
Computer Science and Information Systems 14(2):537–555 DOI: 10.2298/CSIS161010010R

Modeling the Delivery of Security Advisories and CVEs

Jukka Ruohonen1 and Sami Hyrynsalmi1,2 and Ville Leppänen1

1 Department of Information Technology, University of Turku, FI-20014 Turun yliopisto, Finland
2 Pori Department, Tampere University of Technology, P.O. Box 300, FI-28101 Pori, Finland

{juanruo, sthyry, ville.leppanen}@utu.fi

Abstract. This empirical paper models three structural factors that are hypothe-
sized to affect the turnaround times between the publication of security advisories
and Common Vulnerabilities and Exposures (CVEs). The three structural factors
are: (i) software product age at the time of advisory release; (ii) severity of vulner-
abilities coordinated; and (iii) amounts of CVEs referenced in advisories. Although
all three factors are observed to provide only limited information for statistically
predicting the turnaround times in a dataset comprised of Microsoft, openSUSE,
and Ubuntu operating system products, the paper outlines new research directions
for better understanding the current problems related to vulnerability coordination.

Keywords: security patching, vulnerability life cycle, negative result

1. Introduction

This empirical paper examines turnaround times between the publication of security advi-
sories and CVE identifiers.1 More specifically, the empirical quantity of interest is defined
as the time difference (in days) between a CVE publication in the National Vulnerability
Database (NVD) and the publication of an associated, CVE-referenced security advisory.

In general, these “advisory-CVE turnaround times” are analogous to many common
empirical software engineering concepts and metrics, including, but not limited to, “time-
between-failures” [15], “time-between-commits” [33], “time-between-disclosures” [17],
and “problem resolution interval” [24], or the analogous “defect resolution time” [4].
In the scholarly software vulnerability research, these concepts resonate with vulnerability
life cycle (VLC) modeling with its general goal of tracing vulnerabilities through such life
cycle abstractions as commits, defects, discoveries, disclosures, patches, publications, and
intrusions [2, 18, 36, 37]. Although the general research background is thus well-founded,
limited attention has been given for the role of security advisories in VLC modeling.

In addition to filling this gap in the literature, this paper introduces a new, previously
unexplored metric for VLC modeling: the age of software products at the time of security
advisory releases. This “age-metric” is operationalized in the opening Section 2 together
with a brief motivation of the VLC background. For putting the elaborated life cycle vari-
ables into work, a dataset with 46 operating system products is examined in Section 3.
Estimation is carried with a conventional Poisson regression model. Conclusions and fu-
ture research directions are presented in the final Section 4.

1 This paper is a rewritten and extended version of an earlier conference paper [34] presented at
the 6th International Workshop on Information Systems Security Engineering (WISSE 2016).

538 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

2. Background

The forthcoming discussion briefly paints the basic analytical canvas related to vulnerabil-
ity life cycle modeling (Section 2.1). After this motivation, VLC modeling is discussed in
Section 2.2 in preparation for operationalization and measurement details in Section 2.3.

2.1. Vulnerability Life Cycles

Life cycle thinking posits the evolution of a phenomenon from its birth to its death. When
applied to VLCs, this characterization contains a paradox. Although vulnerabilities are
given birth in software repositories [25, 26], vulnerabilities seldom die in the sense that
there would not be affected products even decades after the release of the products. There-
fore, conventional VLC modeling often ends to events at which tickets have been closed
in bug tracking systems, patches have arrived for customers, patches have been tested, se-
curity advisories have been published, CVEs have been coordinated, signatures have been
written for intrusion detection and prevention systems, and so forth. After these activities,
there is not much that can be done for helping consumers running unpatched products.

As illustrated in Fig. 1, different analytical states can be stated for vulnerabilities
before they have seen the remediation phase. It should be noted that not all arcs are drawn
and directions are omitted because the states are not consistent for presentation purposes;
for instance, the last two states, publication and patching, often switch places in practice,
while an unknown vulnerability can be discovered, a secret can be disclosed, and so forth.
Nevertheless, many of these analytical states deliver also the basic security risk viewpoint.

Defect

Vulnerability

Not security-

related

Identified

Unknown

Disclosed

Secret

Published

Private

Patched

Unpatched

Time

Birth Discovery Involvement of institutions

Fig. 1. Vulnerability Life Cycle States (basic idea with adjustments from [36])

After an actor has discovered a vulnerability by identifying a defect with security im-
plications, the vulnerability in question can be thought to enter to the state of discovery.
If the actor subsequently decides to keep the discovery as a secret, the security bug would

Modeling the Delivery of Security Advisories and CVEs 539

be generally classified as a “zero-day” vulnerability according to the current jargon. Al-
though these zero-day cases supposedly continue to expose some of the greatest security
risks, the present interest relates to the more “mundane states” within and after the third
rectangle in Fig. 1. This focus on the publication and patching states is no less impor-
tant from a software engineering perspective. Because the current de facto practice is to
use CVEs for identifying issues in security advisories, the publication state also involves
coordination between vendors and the “disclosure institutions” [30] who are responsible
for CVE tracking. Consequently, in terms of continuous software engineering practices,
such as the so-called lean model, unnecessary time delays that may occur between these
activities are a clear manifestation of waiting, and, thus, “waste” (cf. [14]). The optimal
turnaround time from identification to patching should be short when all actors are benign
professionals, of course, although, in practice, the delays can be considerably long.

In recent interesting work, analytical focus has been placed on the per-vulnerability
time differences at an individual “within-state” level, that is, a subtraction “Disclosurei+1−
Disclosurei” can be used for modeling software engineering work of individual engi-
neers [17]. This paper extends the same general idea for observing the “between-state”
time lags in terms per-vulnerability “Advisoryi−CVEi” time differences. Given the over-
all optimum of having short time lags from the initial discovery to the publication and
patching states, these differences contribute to the overall life cycle turnaround times.

