL of rulebase file

Returns URI of results RDF file
to Broker

Fig. 6. Roles and activities in the brokering scenario.

711

712 Costin Badica et al.

[1. connect(url) ‘

J

| 2: return(form)

| 3. submit(preferences)() |

? ‘ 4 invoke-reasoning(rulebaseURL)

5 return(resultsURL) U
I
I

\
\
\

8- return(resultsHTML) J
\
|

|

|

|

|

|

|
Fig. 7. Roles interaction in the brokering scenario.

Then the Broker invokes the DR Web service (interaction 4 in Fig[7) by passing it
the rulebase. The DR Web service performs the reasoning task by using the EMERALD
reasoning infrastructure, determines the output RDF file and returns its URL (resultsURL)
to the Broker (interaction 5 in Fig[7). The Broker receives the URL, downloads the RDF
file, converts it to meaningful HTML and returns the HTML (resultsHTML) to the User
for visualization in the browser (interaction 6 in Fig[7).

4.3. Implementation

Following the above described design principles, a user-friendly Web site that hosts the
Broker functionality was developed. Here, it is called Broker Web site since it is currently
focused on this specific domain, however it can host any kind and any number of domains.
The key issue behind this possibility is the fact that the site is hosted in an independent
server. Having two separated servers, one for hosting the services such as the DR Web
Service and one for hosting the registered parties such as the Broker, enables flexibility
in the setting. In other words, it is important to preserve intact and unaffected the core
framework which provides the services and at the same time provide an easy and efficient
way for agent parties to communicate with human users. Adding new domains is in prin-
ciple easily achievable, since it requires parsing the ontology of the input data and then
using this ontology to author the appropriate rulebase for the end-user preferences. There
exist graphical tools to achieve these, such as [[14] and [[L5]; however, in this paper we do
not cover this aspect.

In this study we used a new separated server for the newly developed GUI. This inter-
face is implemented mainly in PHP, a server side language that allows all calculations and
functions to be performed on the server leaving for the end user only what it is designed
for him/her. Hence, when a user visits the Web site he/she has to choose from a dropdown

Please choose any of the available domains: Select..) =

Agent Reasoning on the Web using Web Services

Capyrights K-SWAN Project

Fig. 8. Choosing domain in the GUL

Please choose any of the available domains: | select... ¥ | Domain

Thank you for choosing Carlos domain.
Pleaze set your preferences.
Default values are set for you.

] o
T T—
| Garden Size I o I
| Price I <= l
| Size I > l
Tl =1

[SubmitAl |

Fig. 9. Setting preferences.

B =
B =
12 3|
oo
B
Boo #

50 3]
B &
E =

713

714 Costin Badica et al.

menu the domain in which he/she is interested in; here it is Broker domain called Carlo
in the implementation (Fig[8).

After the domain is chosen, the GUI is dynamically updated providing a list with all
the available attributes for this domain (Fig[9). Hence, the user will be able to indicate
his/her personal preferences, e.g. the number of bedrooms. For user convenience we pro-
vide some default values in the interface. When the user finishes, “Submit all” button is
clicked, the data are collected and stored in the RDF data file that will be used in the DR
Web Service. This file is stored in the server and each time users provide their preferred
values appropriate PHP functions update the stored attribute values. More specifically, we
have stored an RDF template data file, hence each time a new attribute values is set, the
template is parsed and the value is stored under the appropriate instance.

Matchmaking Results

Compatible apartments to your requirements

Apt Centrally Price |Si No of Al Size of the Has a Allows
Name located TICEISEE | edrooms 2% garden lift? pets?
a3 10 350 || 65 | 7 :

o
=]
o -
#
a
2

| 5 7]
[&5 yes [350 55| 3 [0] 15
| a7 ves ,ﬁ,ﬁ| 3 ,T 12

Most suitable apartment for you

as

Fig. 10. GUI output.

Next, the updated RDF file, filled with the user’s requirements and preferences, is
used by the Broker in its request to the DR Web Service. As soon as the DR Reasoner
processes the request, it sends back a reply containing the results in RDF syntax, here the
compatible apartments to user’s requirements, as well as the most suitable for him/her.
The Broker on its side parses the RDF results and transforms then into HTML, in order
to represent them in a user-friendly and easily understandable output to the user (Fig[T0).

