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Abstract. A number of problems may arise from architectural requirements 

modeling, including alignment of it with business strategy, model integration and 

handling the uncertain and vague information. The paper introduces a method for 

modeling architectural requirements in a way of ontology-based and capability-

oriented requirements elicitation. The requirements can be modeled within a 

three-layer framework. The Capability Meta-concept Framework is provided at 

the top level. The domain experts can capture the domain knowledge within the 

framework, forming the domain ontology at the second level. The domain 

concepts can be used for extending the UML to produce a domain-specific 

modeling language. A fuzzy UML is introduced to model the vague and uncertain 

features of the capability requirements. An algorithm is provided to transform the 

fuzzy UML models into the fuzzy Description Logics ontology for model 

verification. A case study is given to demonstrate the applicability of the method. 

Keywords: Description Logics; Enterprise Architecture; Fuzzy UML; Fuzzy 

Model Checking; Ontology. 

1. Introduction 

A capability, as defined by DoD Architecture Framework 2.0 (DoDAF 2.0), is “the 

ability to achieve a desired effect under specified standards and conditions through 

combinations of means and ways to perform a set of tasks.” [1] But how to describe the 

capability requirements precisely and without logical concept conflicts may become a 

problem. Currently, many architecture frameworks, like DoDAF, recommend using 

Unified Modeling Language (UML) [2, 3] to model the complicated architectural 

concepts and Command, Control, Communication, Computing, Intelligence, 

Surveillance, Reconnaissance (C4ISR) requirements. Applying the UML modeling 

approach brings a number of advantages: (1) as standard modeling language, the UML 

models are understandable for most engineers; (2) it offers multiple viewpoints for 

different stakeholders to model an integrated architecture; (3) it has an extension 

mechanism so that the modelers can tailor the modeling language for their specific 

usage. 
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However, the real world is full of uncertain and imprecise information which is hard 

to model, particularly for the efficiency features of the C4ISR capability requirements. 

Such features cannot be modeled with standard UML. For example, a statement “we 

need a fast vehicle” expresses a vague requirement for the Maneuver capability. Here, 

fast is an uncertain and imprecise concept of efficiency. You may simply define an 

attribute speed for the class vehicle, but soon find it difficult to determine the quantity. 

On the other hand, as a semi-formal modeling language, UML does not support 

formal specification and verification. While the DoD Architecture Framework provides 

meta models for architectural modeling constructs and rules, there are no rigid 

definitions and formal specifications for them. This leads to difficulty in checking the 

models of different viewpoints.  

To solve the problem and enable automatic model checking with reasoning technique, 

the paper presents a technique of capability requirements modeling and verification. It 

extends the UML modeling constructs with the Meta Model of DoDAF so that 

requirements models can be built within the standard framework. A fuzzy UML is 

introduced so as to model the fuzzy efficiency features of capabilities. To enable 

automatic model checking, we present a three-layer framework for modeling C4ISR 

capability requirements and provide an algorithm to convert the fuzzy UML models into 

the ontology specified in fuzzy Description Logic (f-DL), so that the built model can be 

checked for consistency and reasonability through logical inference. 

The rest of the paper is organized as follows. Section 2 discusses in detail a domain 

reusable and vague enable modeling method for the capability requirements elicitation 

and architectural analysis. Section 3 provides an algorithm converting the capability 

requirements models into the knowledge base in the f-DLs system to enable automatic 

model checking. The last section demonstrates the applicability of the method by 

analyzing an example of an Air Surveillance & Warning system. 

2. Related Work 

This work is most closely related with prior art in the following three categories: 

complex system modulation, enterprise/requirements modeling and formal specification 

and verification. 

2.1. Complex System modulation 

C4ISR is a complex information system consists of a set of large-scale, concurrent and 

distributed system. The methods of modeling and simulation of complex systems 

include: complex network theory and discrete-event system simulation etc. 

Theory and method of the complex network have caused widespread concern 

command and Control (C2) researchers. Complex network theory has achieved 

numerous fruitful researches and applications on C2’s representation of system 

modeling, the analysis of its systematic functions and performances and the building and 

running of the system. In 2013, Jensen [4], of the Swedish National Defense University, 

thought of the C2 function in the C2 system as the necessary and sufficient function for a 
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series of other systems, and proposed a modeling method able to reflect the C2 function 

through a network of geographically-distributed entities. This modeling process 

preliminarily classifies the C2 function as data collection, data analysis and data 

planning, and explores how these C2 function are indicated through network modeling 

in different C2 methods. 

Simulation methods based on Petri nets and a variety of extended Petri nets (i.e.: 

CPN, OPN, etc.) are a widely used discrete-event system simulation method [5]. Such 

methods need to convert the system model into corresponding Petri nets model. Thus, 

the modeling language and type of the targeted Petri net model determine and affect the 

application of the simulation method. 