2.2. Setup

In this paper, the analytical interest relates to the time difference

zi = Time of advisory− Time of publication (1)
= τ1 − τ0, given i and zi ∈ (−∞,∞),

and where τ1 refers to the date and time at which an operating system software vendor
released a security advisory that covered the i:th vulnerability, which was publicized with
a CVE identifier at τ0. Note that zi is only theoretically restricted to be finite. If a vendor
never patches a vulnerability, the life cycle of the vulnerability approaches infinity.

The scalar zi can be understood as a simple efficiency metric for security patching,
and, more accurately, for the associated release of security advisories. In general, a large
positive value implies that a long time was required for a vendor to patch a vulnerabil-
ity and communicate the information to users. When zi < 0, a vendor handled a vul-
nerability before it was publicized at the infrastructure provided by MITRE and related
institutions. Because all observed operating system vendors possess – either explicitly or
via commercial sponsors – authorities for CVE assignments [23], these negative values
are nothing special as such. For instance, Ubuntu released an advisory (USN-2628-1)
for CVE-2015-4171 in 8th of June 2015, which was timestamped to the institutional
databases two days later. Thus, an identifier was already available during the time of the
advisory release, while the CVE publication was slightly delayed, possibly owing to addi-
tional processing and archiving work. Although numerical assessments with the Common
Vulnerability Scoring System (CVSS) require additional manual work and further coordi-
nation between associated parties [36, 45], it should be remarked that zi does not include
the (often later) time points at which CVSS scores are published.

540 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

It should be also emphasized that a more traditional interest in empirical VLC mod-
eling relates to the difference between τ1 and the date at which information was first
disclosed to a vendor or a third-party [3, 18, 41]. While such timelines are longer than
the observed ones – disclosure must logically precede CVE publication, the analytical
meaning remains more or less similar. The reason for preferring the state of publication
(instead of the state of disclosure) relates to the well-known practical limitations imposed
by the availability of robust vulnerability data [10, 19, 26]. In particular, disclosure dates
– let alone discovery dates [17] – are only seldom known in practice [9, 36], and, hence,
attachment to the publication state is necessary for maintaining a degree of conceptual
rigor. In other words, this paper observes the later states in vulnerability life cycles, and
as said, this focus is no less important than the length of vulnerability disclosure. From a
coordination perspective [10, 16], the statistical optimum should be at zi = 0, which im-
plies a fully synchronized release of security advisories and CVEs. Systematically either
positive or negative but large values of zi indicate generally non-optimal coordination be-
tween operating system vendors, MITRE affiliates, NVD maintainers, and related parties.

2.3. Structural Factors

There are numerous methodological choices for modeling the scalar zi. In this paper,
the underlying modeling setup builds on two subsets, which capture the two scenarios
illustrated in Fig. 2. Thus, let y1, . . . , yn denote a subset of timelines for which zi > 0 for
all i, that is, the cases that follow the route (b). Likewise, let x1, . . . , xn denote a subset
of observations for which zi ≤ 0, implying the route (a) in the figure.

t0 t1 τ1 τ0 τ1

A software product
is introduced to a
market segment by
a software vendor

A vulnerability is
discovered from the
software product by
a benign actor

A security advisory
is released by the
vendor for the vul-
nerability (Case 1)

The vulnerability
is archived and
disclosed to the
public sphere by
MITRE/NVD

A security advisory
is released by the
vendor for the vul-
nerability (Case 2)

(a) (a)

(b)

(b)

Time

Fig. 2. Timelines for Advisory Releases (adopted from [34])

The interest is to examine three structural factors that are possibly statistically asso-
ciated with the two timeline subsets. The term structural underlines that only meta-data
measures are considered in the modeling, whereas, in reality, the lengths of the timelines
in Fig. 2 are dependent on individual behavior, including the concrete software engineer-
ing work associated with disclosure, patching, writing of security advisories, communi-
cation with CVE-related institutions, and numerous related activities. While keeping this

Modeling the Delivery of Security Advisories and CVEs 541

important point in mind, the three meta-data measures are used for positing two equations:{
f(yi) = α1 + β11Ai + β12Si + β13Ri

f(|xi|) = α2 + β21Ai + β22Si + β23Ri
, (2)

where f(w) = w for the time being, yi > 0 and xi ≤ 0 for all i, {α1, α2, β11, . . . , β23} is
a set of regression coefficients, Si denotes the severity of the i:th CVE-referenced vulner-
ability, Ri is the cumulative amount of per-release security advisory references that were
made to the same CVE identifier, and, finally,

Ai = τ1 − t0, Ai ≥ 0, (3)

approximates the age of a given operating system product at the time of the corresponding
security advisory release. The general assumption is that β11 6= β12 6= · · · 6= β23 6= 0,
meaning that the three structural factors can generally help at predicting the turnaround
times. Although it is difficult to speculate about the signs and magnitudes of the coeffi-
cients, a few exploratory remarks can be made for motivating the statistical modeling.

The variable Ai provides a relatively straightforward hypothesis related to the age
of operating system products [34]. Accordingly, and given a linearity assumption, when
the age of a product increases by one day, particularly the mean length of the positive
turnaround times, yi, should increase by β11, all other things being equal. Thus, older
products would be generally more difficult to patch and coordinate, which would lead
to expect that also β21 < 0 when modeling |xi|. When only fixed software life cycles
and publicly disclosed vulnerabilities are observed, it should be further remarked that
the value of Ai is always non-negative, meaning that security patching only applies to
products that have been released. A case Ai = 0 implies that a vulnerability was patched
already during a product’s release date – during the very first day of the product’s life
cycle. In general, however, the values A1, . . . , An should be relatively large due to the
so-called “S-curves” [22, 32] and “honeymoon effects” [11, 12]. That is, new software
releases tend to enjoy short grace periods before the first vulnerabilities are discovered.

Following existing research [3, 22, 35], the severity variable Si ∈ [0, 10] is attached
to the (aggregated) base CVSS score; the higher the value, the more severe the i:th vul-
nerability. Thus, also this variable provides a relatively logical hypothesis: severe vulner-
abilities should be coordinated faster than more mundane vulnerabilities, which would
lead to expect that β12 < 0 and β22 < 0. Although there are some existing empirical
observations along these lines [40], the CVSS scoring system tends to provide only lim-
ited statistical variability between vulnerabilities [1], which subsequently undermines the
empirical plausibility of the assumption. Furthermore, Si is included to (2) irrespective of
the date and time at which the CVSS scores were available from the CVE-processing in-
stitutions. In the context of security patching, the point is particularly important: if CVSS
scores were not available at the time of patching, it is logically impossible to account for
this information at the time when security advisories are written. Given these concerns,
also the severity variable is included as a statistical control variable.