5. Proof-of-concept Scenario

In this section we present a proof-of-concept scenario of using the Defeasible_Reason-
ing _Service Web service for implementing the intelligent broker introduced in section
This scenario was adapted following [3]], while it actually originates from [2].

We assume that a generic user with name Carlo has the following requirements for an
apartment rental:

a) Apartment requirements
e Minimum size: 45m?2.

Agent Reasoning on the Web using Web Services 715

Minimum number of bedrooms: 2.
Maximum floor: 2.

Minimum garden size: 12.

e Pets allowed: yes.

b) Price Requirements

e Maximum budget: 400.
Maximum price for a central apartment: 300.
e Maximum price for a suburb apartment: 250.
e Extra price per additional apartment m?: 5.
e Extra price per additional garden m?: 2.

¢) Preferences

o The cheapest apartment is mostly preferred.
o The second option is the garden availability.
e The third option is availability of additional space.

Now, differently from [3]], in order to fit this scenario into our prototype system, we
extracted from this set of requirements the generic rulebase representing the requirements
of a typical user. Moreover, we captured the specific values of the requirements’ parame-
ters for Carlo as a separate RDF file shown in Fig.

The rulebase that captures the Broker’s intelligence as a set of defeasible rules is
expressed in RuleM A snapshot of the rulebase is exemplified in Fig The set of
apartments available for rent that are registered with the the Broker is captured as an RDF
ﬁleﬂ An example is shown in , shown in Fig. This file, as well as the RDF file with
parameter values from Fig.[T2]are included into the rulebase using the rdf_import attribute
of the RuleML root element of the rulebase file expressed in RuleML [3]].

The Broker invokes the reasoning task by sending a request message to the Defeasi-
ble_Reasoning_Service Web service. This message is packaged using SOAP as shown in
Fig. The request specifies the URL of the rulebase file that is located on the Broker’s
Web server, using the inputRulemlPath element.

The Defeasible_Reasoning _Service Web service replies with a response packaged as
a SOAP file that contains a link to the RDF file with the results, published on the De-
feasible_Reasoning_Service Web server. A part of the results file in this case is shown in
Fig. [T4] It contains the list of “acceptable” apartments — carlo:acceptable element with
the truthStatus set to defeasibly_proven_positive, as well as the apartment which is chosen
by Carlo — carlo:rent element. You can easily note that among the acceptable apartments,
Carlo chose to rent apartment a5.

3 The file is available at|http://lpis.csd.auth.qgr/systems/dr-device/carlo/
carlo—-rbase-flex-0.91.ruleml.

* The file is available at http://lpis.csd.auth.gr/systems/dr-device/carlo/
carlo-flex_ex.rdf.

http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-rbase-flex-0.91.ruleml
http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-rbase-flex-0.91.ruleml
http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-flex_ex.rdf
http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-flex_ex.rdf

716 Costin Badica et al.

<RuleML
rdf_export="export.rdf"
rdf_export_classes="acceptable rent"
rdf_import="http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo_ex
namespace declarations>

<Assert>
<Implies ruletype="defeasiblerule">
<oid><Ind uri="rl1">rl</Ind></oid>
<head>
<Atom><op><Rel>acceptable</Rel></op>
<slot><Ind>apartment</Ind>
<Var>x</Var>
</slot></Atom></head>
<body>
<Atom><op><Rel uri="carlo:apartment"/></op>
<slot><Ind uri="carlo:name"/>
<Var>x</Var>
</slot></Atom></body>
</Implies>
<Implies ruletype="defeasiblerule">
<0id><Ind uri="r2">r2</Ind></oid>
<head>
<Neg><Atom><op><Rel>acceptable</Rel></op>
<slot><Ind>apartment</Ind>
<Var>x</Var>
</slot></Atom></Neg></head>
<body><And>
<Atom><op><Rel uri="carlo:apartment"/></op>
<slot><Ind uri="carlo:name"/>
<Var>x</Var></slot>
<slot><Ind uri="carlo:bedrooms"/>
<Var>y</Var></slot></Atom>
<Atom><op><Rel uri="carlo:requirement"/></op>
<slot><Ind uri="carlo:min-bedrooms"/>
<Var>mb</Var></slot></Atom>

<Test><Expr>
<Fun in="yes"><</Fun>
<Var>y</Var>

<Var>mb</Var></Expr></Test></And></body>
<superior><Ind uri="rl"/></superior>
</Implies>