2.2. Requirements modeling 

It is argued that the capability-oriented thinking is a robust enterprise architecture 

strategy for the successful SOA (service-oriented architecture) solution, for “it can 

abstract the stable from the volatile, encapsulate the volatile within services and manage 

change through the information system requirements evolution” [6]. Besides, in a 

capability model, an enterprise service model (ESM) is proposed to map services in an 

IT solution to capabilities [7]. 

To enhance software development to the level of hardware development, NASA is 

using model-based languages (such as SequenceL [8]) and risk analysis methodologies. 

It also hopes to achieve a fusion between systems and software engineering by replacing 

conventional software development techniques with capability engineering which 

focuses on a system’s full set of functionalities [9]. 

In [10], the Formal Design Analysis Framework (FDAF) is proposed for software 

architecture modeling to bridge the gap between enterprise and early software models 

(requirements and architecture). Meanwhile, the authors utilize an UML business 

modeling extension [11] to model the business goals and standard UML use cases, so as 

to analyze the software requirements.  

Jeffrey et al. [12] claims that a formal requirements specification language plays an 

important role in software development. The experiences gained from the FRORL 

project is reported, and they also state the value of research in knowledge-based 

software engineering in verification, validation, requirements analysis, debugging, and 

transformation. 

It has been found by Kang et al. [13] that, the enterprise model cannot express the 

semantics enough. Meanwhile, they define the fact-based ontologies, through which the 

relationships can be defined and reasoned semantically.  

While our research is inspired with the above approaches, the non-functional 

requirements features, such as performance requirements, are not addressed. Both The 

suggested modeling language (like SequenceL) and frameworks (like FDAF) focuses on 

functional analysis. However, the capability requirements analysis can deal with both 

functions and performances of complex system. The efficiency should be taken into 

consideration as an inseparable factor of complex system requirements in capability 

engineering. 
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2.3. Formal specification and verification 

By exploiting the formal techniques by a round trip mapping of KAOS [14] 

requirements level notations to the languages of formal V&V tools, Ponsard et al. [15] 

present an integrated toolbox (named FAUST formal toolbox) to ensure at an early stage 

that the right system is being built and the requirements model is right.  

As Chapurlat et al. [16] suggests enterprise modeling should be made in three 

processes: conceptualization, modeling and verification. First, in the conceptualization 

process, the domain expert captures the domain knowledge in the Properties Reference 

Repository, defining a formal ontology for the selected domain. Second, in the modeling 

process, the user models the enterprise using UEML [17] and specifies the properties 

corresponding to the needs he or she wants to verify, using the domain ontology. And 

finally, in the verification process, the user will then prove some chosen properties on 

the model by making use of formal mechanisms, allowing him to increase his own 

knowledge and improve the model’s quality and relevance. 

Floch et al. [18] propose a model-driven development approach, in which they 

combine UML modeling and ontology techniques to specify and validate software 

component properties and a middleware platform which supports component discovery, 

compatibility checking and deployment. 

However, the aforementioned approaches and techniques do not address uncertain 

domain modeling and specification. As a result, they cannot be used to reason on fuzzy 

knowledge. As for our approach, we leverage a fuzzy extended UML (fuzzy UML) to 

cope with fuzzy concepts for the complex objects, so that both the function and non-

function features of SoS requirements can be modeled. Additionally, we propose an 

effective algorithm to convert the fuzzy UML models into the ontologies described in f-

SHIN to enable model verification through the logic inference mechanism. 

3. Domain Reusable Capability Requirements Modeling 

3.1. A three-tier modeling framework 

As introduced above, we adopt both ontology and UML techniques to model the 

enterprise architecture. The enterprise requirements analysis and architecture 

development is processed in two phases and the capability requirements are modeled 

within the three layered modeling framework. The figure 1 gives an example of how the 

domain concept ArmedCar of the capability requirements to be modeled referencing up 

to the Meta concept Resource and reusable down to the application concept Saracen 

FV603.  

The top level, called framework level, reflects fundamental concepts of the enterprise 

architecture framework and provides the meta-model for the enterprise modeling. 

Particularly, for developing the architectures of the C4ISR systems, the meta-model can 

be defined, as shown in figure 2, according to the Capability Meta Model (CMM) of 

DoDAF2.0 [1]. Those concepts and the meta-model form the capability meta-concept 
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framework (CMCF) providing guidelines and constraints for capability requirements 

modeling and architecture design. They can be applied as new constructs to extend a 

universal modeling language to improve its domain applicability and specialty. 

 

 

Fig. 1. An example of the conceptual modeling within the three-layer framework 

The second layer, the domain level, reflects the domain-specific concepts. For the 

domain of army command and control management, for example, the ArmedCar (shown 

in figure 1) is a domain concept of capability requirements featured by the type of 

vehicle used in the army operation and attributes like weight, capacity, maximum speed 

and operation range of the armed car. Those domain-specific concepts form the domain 

ontology which functions as: (1) being the modeling constructs and constraints to 

improve the applicability of the modeling language for capability requirements 

modeling; (2) explaining the semantics of both function and efficiency features of 

capability requirements in either certain or vague concepts of the domain knowledge; (3) 

prescribing the guidelines or rules for modeling the application requirements.  