The variable Ri has been hypothesized to proxy security “patching quality” (see [40];
and references therein). From a software engineering perspective, the operationalization
is arguably too coarse for rigorously evaluating the release and coordination strategies
between advisories and CVEs. For instance, some vendors (such as Apple) have released

542 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

large patch sets for large number of CVE-referenced vulnerabilities. Although such strate-
gies should be visible via zi, it is difficult to make the theoretical leap to quality without
more fine-grained data and related background materials. Thus, also the last variable en-
ters as a statistical control variable without prior expectations about the statistical effects.

3. Analysis

The empirical analysis operates with a dataset comprised of 46 operating system releases
from three vendors. After introducing this dataset, the forthcoming discussion proceeds to
briefly elaborate the statistical estimation strategy. Dissemination of the results follows.

3.1. Data

The empirical sample covers operating system releases of Microsoft Windows, open-
SUSE, and Ubuntu Linux (see Table 1). The case selection satisfies some desirable data
collection properties: (a) open source software is included, and all observed products (b)
have (and have had) a broad and loyal user base as well as (c) a large population of pub-
licly disclosed vulnerabilities, which both allow presuming that (d) the products have been
frequent targets of attacks and exploitation attempts [11]. In terms of operationalization,
the timestamp τ1 in (1) is fixed the security advisory release dates, whereas τ0 is attached
to the publication date at NVD. The time resolution is in days. Thus, it is plausible to
assume (but not verify) that the released advisories have corresponded with availability of
patches from download services.

Finally, the age variable Ai in (3) is computed with respect to the release dates of
the observed operating system products. These products are listed in Fig. 3 (Microsoft),
Fig. 4 (openSUSE), and Fig. 5 (Ubuntu). At the time of the data collection in the summer
of 2015, Windows Vista, 7, and 8 were still eligible for security patches from Microsoft.
In contrast, only two openSUSE and Ubuntu products were maintained, which generally
signifies the longer life cycle of the Microsoft Windows products.

Table 1. Data Sources

Institutions Vendors / products

NVD Microsoft openSUSE Ubuntu
Data source(s) [27] [20, 21] [28, 29, 39] [7, 8]

Note (i) that only openSUSE is sampled, although the advisories released for
the commercial SUSE often account also affected openSUSE releases. In gen-
eral, (ii) the concrete collection from the sources mimics the guidelines for more
comprehensive data collection from multiple sources [19], including vulnerability
databases, bug tracking systems, and software source code repositories.

Three general remarks are warranted about the dataset.

1. The dataset is generally in accordance with previous observations regarding the over-
all slowness of open source vendors [18, 36, 37]. When the per-vendor frequency
distributions of the differences in (1) are examined, it is clear that Microsoft has been

Modeling the Delivery of Security Advisories and CVEs 543

Microsoft

(mean = 7, median = 0, and std. dev. = 55 across products; share of zeros = 43 %)

zi

−400
−200

0
200
400
600
800

 X
P

 P
ro

fe
ss

io
na

l x
64

 E
di

tio
n

 X
P

 P
ro

fe
ss

io
na

l x
64

 E
di

tio
n

S
er

vi
ce

 P
ac

k
2

 X
P

 S
er

vi
ce

 P
ac

k
1

 X
P

 S
er

vi
ce

 P
ac

k
2

 X
P

 S
er

vi
ce

 P
ac

k
3

 7
 fo

r 3
2−

bi
t S

ys
te

m
s

 7
 fo

r 3
2−

bi
t S

ys
te

m
s

S
er

vi
ce

 P
ac

k
1

 7
 fo

r x
64

−b
as

ed
 S

ys
te

m
s

 7
 fo

r x
64

−b
as

ed
 S

ys
te

m
s

S
er

vi
ce

 P
ac

k
1

 8
 fo

r 3
2−

bi
t S

ys
te

m
s

 8
 fo

r x
64

−b
as

ed
 S

ys
te

m
s

 V
is

ta

 V
is

ta
 S

er
vi

ce
 P

ac
k

1

 V
is

ta
 S

er
vi

ce
 P

ac
k

2

 V
is

ta
 x

64
 E

di
tio

n

 V
is

ta
 x

64
 E

di
tio

n
S

er
vi

ce
 P

ac
k

1

 V
is

ta
 x

64
 E

di
tio

n
S

er
vi

ce
 P

ac
k

2

Fig. 3. Timelines for Microsoft Products
openSUSE

(mean = 62, median = 23, and std. dev. = 182 across products; share of zeros = 2 %)

zi

−1000

0

1000

2000

3000

op
en

S
U

S
E

 1
1.

0

op
en

S
U

S
E

 1
1.

1

op
en

S
U

S
E

 1
1.

2

op
en

S
U

S
E

 1
1.

3

op
en

S
U

S
E

 1
1.

4

op
en

S
U

S
E

 1
2.

3

op
en

S
U

S
E

 1
3.

1

op
en

S
U

S
E

 1
3.

2

Fig. 4. Timelines for openSUSE Products
Ubuntu

(mean = 38, median = 10, and std. dev. = 160 across products; share of zeros = 6 %)

zi

−1000

0

1000

2000

3000

10
.0

4
LT

S

10
.1

0

11
.0

4

11
.1

0

12
.0

4
LT

S

12
.1

0

13
.0

4

13
.1

0

14
.0

4
LT

S

14
.1

0

4.
10

5.
04

5.
10

6.
06

 L
TS 6.
10

7.
04

7.
10

8.
04

 L
TS 8.
10

9.
04

9.
10

Fig. 5. Timelines for Ubuntu Products

544 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

faster than openSUSE and Ubuntu in coordinating the specific vulnerabilities that
have affected the observed Microsoft Windows operating system releases. This gen-
eral observation can be seen already by comparing the scales of the y-axis in Fig. 3 to
the scales for the openSUSE and Ubuntu products shown in the subsequent two plots.
As has been argued previously [13], it is difficult to pick a clear “winner” among
open source operating system projects and associated vendors. The same applies to
comparisons of the observed openSUSE and Ubuntu products.