<Implies ruletype="defeasiblerule">
<0id><Ind uri="rll">rll</Ind></oid>
<head>
<Atom><op><Rel>rent</Rel></op>
<slot><Ind>apartment</Ind>
<Var>x</Var></slot></Atom></head>
<body> <And>
<Atom><op><Rel>cheapest</Rel></op>
<slot><Ind>apartment</Ind>
<Var>x</Var></slot></Atom>
<Atom><op><Rel>largestGarden</Rel></op>
<slot><Ind>apartment</Ind>
<Var>x</Var></slot></Atom></And></body>
<superior><Ind uri="rl0"/></superior>
</Implies>
</Assert>
</RuleML>

Fig. 11. Rule base fragment.

.rdf"

Agent Reasoning on the Web using Web Services 717

<rdf:RDF ... declarations of namespaces>

<carlo:apartment rdf:about="&carlo_ex;a5">
<carlo:bedrooms
rdf:datatype="&xsd; integer">3</carlo:bedrooms>
<carlo:central>yes</carlo:central>
<carlo:floor
rdf:datatype="&xsd; integer">0</carlo: floor>
<carlo:gardenSize
rdf:datatype="&xsd;integer">15</carlo:gardenSize>
<carlo:lift>no</carlo:lift>
<carlo:name>a5</carlo:name>
<carlo:pets>yes</carlo:pets>
<carlo:price
rdf:datatype="&xsd; integer">350</carlo:price>
<carlo:size
rdf:datatype="&xsd; integer">55</carlo:size>
<rdfs:label>a5</rdfs:label>
</carlo:apartment>

<carlo:requirement rdf:about="&carlo_ex;reqgl">
<carlo:min-bedrooms
rdf:datatype="&xsd; integer">2</carlo:min-bedrooms>
<carlo:max-floor
rdf:datatype="&xsd; integer">2</carlo:max-floor>
<carlo:min-gardenSize
rdf:datatype="&xsd; integer">12</carlo:min-gardenSize>
<carlo:pets-reg>yes</carlo:pets-reqg>
<carlo:max-price
rdf:datatype="&xsd; integer">400</carlo:max-price>
<carlo:min-size
rdf:datatype="&xsd; integer">45</carlo:min-size>
<carlo:min-price-central
rdf:datatype="&xsd; integer">300</carlo:min-price-central>
<carlo:min-price-suburb
rdf:datatype="&xsd; integer">250</carlo:min-price-suburb>
<carlo:extra-price-per-sm
rdf:datatype="&xsd; integer">5</carlo:extra-price-per-sm>
<carlo:extra-price-per-gsm
rdf:datatype="&xsd; integer">5</carlo:extra-price-per-gsm>
</carlo:requirement>
</rdf :RDF>

Fig. 12. RDF document for available apartments and parameter values.

<soapenv:Envelope ... declarations of namespaces>
<soapenv:Header/>
<soapenv:Body>
<urn:DRReasoning
soapenv:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
<inputRulemlPath xsi:type="xsd:string">
http://lpis.csd.auth.gr/systems/dr-device/carlo/carlo-rbase-flex-0.91.ruleml
</inputRulemlPath>
</urn:DRReasoning>
</soapenv:Body>
</soapenv:Envelope>

Fig. 13. SOAP message used by the Broker to request a reasoning task to the DR Web
service.

718 Costin Badica et al.

<rdf:RDF ... declarations of namespaces>

<export:acceptable rdf:about="&export;acceptabled">
<export:apartment>ad</export:apartment>
<defeasible:truthStatus>defeasibly_proven_negative</defeasible:truthStatus>

</export:acceptable>

<export:acceptable rdf:about="&export;acceptable2">
<export:apartment>a5</export:apartment>
<defeasible:truthStatus>defeasibly_proven_positive</defeasible:truthStatus>

</export:acceptable>

<export:rent rdf:about="&export;rentl">
<export:apartment>a5</export:apartment>
<defeasible:truthStatus>defeasibly_proven_positive</defeasible:truthStatus>
</export:rent>
</rdf :RDF>

Fig. 14. RDF file with the reasoning results.

6. Conclusions

In this paper we proposed an approach for reusing agent-based reasoning capabilities by
making them available for invocation as Web services. Our approach is supported by a
prototype system that provides an online brokering function in the domain of apartments
rental. Firstly, we proposed an extension of the EMERALD framework for agent based
reasoning services with a Web service interface. Then we considered an intelligent bro-
kering proof-of-concept scenario that involves the defeasible reasoner available in the
EMERALD framework.