The third layer reflects the application concepts of the capability requirements, which 

results in the final products of capability requirements analysis. The concepts at this 

layer are related to real objects and stereotyped by the domain concepts. For example, 

Saracen FV603 (shown in figure 1) is an application concepts stereotyped by the domain 

concept ArmedCar with the attributes valued like weight of 11 ton, capacity of 13 

people, maximum speed of 70 kilometers and operation range of 400 kilometers. The 

software engineers make use of the domain concepts to model the real world needlessly 

worrying that they lack of domain knowledge while focusing on elicitation of the 

application requirements such as how many soldiers would be in the operation and who 

be the team leader.  

Therefore, the capability requirements are modeled in two phases. In the first phase, 

the domain experts model the domain knowledge under the guide and constraints of 

architecture framework and export the domain ontology. In the second phase, the 

software engineers make use of the domain ontology to extend a general purpose 
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modeling language and model the application with the domain-specific modeling 

language.  

To enable semantic checking, we formalize the requirements models using f-SHIN, the 

subsystem of fuzzy Description Logics, which is powerful in expressivity and 

decidability for a knowledge system. The model checking can guarantee the application 

requirements models semantically consistent with enterprise architectural concepts and 

domain concepts. Furthermore, the fuzzy inference system can find out deficiency of the 

capability requirements due to the unsatisfied efficiency features, for example, an anti-

missile mission will impossibly be committed because of the limited operational range 

of the warning system.  

The following passage gives formal definitions of the capability meta-concept 

framework and the domain ontology, and explains the modeling and verification 

mechanism. 

3.2. Capability meta-concept framework 

Definition 1: the capability meta-concept framework (CMCF) is composed of three 

parts, <MetaConcept, MetaAssociation, MetaRule>.  

MetaConcept is a finite set of concepts which contains all capability related meta-

concepts from the CMM [1], such as Activity, Capability, Task, Resource, Performer 

etc., and which keep the same semantics as those in the CMM. The figure 2 shows those 

meta-concepts in MetaConcept.  

MetaAssociation is a finite set of relations which contains all capability related meta-

relations from the CMM, such as DesiredEffectPartOfCapability, 

ActivityPerformedByPerformer, RuleConstrainsActivity etc., and which keep the same 

semantics as those in CMM. The figure 2 shows those meta-relations in Meta 

Association. 

Meta Rule is a finite set of rules which provides the architectural constraints 

necessarily held by all concepts and relations in the capability models, and which 

provides a set of domain general rules for capability model checking. All rules in 

MetaRule are those suggested in the CMM, such as “every DesiredEffect must be a 

result of one or more Activities”, “every Performer must perform one or more 

Activities”, “every Rule can constrain one or more Activities”, etc. And they will be 

specified in Description Logics while constructing the domain or application ontologies. 
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Fig. 2.   A sample of capability meta-concept framework 

3.3. Domain knowledge acquisition 

Domain ontology for capability requirements. The meta-concepts like Performer in 

the CMCF are still too abstract and have little domain meanings. The capability 

requirements are necessarily modeled with domain concepts like Radar Unit. Those 

concepts are captured in the domain ontologies, forming the domain knowledge base. 

The concepts and relations of the ontologies are domain concretion (instantiation) of the 

CMCF. To enable fuzzy information modeling, we introduce fuzzy sets of the concepts 

and relations.  

Definition 2: the domain ontology is composed of four parts: <DomConcept, 

DomAssociation, DomFunction, DomConstraint>.  

DomConcept is a finite set of domain-specific concepts, every of which is defined by 

a unique meta-concept of the CMCF. DomConcept should satisfy such conditions: 

DomConcept = DomPreciseConcept  U DomFuzzyConcept; e: Concept  [0, 1], 

where each e is an instance defined by a Concept which is a member of DomConcept; 

DomPreciseConcept DomFuzzyConcept =   , where the DomPreciseConcept is a 

finite set of the certain concepts, e.g. AdvancedMobility, and the DomFuzzyConcept is a 

finite set of the uncertain concepts, e.g. a wide operational scope and a fast moving 

speed.  

DomAssociation is a finite set of domain-specific relations associated with a pair of 

the concepts, each defined by a unique meta-relation of the CMCF, and each can be 

divided into three types association, generalization and aggregation according to the 
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fuzzy UML. DomAssociation should satisfy such a condition r: Association  [0, 1], 

where each r is an instance defined by an Association which is a member of  

DomAssociation. 