2. A considerable amount of outliers is present, but mainly for the openSUSE and
Ubuntu products. In general, much less dispersion is seen for the Microsoft prod-
ucts. In fact, Microsoft has patched as much as approximately 43 % of the observed
vulnerabilities already during the same day when these were timestamped to NVD.

3. As indicated by the overall means, medians, and standard deviations across all per-
vendor products reported in the subtitles of the three figures, most of the cases fall
to the yt subset timelines. Thus, roughly speaking, the route (b) in Fig. 2 has been
more common. In other words, for the observed products, CVE publication has often
preceded the publication of security advisories with back references.

It is difficult to speculate about the reasons explaining the outliers. What can be said,
however, is that these are partially related to operationalization of the scalar zi. In partic-
ular, (a) there are many-to-many references between advisories and CVEs, which leads
to a notable operationalization problem. In this paper, the problem is approached by us-
ing the largest per-product advisory timestamp (the latest day) for each referenced CVE.
Although also the reverse (the earliest dates) have been used [40], the present choice can
be justified by maintaining that a given vulnerability was not entirely fixed and commu-
nicated to users until the last advisory released. On the other hand, for statistical analysis,
the choice makes it a mystery why some openSUSE and Ubuntu advisories referenced
old CVEs that had been available in NVD already 3,000 days ago. Although qualitative
case studies would be required in this regard, it is also important to emphasize that (b) all
three vendors support parallel products, and, hence, a single CVE-referenced vulnerabil-
ity typically affects multiple products. The effect is pronounced in the case of Microsoft
for which product variety has generally been larger within the observed product families.

3.2. Methods

The two equations in (2) both model a count data response variable against three covari-
ates. That is, either yi or |xi| counts days related to the i:th CVE publication timeline.
Therefore, a classical Poisson regression model provides a sensible choice: the goal is
to model the expected values (conditional means) of the two subset response variables.
A standard “log-link” is readily available by defining f(w) = log(w) in (2). Thus, the
expected values of the response variables are given by a general specification (S1):

S1 :

{
yi = exp(α1 + β11Ai + β12Si + β13Ri)

|xi| = exp(α2 + β21Ai + β22Si + β23Ri)
, (4)

meaning that the conditional mean is given for yi by eα1eβ11Aieβ12Sieβ13Ri , and analo-
gously for |xi|. If β11 = β12 = β13 = 0, it follows that the expected value of yi equals

Modeling the Delivery of Security Advisories and CVEs 545

exp(α1). Due to the issues related to model interpretation (see Section 2.3), this general
“negative result assumption” provides a simple null specification (S0) in the form of

S0 :

{
yi = eα1

|xi| = eα2
. (5)

For assessing whether the three structural factors provide predictive power in general,
the Baysian information criterion (BIC) values can be used for comparing S0 and S1. If
the structural factors can provide hints for explaining the turnaround times, S1 should
then attain noticeably lower values. For a further assessment, the magnitudes of the beta
coefficients provide decent reality checks. (Unlike statistical significance; almost all co-
efficients are significant even at a p < 0.001 threshold, which, as such, does not arguably
tell much due to reliability problems with vulnerability data, lack of random sampling,
and related issues.) A classical issue with Poisson regression should be also noted.

The fundamental assumption is that the two subset timelines follow a Poisson distribu-
tion, which implies that the expected values of the responses should equal their variances.
For applied work, a cautionary remark is therefore reserved regarding overdispersion,
particularly in case there is an excess amount of zeros. Although a large amount of spec-
ifications exist for accounting the overdispersion problem [43], the recommendations for
applied work remain generally inconclusive [5, 6]. On one hand, already Fig. 4 (open-
SUSE) and Fig. 5 (Ubuntu) allow deducing that the variances of yi and |xi| do not equal
their means for these two open source projects. Analogously, for the Microsoft Windows
operating system products in Fig. 3, an analytical model selection diagram [6] would lead
to prefer a negative binomial or related “zero-inflated” specification particularly due to the
large amount of zeros. On the other hand, already the split into the two subset timelines
(according xi ≤ 0 for all i) means that the same diagram presumably leads to different
specifications for different products, which makes the comparison of results difficult. (It
can be also remarked that the glm.nb function in the R package MASS [42] exhibits
severe convergence problems for some products with the default settings.) Given these
remarks, the specifications S0 and S1 are estimated as conventional Poisson regressions
via the standard glm function in R. Therefore, some inaccuracies are to be expected, but
the estimates should reveal further information about the effect of the beta coefficients.

Arguably, however, the overdispersion and related issues are estimation details when
compared to choices made in the selection of a high-level estimation strategy. In particu-
lar, a so-called “fixed effects” (cross-sectional) strategy has been considered for empirical
VLC modeling [3]. In contrast, (a) the subsequently reported results are computed by
estimating the Poisson models equation-by-equation for the Microsoft, openSUSE and
Ubuntu products separately. For presenting the results, the individually estimated specifi-
cations are evaluated by focusing on central tendency, dispersion, and potential presence
of outliers. Furthermore, (b) it is assumed that observations within the subset timelines
are independent from each other. In particular, (c) calendar time is not explicitly modeled,
although the age variable (3) is supposed to proxy some of the calendar time effects. This
restriction is problematic for some VLC questions [17], but it should not prevent the use
of Poisson regression for studying the (independent) rate of occurrences. If dependencies
are observed, one direction is provided for model refinement in further work.

546 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

3.3. Results

The BIC values are shown in Fig. 6 (Microsoft), Fig. 7 (openSUSE), and Fig. 8 (Ubuntu)
for S0 and S1, estimated for each of the products individually. When interpreting the
figures, it should be kept in mind that the plots are not comparable across the three vendors
due to the unequal sample sizes. Although the effect may not be large due to the parallel
product lines, comparisons across products should be also avoided because the releases
affected do not remain constant for all vulnerabilities. Nonetheless, it is evident that the
general specification S1 provides some information for predicting the subset timelines.
For the clear majority of cases, the computed BIC values are smaller for S1 compared
to S0. As a visual evaluation reveals, the differences are not large in magnitude, however.