Our approach is general enough so it can be applied to other types of reasoners, as
well as to other problem domains. As future work we plan to (i) extend the system by
providing other types of reasoning services over the Web such as the deductive reasoner
of EMERALD [17]; (i) experiment with more complex scenarios that require multiple
and possibly different reasoning tasks; and (iii) extend the Web services to serve multiple
operations regarding the reasoning tasks, such as proof explanation ([19]]); (iv) enhance
the description of reasoning Web services with metadata (including for example attributes
like trust, performance, quality, reasoning type, and representation formalism) for allow-
ing clients to search and select the most appropriate reasoner for their task in hand.

Finally, a longer term goal is to provide an open, flexible and customizable Web-
agent platform for hosting various agent communities and activities over the Web, such
as negotiation and auction platforms for e-business applications. They can benefit from
the reasoning services provided by our Web-agent-based extension of EMERALD, for
example by declarative representation of private agent strategies, as well as of public
negotiation mechanisms for agent-based negotiation activities [28I9U21].

Acknowledgments. This work was supported by the K-SWAN: An Interoperable Knowledge-based
Framework for Negotiating Semantic Web Agents Greek-Romanian bilateral research project carried
out between 2012-2013 and partly funded by Romanian UEFISCDI and by the Greek R&D General
Secretariat.

Agent Reasoning on the Web using Web Services 719

References

11.

12.

13.

14.

15.

16.

17.

18.

. Alonso, G., Casati, F.,, Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and

Applications. Springer (2004)

. Antoniou, G., van Harmelen, F.: A Semantic Web Primer — Second Edition. MIT Press (2008)
. Bassiliades, N., Antoniou, G., Vlahavas, .P.: A defeasible logic reasoner for the semantic web.

International Journal on Semantic Web and Information Systems 3(1), 1-41 (2006)

. Bellifemine, FL., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE.

John Wiley & Sons Ltd (2007)

. Boley, H., Paschke, A.: Rule responder agents framework and instantiations. In: El¢i, A., Koné,

M.T., Orgun, M. A. (eds.) Semantic Agent Systems, Studies in Computational Intelligence, vol.
344, pp. 3-23. Springer (2011)

. Bordini, R.H., Hiibner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentS-

peak using Jason. John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex
PO19 8SQ, England (2007)

. Bédicd, C., Budimac, Z., Burkhard, H.D., Ivanovi¢, M.: Software agents: Languages, tools,

platforms. Computer Science and Information Systems 8(2), 255-298 (2011)

. Dastani, M., Birna Riemsdijk, M., Meyer, J.J.C.: Programming multi-agent systems in 3apl.

In: Bordini, R., Dastani, M., Dix, J., Fallah Seghrouchni, A. (eds.) Multi-agent programming:
Languages platforms and applications, Multiagent Systems, Artificial Societies, and Simulated
Organizations, vol. 15, pp. 39-67. Springer, US (2005)

. Dobriceanu, A., Biscu, L., Badicd, A., Bédica, C.: The design and implementation of an agent-

based auction service. International Journal of Agent-Oriented Software Engineering 3(2/3),
116-134 (2009)

. FIPA: The foundation for intelligent physical agents (fipa): Fipa communicative act li-

brary specification (2002), retrieved November 29, 2012 from http://www.fipa.org/
specs/fipa00037/

Gelder, A.V., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs.
J. ACM 38(3), 620-650 (1991)

Giarratano, J.C., Riley, G.D.: Expert Systems: Principles and Programming, Fourth Edition.
Course Technology (2004)

JADE: Jade web services integration gateway (wsig) guide (2012), retrieved March 23, 2013
fromhttp://Jjade.tilab.com/doc/tutorials/WSIG_Guide.pdf
Kontopoulos, E., Bassiliades, N., Antoniou, G., Seridou, A.: Visual modeling of defeasible
logic rules with dr-vismo. International Journal of Artificial Intelligence Tools (IJAIT) 17(5),
903-924 (2008)

Kontopoulos, E., Zetta, T., Bassiliades, N.: Semantically-enhanced authoring of defeasible
logic rule bases in the semantic web. In: Proc. 2nd International Conference on Web Intelli-
gence, Mining and Semantics (WIMS’12). Craiova, Romania, June 13-15, 2012. pp. 489492,
Article 56. ACM (2012)