DomFunction is a complete function, specifying the mappings from DomConcept to 

MetaConcept or from DomAssociation to MetaAssociation. It is used for tracing the 

type of domain concepts or relations in the CMCF.  

DomConstraint is a finite set of domain model constraints specified in fuzzy 

Description Logics according to the rules of MetaRule.  

Enhanced OO Modeling Technology. To model the C4ISR capability domain and 

build the fuzzy domain ontology, we adopt the extended fuzzy UML to describe the 

uncertain domain-specific concepts. 

According to the literature 3, we can specify a domain-specific modeling language by 

extending the Meta Object Facility (MOF) of UML with CMCF. Accordingly, the new 

stereotypes are defined by the concepts such as Performer, Capability, System etc., and 

the new association stereotypes are defined by the relations such as 

ActivityPartOfCapability, RuleConstraintActivity etc. 

The certain domain concepts, usually describing the functional features of capability 

requirements, can be modeled as ordinary UML classes stereotyped by the CMCF 

concepts such as Capability, while the uncertain domain concepts, usually describing the 

efficiency features, can be modeled as either fuzzy UML classes stereotyped by the 

CMCF concepts such as DesiredEffect. Moreover, the domain constraints can be 

specified as fuzzy DL expressions. As the mappings of the domain concepts to the 

CMCF concepts have been built in the models, the model verification can be easily 

made against the CMCF ontology through logic reasoning, provided that they can be 

transformed into ontology models specified in fuzzy DL. 

Capability requirements modeling. The domain model captures the domain concepts 

which describe the requirements from user perspectives. But the application 

requirements involve more concrete description. For example, the general concept 

Warning Radar needs to be instantiated as Type-Y Radar with attribute specified in the 

application, e.g. equipmentID, numOfOperator and so on.  

In the UML models of capability requirements for an application, the things of the 

problem world are conceptualized with the application-level defined concepts which are 

stereotyped either by the domain-level concepts, or by the framework-level concepts if 

the user finds no such domain concepts available to map the application concepts. Those 

application concepts can be used for building the capability application ontology, which 

is then used for checking the model integrity. 

Definition 3: The capability application ontology for an application system is 

composed of three parts: <AppConcept, AppAssociation, AppFunction >.  

AppConcept is a finite set of application-level defined concepts, every of which is 

defined either by a unique concept of the domain ontology or by a unique concept of 

CMCF.  

AppAssociation is a finite set of application-level defined relations, every of which is 

defined either by a unique relation of the domain ontology or by a unique relation of 

CMCF. 
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AppFunction is a complete function, specifying the mappings from AppConcept to 

MetaConcept U DomConcept or from AppAssociation to MetaAssociation U 

DomAssociation. 

Definition 4: the function type is a total function, mapping the concepts and relations 

of the capability requirements model to the corresponding type of UML constructs. 

Definition 5: the function multiplicity is a total function, indicating how many 

instances may fill an association in a UML model. 

The domain concepts/relations modeled as classes/associations now become the 

stereotypes for the application class and association, with the tags which specify the 

attributes and assigned values of the instance of the domain class or association. By 

reusing the domain ontologies, the engineers are able to model both functional and non-

functional features of the application requirements and analyze whether the built models 

satisfy the domain constraints or whether the designed systems can achieve the desired 

effect with the model checking technique as discussed in next section, needlessly 

worrying about lack of domain knowledge. 

4. Capability Requirements Model Conversion and Verification  

4.1. Two kinds of verification 

The model verification can be classified into two kinds: consistency checking and 

rationality checking. The consistency checking is to examine whether the capability 

requirements model built is consistent with both the architecture framework CMCF and 

the domain ontology, or more specifically, whether the concepts of application models, 

typed by the domain-specific concepts or CMCF concepts, break the domain-specific 

constraints or CMCF rules declared by the ontologies. Such checking may also solve the 

interoperability issue, since all related models will be converted into ontologies which 

comprise a knowledge base, where logic inference can be made to check the whole 

requirements. 

The rationality checking is to examine whether the model has some unreasonable 

efficiency features, i.e. some efficiency features do not meet the needs of the mission. It 

could be a useful tool for making a decision in the phase of system integration.  

Automation of model verification depends on formalization of the models, but UML 

is believed a semi-formal language. One popular solution is to use Object Constraint 

Language (OCL) [19] to define constraints that apply to the concepts in the model. But 

to avoid undecidability problem of OCL [20-23], we argue to transform the models into 

the ontologies specified in DL which enable verification through logic inference. 
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4.2. Fuzzy ontology and Fuzzy Description Logic 

Ontology constitutes a key component of domain knowledge re-usability and high 

interoperability. Two-valued-based logical methods are insufficient to handle ill-

structured, uncertain or imprecise information encountered in real world knowledge. A 

tolerance for imprecision by a positive use of Fuzzy Logic may be exploited to enhance 

the power of knowledge representation [24]. It has been shown that Fuzzy Logic allows 

bridging the gap between human-understandable soft logic and machine-readable hard 

logic. Indeed, there has been a natural integration of Fuzzy Logic in ontology in order to 

define a new theoretical paradigm called Fuzzy Ontology [25].  