The regression coefficient estimates are shown in Fig. 9 (Microsoft), Fig. 10 (open-
SUSE), and Fig. 11 (Ubuntu) using the general specification S1. The regression coefficient
estimates β̂11, β̂12, and β̂13 are shown in the upper-row plots, whereas the lower plots
summarize the coefficients β̂21, β̂22, and β̂23. Before interpreting the figures, it should
be noted that the CVE-references variable Ri could not be included in all models (the
amounts of these cases are marked with a NA symbol in the plots). As was noted in Sec-
tion 3.1, there are often (but not always) many-to-many references between advisories
and CVEs, but these relations do not necessarily exhibit any variance for some products,
meaning that the inclusion ofRi would merely add another constant (and, hence, the vari-
able must be omitted). As these cases apply only for a few outlying products, however,
the plots can be disseminated by considering the coefficient magnitudes for each variable.

1. The coefficients for the age variable Ai are close to zero for all estimates. Although
there are some outliers, a look at the y-axes is enough for revealing that the magni-
tudes are negligible. In other words, and as in previous examinations [34], the asso-
ciated “age assertion” does not generally hold in the dataset.

2. Excluding only a few outliers, the coefficients β̂12 and β̂22 for the base CVSS scores
are negative on average, as expected. The magnitudes are again small, however. The
medians for the Microsoft (Fig. 9), openSUSE (Fig. 10), and Ubuntu (Fig. 11) prod-
ucts are −0.07, −0.06, and −0.07 in the yi subset timelines, respectively. Thus,
holding other variables constant, one unit increase in log(Si) would decrease the
timelines by a factor of e−0.07 for the Microsoft products. To state the same via (2)
with f(w) = log(w), one unit increase in the base CVSS scores would decrease the
logarithm of the yi subset timelines by a multiple of about 0.07.

3. For Microsoft and Ubuntu, the coefficients for Ri exhibit positive signs in the yi sub-
sets and negative signs in the xi subsets on average. Because non-negative median
coefficients are seen for openSUSE, the results are mixed for this variable. Further-
more, as discussed in Section 2.3, the interpretation is generally difficult for Ri.

Are the coefficient magnitudes sensible? As the coefficients are close to zero for the
age variable, the question can be contemplated by focusing on the base CVSS scores. The
effect of a day or few days does not seem illogical. Thus, severe vulnerabilities would
tend to imply slightly faster coordination. Given the reliability, validity, and provenance
problems [9, 17, 19, 26], a strong argument can be also formed by stating that the effects
are largely noise. The argument is supported by a brief look at the fitted values.

The actual and predicted values for six products are shown for the yi responses in
Fig. 12 (Microsoft), Fig. 13 (openSUSE), and Fig. 14 (Ubuntu). For interpretation, note

Modeling the Delivery of Security Advisories and CVEs 547

B
IC

0
50

00
10

00
0

15
00

0
20

00
0

Product

Null
General

Response : yi

General has smaller BIC for 100 % of cases

Microsoft

B
IC

0
50

00
10

00
0

15
00

0
20

00
0

Product

Null
General

Response : xi

General has smaller BIC for 100 % of cases

Microsoft

Fig. 6. BICs for Microsoft Products (Poisson, log-link, S0 and S1)

B
IC

0
50

00
0

10
00

00
15

00
00

20
00

00

Product

Null
General

Response : yi

General has smaller BIC for 100 % of cases

openSUSE

B
IC

0
50

00
0

10
00

00
15

00
00

20
00

00

Product

Null
General

Response : xi

General has smaller BIC for 88 % of cases

openSUSE

Fig. 7. BICs for openSUSE Products (Poisson, log-link, S0 and S1)

B
IC

0
50

00
0

15
00

00
25

00
00

Product

Null
General

Response : yi

General has smaller BIC for 100 % of cases

Ubuntu

B
IC

0
50

00
0

15
00

00
25

00
00

Product

Null
General

Response : xi

General has smaller BIC for 90 % of cases

Ubuntu

Fig. 8. BICs for Ubuntu Products (Poisson, log-link, S0 and S1)

548 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

−0
.0

02
0.

00
6

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = −0.00)

Age

−0
.3

−0
.1

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = −0.07)

Severity

0.
2

0.
6

1.
0

Response : yi

C
oe

ffi
ci

en
t NA = 3

(median = 0.30)

References

Microsoft

−0
.0

03
0.

00
0

Response : xi

C
oe

ffi
ci

en
t NA = 0

(median = −0.00)

Age
−0

.4
−0

.2
0.

0

Response : xi

C
oe

ffi
ci

en
t NA = 0

(median = −0.24)

Severity

−1
0

−6
−2

Response : xi

C
oe

ffi
ci

en
t NA = 2

(median = −1.15)

References

Microsoft

Fig. 9. Regression Coefficients for Microsoft Products (Poisson, log-link S1)

−0
.0

04
0.

00
0

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = 0.00)

Age

−0
.1

5
−0

.0
5

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = −0.06)

Severity

0.
0

0.
2

0.
4

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = 0.12)

References

openSUSE

0.
00

0
0.

01
0

Response : xi

C
oe

ffi
ci

en
t NA = 0

(median = 0.00)

Age

−0
.3

−0
.1

0.
1

Response : xi

C
oe

ffi
ci

en
t NA = 0

(median = −0.13)

Severity

−0
.6

0.
0

0.
4

Response : xi

C
oe

ffi
ci

en
t NA = 1

(median = 0.34)

References

openSUSE

Fig. 10. Regression Coefficients for openSUSE Products (Poisson, log-link, S1)

−0
.0

04
0.

00
2

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = 0.00)

Age

−0
.1

5
−0

.0
5

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = −0.07)

Severity

−1
.0

0.
0

Response : yi

C
oe

ffi
ci

en
t NA = 0

(median = 0.00)

References

Ubuntu

−0
.0

05
0.