Kravari, K., Kontopoulos, E., Bassiliades, N.: A trusted defeasible reasoning service for broker-
ing agents in the semantic web. In: Papadopoulos, G.A., Bidicd, C. (eds.) Intelligent Distributed
Computing III, Proc. 3rd International Symposium on Intelligent Distributed Computing, IDC
2009. Studies in Computational Intelligence, vol. 237, pp. 243-248. Springer (2009)

Kravari, K., Kontopoulos, E., Bassiliades, N.: Emerald: A multi-agent system for knowledge-
based reasoning interoperability in the semantic web. In: Konstantopoulos, S., Perantonis, S.J.,
Karkaletsis, V., Spyropoulos, C.D., Vouros, G.A. (eds.) Artificial Intelligence: Theories, Mod-
els and Applications, Proc. 6th Hellenic Conference on AI, SETN 2010. Lecture Notes in Com-
puter Science, vol. 6040, pp. 173—-182. Springer (2010)

Kravari, K., Kontopoulos, E., Bassiliades, N.: Trusted reasoning services for semantic web
agents. Informatica (Slovenia) 34(4), 429-440 (2010)

http://www.fipa.org/specs/fipa00037/
http://www.fipa.org/specs/fipa00037/
http://jade.tilab.com/doc/tutorials/WSIG_Guide.pdf

720 Costin Badica et al.

19. Kravari, K., Papatheodorou, K., Antoniou, G., Bassiliades, N.: Extending a multi-agent rea-
soning interoperability framework with services for the semantic web logic and proof layers.
In: Bassiliades, N., Governatori, G., Paschke, A. (eds.) Rule-Based Reasoning, Programming,
and Applications, Lecture Notes in Computer Science, vol. 6826, pp. 29—43. Springer Berlin
Heidelberg (2011)

20. Kwon, O., Im, G., Lee, K.: An agent-based web service approach for supply chain collabora-
tion. Scientia Iranica 18(6), 1545-1552 (2011)

21. Muscar, A., Bidicd, C.: Towards a declarative framework for the specification of agent-driven
auctions. Engineering Intelligent Systems 21(2-3), 642-651 (2013)

22. nerdErg: The one ring project, nerderg pty ltd 2012 (2013), retrieved June 10, 2013 from
http://nerderg.com/One+Ring

23. Nute, D.: Defeasible reasoning. In: Proc. 20th International Conference on Systems Science.
pp. 470-477. IEEE Press (1987)

24. Purvis, M., Cranefield, S., Nowostawski, M., Carter, D.: Opal: A multi-level infrastructure for
agent-oriented software development. In: Information Science Discussion Paper Series No.
2002/01. University of Otago, New Zealand (2002)

25. Ryzko, D., Radziszewska, W.: Integration between web services and multi-agent systems with
applications for multi-commodity markets. In: Kaleta, M., Traczyk, T. (eds.) Modeling Multi-
commodity Trade: Information Exchange Methods, Advances in Intelligent and Soft Comput-
ing, vol. 121, pp. 65-77. Springer Berlin Heidelberg (2012)

26. Sabater, J., Sierra, C.: Review on computational trust and reputation models. Artificial Intelli-
gence Review 24(1), 33-60 (2005)

27. Skillen, K.L., Chen, L., Nugent, C.D., Donnelly, M.P., Burns, W., Solheim, I.: Ontological user
modelling and semantic rule-based reasoning for personalisation of help-on-demand services
in pervasive environments. Future Generation Computer Systems 34, 97-109 (2014)

28. Skylogiannis, T., Antoniou, G., Bassiliades, N., Governatori, G., Bikakis, A.: Dr-negotiate - a
system for automated agent negotiation with defeasible logic-based strategies. Data & Knowl-
edge Engineering 63(2), 362-380 (2007)

29. Su, C.J., Peng, C.W.: Multi-agent ontology-based web 2.0 platform for medical rehabilitation.
Expert Systems with Applications 39(12), 10311-10323 (2012)

30. Walton, C.D.: Agency and the Semantic Web. Oxford University Press (2007)

31. Wang, G., Wong, T., Wang, X.: An ontology based approach to organize multi-agent assisted
supply chain negotiations. Computers & Industrial Engineering 65(1), 2—15 (2013)