Description Logics (DLs) are a logical reconstruction of the so-called frame-based 

knowledge representation languages, with the aim of providing a simple well-established 

Tarski-style declarative semantics. Essentially, DLs are the theoretical counterpart of the 

Web Ontology Language OWL DL, and play a particular role in the representation and 

inference of ontologies. In order to deal with the vagueness knowledge, some related 

works have extended the DLs with Fuzzy Logic [26-28]. In our research, we choose f-

SHIN, the subsystem of fuzzy DL, to describe the capability requirements, because it is 

powerful in expressability and decidability for a knowledge system and allows to make 

use of some handy inference engines like Pellet and Racer [28].  

4.3. Model transformation 

Ma et al. [29, 30] present a way of translating a fuzzy UML model into the f-DLs 

knowledge base and reasoning on f-DLs. The underlying principle includes: (1) 

translating the fuzzy UML models into the f-DLs knowledge bases (f-DLs TBox) at 

terminological level; (2) translating the fuzzy UML instantiations (i.e., object diagrams) 

with respect to fuzzy UML models into the f-DLs knowledge bases (f-DLs ABox) at 

assertion level. Upon their work, we provide an algorithm as follows to convert the 

capability requirements models into the capability knowledge base according to the 

definitions introduced before.  

Algorithm: convert a capability requirements model into the capability knowledge 

base. 

Input: the CMCF; domain ontology; the capability requirements model 

Output: the capability knowledge base 

Step1: extending the domain concepts 

Step2: creating the concepts and their instances. 

Step3: establishing the relationships between the concepts and instances. 

Step4: specifying the domain rules. 

The end 

Extending the domain concepts. As discussed in section 3, the capability requirements 

are modeled in three-tier framework. While the f-DLs knowledge base is built in two-tier 

structure (concepts-instances), the concepts at CMCF level and domain level need to be 

flattened out onto application level to define the application concepts. In other word, the 
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CMCF meta-concepts need to be added to the domain ontology and a class hierarchy to 

be established. 

Step 1.1: combining the domain ontology with the CMCF. 

               NewDomainConcept = MetaConcept  U  DomConcept, 

                   NewDomainAssociation = MetaAssociation  U  DomAssociation. 

Step 1.2: creating generalization relationships between them. For every domain 

concept 
dom

C DomConcept and DomFunction (Cdom) = Cmeta, add a new relationship 

R(Cmeta,Cdom) in the NewDomainAssociation and set the mapping function Type(R) = 

generalization. 

Creating the concepts and their instances. The knowledge base is built by creating the 

concepts and their instances respectively in Tbox and Abox and establishing the 

relationship between them.  

Step 2.1: creating concepts. For every definite concept CNewDomainConcept, 

create a same name concept C in TBox T. If concept C has an attribute Att and the range 

of Att is P, then create a same name concept P and a relation Att, and add an 

axiom .C Att P into the TBox T.  If the attribute has a multiplicity, multiplicity(Att) = 

[i…j], add an axiom C iAtt jAtt   ; 

For every fuzzy concept FCNewDomainConcept , create a same name concept FC in 

TBox T and specify its fuzziness in following way: 

1) The μ at the first level of fuzziness is implicitly defined in the fuzzy concept; 

2) At the second level of fuzziness, the fuzzy attribute named Att, owned by a 

fuzzy concept FC and of type C, is defined by an axiom .FC Att C . If the 

attribute has a multiplicity(Att) = [i…j], add an axiom FC iAtt jAtt   .  

3) The third level of fuzziness is defined by the Step 3.2. 

Step 2.2: creating instances. For every object o  AppConcept which is mapped by 

AppFunction(o) = C to a definite domain concept C with an attribute Att valued a, create 

the same name instances o and a in the ABox A, specify the class-of relationship 

between C and o, and add the assertions <o: C = 1> and <(o, a): Att = 1>; 

For every object o  AppConcept which is mapped by AppFunction(o) = FC to a fuzzy 

domain concept FC with an attribute Att valued a where the objects membership degree 

is   n and the attribute membership degree is m (  , , ,     , n and m are 

between 0 and 1), create the same name instances o and a in the ABox A, specify the 

class-of relationship between C and o, and add the assertions <o: FC   n> and <(o, a): 

Att  m>. 

Establishing the relationships between the concepts and instances. There are three 

types of relationships in the requirements model: association, generalization and 

aggregation. The conversion will be done in following steps. 