00
5

Response : xi

C
oe

ffi
ci

en
t NA = 0

(median = −0.00)

Age

−0
.2

5
−0

.1
0

Response : xi

C
oe

ffi
ci

en
t NA = 0

(median = −0.15)

Severity

−1
.5

−0
.5

0.
5

Response : xi

C
oe

ffi
ci

en
t NA = 2

(median = −0.26)

References

Ubuntu

Fig. 11. Regression Coefficients for Ubuntu Products (Poisson, log-link, S1)

Modeling the Delivery of Security Advisories and CVEs 549

0 20 40 60

0
20

0
40

0
60

0
80

0
10

00

CVE (index, unordered by calendar time)

y i
Microsoft Windows XP Service Pack 2

Response : yi

Actual

Predicted

0 10 20 30 40

0
20

0
40

0
60

0
80

0

CVE (index, unordered by calendar time)

y i

Windows 7 for 32−bit Systems

Response : yi

Actual

Predicted

Fig. 12. Actual and Predicted Values for Two Microsoft Products (Poisson, log-link, S1)

0 50 100 150

0
20

0
40

0
60

0
80

0

CVE (index, unordered by calendar time)

y i

openSUSE 11.0

Response : yi

Actual

Predicted

0 200 400 600 800

0
20

0
40

0
60

0
80

0
10

00

CVE (index, unordered by calendar time)

y i

openSUSE 11.2

Response : yi

Actual

Predicted

Fig. 13. Actual and Predicted Values for Two openSUSE Products (Poisson, log-link, S1)

0 50 100 150 200 250

0
50

0
15

00
25

00

CVE (index, unordered by calendar time)

y i

4.10

Response : yi

Actual

Predicted

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0

CVE (index, unordered by calendar time)

y i

13.04

Response : yi

Actual

Predicted

Fig. 14. Actual and Predicted Values for Two Ubuntu Products (Poisson, log-link, S1)

550 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

that x-axes (observations) have not been ordered according to CVE publication years and
remaining identifiers. Thus, although there seem to be “trends”, these clusters are spurious
in terms of a calendar time interpretation. All in all, some plots indicate decent predictions
for the conditional means. As visualized by the two openSUSE cases, however, some
estimates are unable to capture the apparent clusters and outliers. Particularly for these
products, something else largely explains the CVE publication turnaround times.

4. Discussion

The remainder of this paper summarizes the key results and future research directions.

4.1. Key Observations

To summarize the main findings, it can be started by noting that (a) coordination has
been better for the observed Windows systems compared to the observed openSUSE and
Ubuntu releases. Although care should be used when using vulnerability data for compar-
ing vendors and products [10], this finding supports the existing empirical observations
about the slowness of open source vendors [36, 37]. While it may well be that Microsoft
is merely better at “gaming” the coordination processes (cf. [10]), it is likely that open
source coordination exhibits some unique problems, including potential deficiencies in
coordination between open source operating system vendors, between “upstream” devel-
opers and “downstream” distributors, and between related open source actors.

Irrespective of a product, (b) the age of a product at security advisory release times
is not statistically associated with the coordination. In general, (c) severity fares a little
better in this regard. The results for the base CVSS scores seem also relatively logical: it
seems that severe vulnerabilities are coordinated slightly faster. For pursuing model re-
finements at this front, possible paths include unpacking the base scores to the individual
CIA (confidentiality, integrity, availability) metrics [22, 40], conducting further random-
ized experiments [1], considering different weighting solutions [38], and, in general, con-
ducting further empirical research for better understanding the potential role of severity in
the coordination practices. By considering the usually severe “multi-vendor” vulnerabili-
ties coordinated by US-CERT [31], for instance, it seems reasonable to hypothesize that
severity might shed further light on the visible outliers observed in the dataset utilized.

However, the final key observation can be summarized by noting that (d) only modest
statistical predictions can be computed for many of the observed products with the three
structural factors alone. Something else is required for explaining the concrete reasons
behind the turnaround times and software vulnerability coordination in general.

4.2. Future Directions

In general, (i) more thorough longitudinal modeling is required for accounting the long-
run trends in calendar time. There are also some reasons to suspect that the estimates
reported might be affected by non-random dependencies between the turnaround times.
In this regard, classical reliability modeling [15, 44] might provide one path forward. An-
other option might be to consider different “sliding window variables” [22] for examining

Modeling the Delivery of Security Advisories and CVEs 551

the longitudinal dimension. In other words, different “substates” could be added to the
time intervals between τ0 and τ1 in Fig. 2.

More importantly, (ii) for evaluating how much “waste” [14] operating system vendors
are accumulating during the publication state, a better understanding is required about the
efficiency at the vendor-side in order for making reliable comparisons to the institutional
setup, including the maintenance of NVD. Thus, it seems reasonable to argue that future
VLC modeling should focus on backtracking to the initial birth state. Such tracing requires
adopting software repository mining techniques, which also frame vulnerability life cy-
cle modeling closer to the mainstream empirical software engineering research [25, 26].
However, it remains still unclear whether software repository mining can fully answer to
a question about the factors affecting software vulnerability coordination.

Thus, (iii) another question relates to an argument that different “structural factors”
derived from meta-data schemas cannot (or even should not) explain the advisory-CVE
turnaround times. None of the vulnerability data warehouses were specifically designed
to measure coordination and software engineering work. In other words, perhaps a more
sensible path forward opens by considering individual [17], cultural [10], social, organi-
zational, and institutional factors contributing to VLCs. The recent open source coordi-
nation efforts via the oss-security mailing list would offer a good case study in this
regard. In addition to economic viewpoints [3, 22], explaining the big picture requires bet-
ter understanding of the whole institutional setup used for handling and tracking software
vulnerabilities. In many ways, CVE tracking is still today as it was in the 1990s accord-
ing to current critics, plagued by different problems, ranging from cultural conflicts and
language barriers [10] to poorly documented databases, data warehousing and database
competition [9], governance issues, and limited funding.