32. Wang, M., Purvis, M., Nowostawski, M.: An internal agent architecture incorporating standard
reasoning components and standards-based agent communication. In: IEEE/WIC/ACM inter-
national Conference on intelligent Agent Technology (IAT’05), Washington, DC. pp. 58-64
(2005)

33. Wooldridge, M.: An Introduction to MultiAgent Systems — Second Edition. John Wiley & Sons
(2009)

Costin Badica is Professor at the Department of Computers and Information Technol-
ogy, University of Craiova from 2006. In 2001 and 2002 he was Postdoctoral Researcher
at the Department of Computer Science, King’s College London, UK. His research in-
terests are located at the intersection of artificial intelligence, distributed systems and
software engineering. Costin Badicd was involved in many national and international re-
search projects. He is coordinating the Intelligent Distributed Systems research group
(http://ids.software.ucv.ro). Costin Badica co-authored more than 120 re-
search publications as: journal papers; conference proceedings papers; co-edited books;

http://nerderg.com/One+Ring
http://ids.software.ucv.ro

Agent Reasoning on the Web using Web Services 721

book chapters; editorials of journal special issues; books. His published research has re-
ceived over 500 citations (h-index 13). Costin Badica is member of the editorial board of
several international journals and served as member of the program or organizing com-
mittee of many international conferences. He has co-initiated the Intelligent Distributed
Computing — IDC series of international conferences that is being held annually. He has
been Program co-Chair of IDC-2007 and WIMS-2012. He has been Conference co-Chair
of ICCCI-2013.

Nick Bassiliades (http://tinyurl.com/nbassili) received his MSc in Applied
Artificial Intelligence from the Computing Science Department of Aberdeen University,
in 1992, and his PhD degree in parallel knowledge base systems from the Department of
Informatics at the Aristotle University of Thessaloniki, Greece, in 1998, where he is cur-
rently an Associate Professor. He currently also serves as an academic coordinator at the
School of Science & Technology of the International Hellenic University. His research in-
terests include knowledge-based and rule systems, multiagent systems, ontologies, linked
data and the Semantic Web. He has published more than 150 papers in journals, confer-
ences, and books, and has coauthored two books. His published research has received
over 1000 citations (h-index 17). He was on the Program Committee of more than 70 and
on the Organizational Committee of 6 conferences / workshops. He has been the Program
co-Chair of RuleML-2008, RuleML-2011@IJCAI and recently of WIMS-2014. He has
been involved in 30 R&D projects leading 9 of them. He has been the general secretary
of the Board of the Greek Atrtificial Intelligence Society; he is a director of RuleML, Inc.,
and also a member of the Greek Computer Society, the IEEE, and the ACM.

Sorin Ilie is research assistant at the Department of Computers and Information Technol-
ogy, University of Craiova from 2009. He defended his PhD thesis in December 2012 in
the area of Distributed Ant Colony Optimization. His research interests are Multi-Agent
Systems, Distributed Systems and Software Engineering. Sorin Ilie was involved in four
national and international research projects. He is a member of the Intelligent Distributed
Systems research group (http://ids.software.ucv.ro). Sorin Ilie co-authored
more than 30 research publications as: journal papers, conference proceedings papers and
book chapters. Sorin Ilie served as member of the program or organizing committee of
two international conferences.

Kalliopi Kravari is currently a PhD student at the Department of Informatics of Aristotle
University of Thessaloniki (AUTH), Greece, and she is member of Intelligent Systems
and Knowledge Processing (ISKP) Group. She holds a BSc in Informatics and an MSc in
Information Systems from AUTH. Her research interests are mainly focused on Semantic
Web and Intelligent Agents, including among others Trust Management, Knowledge Rep-
resentation and Reasoning, Logic and Rule-based Programming, Ontologies and Rules.
She has already published 3 journal papers, 1 book chapter and 12 conference papers at
the above issues. She has received a best paper award at RuleML-2010 and one of her
papers was selected among the best 2 papers of RuleML-2011@IJCALI to be presented at
IJCAI-2011.

Received: March 01, 2014; Accepted: June 10, 2014.

http://tinyurl.com/nbassili
http://ids.software.ucv.ro

	Introduction
	Background and Related Works
	Background
	Related Works

	Agent-Based Reasoning Web Services
	Architecture and Design
	Implementation

	Web-Enabled Intelligent Broker
	Use Case
	Design
	Implementation

	Proof-of-concept Scenario
	Conclusions