Step 3.1: dealing with association relationship. For every domain relation 

R A,B NewDomainAssociation( )  typed by the function Type(R) = association (i.e., R is a 

association relationship), if A and B are fuzzy classes with cardinality constraints 

(ma,na) and (mb,nb), create in TBox T the same name relations R with the reversed 

relation R  where R R  and add in TBox T such axioms:  
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A R.B ；
-

B R .A ；
b b

m nA R R   ; 
a a

m nB R R
 

   . 

For every instance relation r (a, b)   AppAssociation typed by the function 

AppFunction(r) = R and Type (R) = association where the possibility of the relation  

r(a, b) is n, add such assertion in the ABox A as <(a, b): R n> and <(b, a): R－
 n >. 

Step 3.2: dealing with generalization relationship. For every domain relation 

R A,B NewDomainAssociation( )  typed by the function Type(R) = generalization (i.e., 

B is a subclass of A), create in the TBox T the relation SubConcept and add in TBox T 

such axioms: B A ; .B SubConcept A . 

For every instance relation r (a, b)   AppAssociation typed by the function 

AppFunction(r) = R and Type (R) = generalization where the possibility of the relation 

r(a, b) is n, add such assertion in the ABox A as <( b, a): SubConcept   n>. 

Step 3.3: dealing with aggregation relationship. For every domain-specific relation 

Agg A,B NewAssociation( )  typed by the function Type (Agg) = aggregation (i.e., A 

is aggregate part, B is constituent part), if B are fuzzy classes with cardinality constraints 

(m,n),  create in TBox T the same name relations Agg with the reversed relation Agg  

where Agg Agg  and add in TBox T such axioms as:  

m nA Agg.B Agg Agg    u u ；
_ _ _

B Agg .A 1Agg 1Agg    u u
.             

For every application relation agg (a, b)   AppAssociation typed by the function 

AppFunction(agg) = Agg and Type(Agg) = aggregation where the possibility of the 

relation r(a, b) is n, add such assertion in the ABox A as < ( a, b): Agg  n >； 

< ( b, a ): Agg  n >. 

Specifying the domain rules for model checking. The domain checking rules can be 

formally specified as the cardinality restrictions imposed on the instance associations of 

meta-concepts. To explain the rule-base construction algorithm, we classify those rules 

into two categories so as to handle them respectively. 

Step 4.1: specifying the Qualified Cardinality Restriction (QCR) rules. The QCR 

rules are expressed as:   
1 2

. ( ) # | ( ) ( , ) 1x C x y C y R x y    . The examples of such 

rules are like: each Capability must be the result of one or more Activities; each 

Organization must be the Performer of one or more Activities; etc. 

Step 4.2: specifying the Constant Cardinality Restriction (CCR) rules. 

The CCR rules are the strictest meta rules, expressed as: 

  
1 2

. ( ) # | ( ) ( , )x C x y C y R x y n    . The examples provided by DoDAF are like: 

each Materiel must be used by one or more Persons, where each Person must be the 

member of only one Organization at a certain time; etc. Based on the above 

classification, the domain-general rules are added in f-SHIN system in following way, 

forming the domain-general rule base. 

Step 4.3: constructing the rule base. For every Type (Rule(R(C1,C2))) = QCR, add 

in TBox T the axioms C1   R.C2 and C1  1R . For every Type 

(Rule(R(C1,C2))) = CCR, add in TBox T the axioms C1  R.C2 , C1 nR  and 

C1 nR . 
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Through the above steps, the capability requirements knowledge base can be built. 

Such knowledge base comprises all the concept of three levels and is used for verifying 

the capability requirements models through logic inference. Similarly, the domain 

knowledge base which is composed of the CMCF concepts and domain concepts can be 

established from the domain models through step 2 to 4, and the domain model can be 

verified. 

4.4. Automating verification using existing reasoning engines 

The model verification can be made by checking the knowledge base consistency and 

rationality, and the process can be automated by applying the existing Description Logic 

reasoning engines such as Pellet [31,32].  

Bobillo et al. [33] also present the DeLorean (Description Logic REason with 

vAgueNess) system, a reason that supports a fuzzy extension of the DL SROIQ [34] 

under Zadeh semantics. They show that a fuzzy DL SROIQ knowledge base (KB) can 

be reduced into a crisp KB, and the procedure preserves reasoning under Zadeh 

semantics so that existing reasons such as FaCT++ and Pellet could be applied to the 

resulting KB. 

5. A Case Study 

5.1. Introduction 

To examine the proposed approach, we lead a pilot study on architectural design for a 

large-scaled C4ISR system of city air defense. There are thousands of key concepts in 

the capability requirements, many of them relating to both functional and non-functional 

features and being vague and imprecise. Those concepts might be misunderstood among 

engineers or between the engineers and stakeholders, which may hinder building the 

system architectures. The models in following sections concentrate on a few of them, 

such as the capability of early warning, the capability of anti-air preparation, and 

importance of the objects protected, which are critical to the mission of city air defense 

and which are likely to cause misunderstanding. 