4.3. Conclusion

This empirical paper modeled turnaround times between the publication of security ad-
visories and CVE identifiers. A Poisson regression specification with three explanatory
structural factors was used for examining a dataset comprised of nearly fifty operating
system product releases. The three factors were: age (in terms of product launches), sever-
ity (base CVSS scores), and amount of CVE references in security advisories. Taken to-
gether, these three factors provide only limited information for statistically predicting the
turnaround times. With this “negative result”, the paper paves the way for further vulner-
ability life cycle research and practical attempts to improve CVE coordination, including
the software engineering aspects related to security advisories and security patching.

Acknowledgments. The authors gratefully acknowledge Tekes – the Finnish Funding Agency for
Innovation, DIMECC Oy, and the Cyber Trust research program for their support.

Bibliography

[1] Allodi, L., Massacci, F.: Comparing Vulnerability Severity and Exploits Using Case-
Control Studies. ACM Transactions on Information and System Security 17(1), 1:1–
1:20 (2014)

[2] Arbaugh, W.A., Fithen, W.L., McHugh, J.: Window of Vulnerability: A Case Study
Analysis. Computer 32(12), 52–59 (2000)

[3] Arora, A., Forman, C., Nandkumar, A., Telang, R.: Competition and Patching of
Security Vulnerabilities: An Empirical Analysis. Information Economics and Policy
22(2), 164–177 (2010)

[4] Assar, S., Borg, M., Pfahl, D.: Using Text Clustering to Predict Defect Resolution
Time: A Conceptual Replication and an Evaluation of Prediction Accuracy. Empir-
ical Software Engineering 21, 1437–1475 (2016)

[5] Berk, R., MacDonald, J.M.: Overdispersion and Poisson Regression. Journal of
Quantitative Criminology 24(3), 269–284 (2008)

[6] Blevins, D.P., Tsang, E.W.K., Spain, S.M.: Count-Based Research in Management:
Suggestions for Improvement. Organizational Research Methods 18(1), 47–69
(2015)

[7] Canonical, Ltd.: Releases (2015), available online in July 2015: https://wiki.
ubuntu.com/Releases

[8] Canonical, Ltd.: Ubuntu Security Notices (2015), available online in March 2015:
http://www.ubuntu.com/usn/

[9] Christey, S.: Open Letter on the Interpretation of ”Vulnerability Statis-
tics” (2006), Appeared originally in full-disclosure, available online in July
2015: http://www.gossamer-threads.com/lists/fulldisc/
full-disclosure/40853

[10] Christey, S., Martin, B.: Buying Into the Bias: Why Vulnerability Stati-
sticks Suck. In: Proceedings of Black Hat 2013. Las Vegas (2013),
available online in January 2017: https://media.blackhat.
com/us-13/US-13-Martin-Buying-Into-The-Bias-Why-\
\Vulnerability-Statistics-Suck-Slides.pdf

[11] Clark, S., Collis, M., Smith, J.M., Blaze, M.: Moving Targets: Security and Rapid-
Release in Firefox. In: Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS 2014). pp. 1256–1266. ACM, Scottsdale
(2014)

[12] Clark, S., Frei, S., Blaze, M., Smith, J.: Familiarity Breeds Contempt: The Honey-
moon Effect and the Role of Legacy Code in Zero-Day Vulnerabilities. In: Proceed-
ings of the 26th Annual Computer Security Applications Conference (ASAC 2010).
pp. 251–260. ACM, Austin, Texas (2010)

[13] Edge, J.: Ubuntu, Security Response, and Community Contributions (2008), Linux
Weekly News (LWN). Available online in August 2015: http://lwn.net/
Articles/290156/

[14] Fitzgerald, B., Stol, K.: Continuous Software Engineering: A Roadmap and Agenda.
Journal of Systems and Software 123, 176–189 (2015)

Modeling the Delivery of Security Advisories and CVEs 553

[15] Goel, A.L., Okumoto, K.: Time-Dependent Error-Detection Rate Model for Soft-
ware Reliability and Other Performance Measures. IEEE Transactions on Reliability
R-28(3), 206–211 (1979)

[16] Howison, J., Crowston, K.: Collaboration Through Open Superposition: A Theory
of the Open Source Way. MIS Quarterly 38(1), 29–50 (2014)

[17] Johnson, P., Gorton, D., Langerström, R., Ekstedt, M.: Time Between Vulnerability
Disclosures: A Measure of Software Product Vulnerability. Computers & Security
62, 278–295 (2016)

[18] Marconato, G.V., Nicomette, V., Kaâniche, M.: Security-Related Vulnerability Life
Cycle Analysis. In: Proceedings of the 7th International Conference on Risk and
Security of Internet and Systems (CRiSIS 2012). pp. 1–8. IEEE, Cork (2012)

[19] Massacci, F., Nguyen, V.H.: Which Is the Right Source for Vulnerability Studies?
An Empirical Analysis on Mozilla Firefox. In: Proceedings of the 6th International
Workshop on Security Measurements and Metrics (MetriSec 2010). pp. 4:1–4:8.
ACM, Bolzano (2010)

[20] Microsoft, Inc.: Microsoft Security Bulletin Data (2015), available online in
July 2015: http://www.microsoft.com/en-us/download/details.
aspx?id=36982

[21] Microsoft, Inc.: Windows Life Cycle Fact Sheet (2015), available on-
line in July 2015: http://windows.microsoft.com/en-us/windows/
lifecycle

[22] Mitra, S., Ransbotham, S.: Information Disclosure and the Diffusion of Information
Security Attacks. Information Systems Research 26(3), 565–584 (2015)

[23] MITRE, Inc.: CVE Numbering Authorites (as of February 2015) (2015), available
online in June 2015: https://cve.mitre.org/cve/cna.html

[24] Mockus, A., Fielding, R.T., Herbsleb, J.D.: Two Case Studies of Open Source Soft-
ware Development: Apache and Mozilla. ACM Transactions on Software Engineer-
ing and Methodology 11(3), 309–346 (2002)

[25] Nguyen, V.H., Dashevskyi, S., Massacci, F.: An Automatic Method for Assessing
the Versions Affected by a Vulnerability. Empirical Software Engineering 21(6),
2268–2297 (2015)

[26] Nguyen, V.H., Massacci, F.: The (Un)Reliability of NVD Vulnerability Versions
Data: An Empirical Experiment on Google Chrome Vulnerabilities. In: Proceedings
of the 8th ACM SIGSAC Symposium on Information, Computer and Communica-
tions Security (ASIACCS 2013). pp. 493–498. ACM (2013)

[27] NIST: NVD Data Feed and Product Integration (2015), National Institute of Stan-
dards and Technology (NIST), Annually Archived CVE Vulnerability Feeds: Se-
curity Related Software Flaws, NVD/CVE XML Feed with CVSS and CPE Map-
pings (Version 2.0). Available online in June 2015: https://nvd.nist.gov/
download.cfm

[28] Novell, Inc. and others: openSUSE:Lifetime (2015), available online in July 2015:
https://en.opensuse.org/Lifetime

[29] Novell, Inc. and others: openSUSE:Roadmap (2015), available online in July 2015:
https://en.opensuse.org/openSUSE:Roadmap

[30] Ozment, A.: Improving Vulnerability Discovery Models: Problems with Definitions
and Assumptions. In: Proceedings of the 2007 ACM Workshop on Quality of Pro-
tection (QoP 2007). pp. 6–11. ACM, Alexandria (2007)

554 Jukka Ruohonen and Sami Hyrynsalmi and Ville Leppänen

[31] Ruohonen, J., Holvitie, J., Hyrynsalmi, S., Leppänen, V.: Exploring the Clustering
of Software Vulnerability Disclosure Notifications Across Software Vendors. In:
Proceedings of the 13th ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA 2016). IEEE, Agadir (2016)

[32] Ruohonen, J., Hyrynsalmi, S., Leppänen, V.: The Sigmoidal Growth of Operating
System Security Vulnerabilities: An Empirical Revisit. Computers & Security 55,
1–20 (2015)

[33] Ruohonen, J., Hyrynsalmi, S., Leppänen, V.: Time Series Trends in Software Evo-
lution. Journal of Software: Evolution and Process 27(2), 990–1015 (2015)

[34] Ruohonen, J., Hyrynsalmi, S., Leppänen, V.: Software Vulnerability Life Cycles
and the Age of Software Products: An Empirical Assertion with Operating System
Products. In: Krogstie, J., Mouratidis, H., Su, J. (eds.) Proceedings of the CAiSE
2016 International Workshops, Lecture Notes in Business Information Processing
(Volume 249). pp. 207–218. Springer, Ljubljana (2016)

[35] Ruohonen, J., Hyrynsalmi, S., Leppänen, V.: Trading Exploits Online: A Prelimi-
nary Case Study. In: Proceedings of the IEEE Tenth International Conference on
Research Challenges in Information Science (RCIS 2016). pp. 1–12. IEEE, Greno-
ble (2016)

[36] Schryen, G.: Is Open Source Security a Myth? Communications of the ACM 54(5),
130–140 (2011)

[37] Shahzad, M., Shafiq, M.Z., Liu, A.X.: A Large Scale Exploratory Analysis of Soft-
ware Vulnerability Life Cycles. In: Proceedings of the 34th International Conference
on Software Engineering (ICSE 2012). pp. 771–781. IEEE, Zurich (2012)

[38] Spanos, G., Angelis, L.: Impact Metrics of Security Vulnerabilities: Analysis and
Weighing. Information Security Journal: A Global Perspective 24(1–3), 24–57
(2015)

[39] SUSE, LLC: Published SUSE Linux Security Updates by CVE Number (2015),
available online in June 2015: https://www.suse.com/security/cve/

[40] Temizkan, O., Kumar, R.L., Park, S., Subramaniam, C.: Patch Release Behaviors of
Software Vendors in Response to Vulnerabilities: An Empirical Analysis. Journal
of Management of Information Systems 28(4), 305–337 (2012)

[41] Vache, G.: Vulnerability Analysis for a Quantitative Security Evaluation. In: Pro-
ceedings of the 2009 3rd International Symposium on Empirical Software Engi-
neering and Measurement (ESEM 2009). pp. 526–534. IEEE, Orlando (2009)

[42] Venables, W.N., Ripley, B.D.: Modern Applied Statistics with S. Springer, Berlin,
fourth edn. (2002)

[43] Xie, H., Tao, J., McHugo, G.J., Drake, R.: Comparing Statistical Methods for Ana-
lyzing Skewed Longitudinal Count Data With Many Zeros: An Example of Smoking
Cessation. Journal of Substance Abuse Treatment 45(1), 99–108 (2013)

[44] Xie, M., Hong, G.Y., Wohlin, C.: A Practical Method for the Estimation of Soft-
ware Reliability Growth in the Early Stage of Testing. In: Proceedings of the Eight
International Symposium on Software Reliability Engineering (ISSRE 1997). pp.
116–123 . IEEE, Albuquerque (1997)

[45] Younis, A., Malaiya, Y.K., Ray, I.: Assessing Vulnerability Exploitability Risk Us-
ing Software Properties. Software Quality Journal 24(1), 159–202 (2015)

Modeling the Delivery of Security Advisories and CVEs 555

Jukka Ruohonen is a Ph.D. student at the University of Turku, Finland. His research
interests cover software engineering, computer security, open source, applied statistics,
and machine learning, among other things.

Sami Hyrynsalmi is a nerd who has always enjoyed working with programming and
computers. After graduating as Master of Science in Technology in software engineer-
ing from University of Turku in 2009, he decided to focus on the real issues and started
his doctoral dissertation work on mobile application ecosystems. After successfully de-
fending his thesis in 2014, he has focused on various themes from software security to
business ecosystems.

Ville Leppänen, Ph.D., works currently as a software engineering professor at the Uni-
versity of Turku, Finland. He has over 140 scientic publications. His research interests are
related broadly to software engineering, ranging from software engineering methodolo-
gies, practices, and tools to security and quality issues, and to programming languages,
parallelism, and algorithmic design topics.

Received: October 10, 2016; Accepted: April 10, 2017.