We apply a popular UML modeling tool Enterprise Architecture v7.0 in the case. The 

tool supports creating, exporting and importing a UML profile, which allows you to 

model the domain-specific concepts of the capability requirements to extend the 

stereotypes of UML constructs and acquire a domain-specific language for capability 

requirements modeling. It can export the built models to an XML file which can then be 

converted into the capability knowledge base by a standalone application realizing the 

model transformation algorithm in Section 4.4. The model verification is automated with 

the help of the popular reasoned Pellet 1.5, after the fuzzy KB of the capability 

requirements is turned into crispy one. 
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5.2. The domain model and fuzzy efficiency evaluation functions 

The Air Surveillance & Warning (ASW) system is a system of the complex C4ISR 

system of city air defense. A fragment of the domain model of ASW system is shown in 

the figure 3. The air surveillance and warning activity is performed by the Warning 

Radar which belongs to the Intelligent Station and which has an Air Warning Capability 

to perform the activity. The capability is featured by a fuzzy efficiency concept Early 

Warning, one of the indicators for measuring whether the activity can be executed 

satisfying the mission effectiveness specified in the Warning Ahead Requirement. The 

concept Early Warning describes how early the flying objects can be recognized for the 

air defense force to get fully prepared for action on them before they may endanger the 

protected area, and therefore the time consumed in identifying the flying object and 

judging its danger is modeled as an attribute to it. The air defense activity is performed 

by an anti-air missile system (not presented in the diagram), which has a 

DestroyingFlyingObject capability. The capability is also a fuzzy concept and has an 

attribute named timeForPrepared. Another fuzzy concept is the Protection of 

DesiredEffect, describing the effect of protection such as whether the important object 

protected is damaged, and hence the importance is modeled as an attribute to it. Those 

fuzzy concepts can be modeled as fuzzy classes. 

 

 

Fig. 3.  An example of the city integrated air defense domain model 

To determine the objects membership degrees u, we introduce an important concept, 

fuzzy efficiency evaluation functions (FEEFs). For this case, three FEEFs are defined.  

The fuzzy objects membership degree u of the class Early Warning is calculated with the 

function: 

1-0.01t    0 t 100min                     
Early(t)=

0              t 100 min

 






  
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where t is a variable representing the time consumed in identifying the flying object and 

judging its danger, the constant 100 is the maximum minutes for an air defense force to 

commit a mission, and the fuzzy coefficient 0.01 is given by the domain experts. 

If 0 t 100 minutes  , Early(t) generates a valid fuzzy efficiency value which describes 

the degree of Early Warning. Otherwise, it generates 0 representing an invalid time 

variable entered or the mission failure. 

5.3. The application model and knowledge base  

The capability requirements model built at application-level is shown in figure 4. The 

EW-SystemX, a concrete concept of Early Warning for the system X, is stereotyped by 

the domain concept Early Warning, with the tagged values timeConsumed=20 and fuzzy 

objects membership degree u=0.8 calculated by the FEEF Early(t). TypeXMissile, a 

concrete concept of DestroyingFlyingObject capability, is stereotyped by the domain 

concept DestroyingFlyingObject, with the tagged values timePrepared=15 and fuzzy 

objects membership degree u=0.8 calculated by the FEEF Preparation(t). ProtectionA 

and ProtectionB, the concrete concepts of Protection, are stereotyped by the domain 

concept Protection, with the tagged values importance=1 and fuzzy objects membership 

degree u=0.9 calculated by the FEEF important(x).  

The capability requirements models is converted into the knowledge base, which is 

composed of the concepts, relations, instances, axioms and assertions.  

Concepts: Task, Rule, Performer, Activity, Capability, Efficiency, OrganizationType 

(OT), DesiredEffect (DE), IntelligentStation (ID), WarningRadar (WR), 

AirWarningCapability (AWC), AirSurveillance&Warning (ASW), EarlyWarning (EW), 

CityAirDefense(CAD), WarningAheadRequirement (WAR), Protection, 

DestroyingFlyingObject (DFO). 

Relations: ActivityPerformedByPerformer (APBP), RuleConstraintsActivity, (RCA), 

ActivityPartOfCapability (APOC), DesiredEffectGuideActivity (DEGA), 

DesiredEffectPartOfCapability (DEPOC), PerformerCapabilityManifestation (PCM) , 

PerformerPerformsAtLocation (PPAL), HasEfficiency(HE), NeedEfficiency(NE), 

DependOn (DO). 

Concept instances: RadarStationX (RSX), TypeYRadar(TYR), EW-SystemX (EW-

SX), AWC-SystemX(AWC-SX), ASW-Activity-SystemX (ASW-A-SX), WAR-

SystemX (WAR-SX),  Mission-AD-SystemX (M-AD-SX), TypeXMissle (TXM),  

ProtectionA(PA), ProtectionB(PB). 

The model verification is made for consistency and rationality separately. 
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Fig. 4.  The Air-target Interception Capability of the x-Air Defense Force 

Model checking for consistency. There is, for an instance, an architecture rule in the 

DoDAF 2.0 declaring that “every DesiredEffect must be a result of one or more 

Activities”. Accordingly, we can specify it as a DL axiom in the knowledge base as 

follow, adding a constraint upon the meta concept DesiredEffect: 
1DE DEGA.Activity DEGA  u

. 

For the model shown in figure 4, the application concept WAR-SystemX defined by 

the domain concept WarningAheadRequirement (which is sub concept of DesiredEffect) 

holds the constraint, but ProtectionA and ProtectionB defined by Protection do not. That 

might be misunderstanding of the architecture framework or making mistakes by the 

project engineers. The concept clash detection is processed in following way. 

When building the domain rule-base with the algorithm introduced in section 4.4, 

there are some clash axioms automatically added in the TBox T: 

A1. WAR Protection  ; 

A2. WAR DE ; 

A3. Protection DE ; 

A4. 1DE DEGA.Activity DEGA  ; 

A5. DE Activity  ; 

and also some clash assertions in the ABox A: 

a1.  WAR-SX: WAR= 1;          

a2.  PA: Protection = 0.8;        

a3.  PB: Protection = 0.9; 

a4.   # | ( , ) : 0 0PA x DEGAx   ; 

a5.   # | ( , ) : 0 0x PB x DEGA  ; 

The clash detection is then progressed through such reasoning: 

(1) a new axiom A6 can be deduced from axiom A3 and axiom A4: 

A6.  1Protection DEGA.Activity DEGA  ; 
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(2) a new axiom A7 can be deduced from axiom A6: 

A7.  1Protection DEGA ; 

(3) a new assertion a6 can be deduced from assertion a2, axiom A7 and extended 

rule: 

a6.   # | ( , ) : 0.8 1PA x DEGAx   ; 

(4) a new assertion a7 can be deduced from assertion a3, axiom A7 and extended 

rule: 

a7.   # | ( , ) : 0.9 1PB x DEGAx   ; 

(5) a new assertion a8 can be deduced from assertion a2, axiom A1 and  extended 

rule: 

a8.  PA: WAR =0.2; 

(6) a new assertion a9 can be deduced from assertion a3, axiom A1 and  extended 

rule: 

a9.  PB: WAR =0.1; 

As a4 and a6, a5 and a7 are a conjugated pair, there is a clash in the knowledge base.  

With such inference technique, we can automatically examine the consistency of 

application models. Currently, most UML techniques, like the tool EA, do model 

checking against the UML syntax and semantics and do not allow adding new semantics 

and constraints without loss of automation. Due to undecidability issue as mentioned 

before, the OCL based tools might not support the inference either.  

Model checking for rationality. Suppose that when designing the air defense system X, 

the project manager would first want to make use of the existing AirWarningCapability 

AWC-systemX that has an EarlyWarning efficiency EW-SystemX. The capability seems 

to meet the requirement if only considering the factor of air defense force preparation, 

since the objects membership degree (or the fuzzy effectiveness value) calculated by the 

FEEF Early(t) is 0.80, no less than that of required by the DestroyingFlyingObject 

capability TypeXMissile (which is also 0.8 calculated by the FEEF Preparation(t)). 

However, it is noticed that the mission requires, on other hand, a desired Protection 

effect ProtectionA. The importance of ProtectionA produces a fuzzy effectiveness value 

0.9, which implies that the efficiency of EarlyWarning should be no less than 0.9, and 

hence there is a capability gap between the existing AWC-SystemX and the mission 

requirement. That might be a result of lack of domain experience, or some other factors 

(for the case, the importance of the protected objects) would be added later to the 

project. The concept clash detection is processed in following way. 

Some clash axioms are automatically added in the TBox T when making the model 

conversion: 

A1. AWC Capability HE.EW ; 

A2. WAR NE.EW ; 

A3. WAR AWC  ; 

A4. DFO DO.AWC ; 

A5. Protection DO.WAR  

A6. DFO AWC  ; 

A7. CAD WAR Pr otection   ; 
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A8. AWC EW  ; 

And also some clash assertions added in the ABox A: 

a1.  WAR-SX: WAR =1;                   

a2.  EW-SX: EW = 0.8;                   

a3.  AWC-SX: AWC = 1;                  

a4.  TXM: DFO = 0.8;                   

a5.  PA: Protection = 0.9;                 

a6.  PB: Protection = 0.8;   

a7. (WAR-SX, EW-SX): NE = 1;   

a8. (AWC-SX, EW-SX): HE= 1; 

a9. (PB, WAR-SX): DO = 1; 

a10. (TXM, AWC-SX): DO = 1; 

a11. (PA, WAR-SX): DO = 1; 

The clash detection is then progressed through such a reasoning: 

(1) a new assertion a12 can deduced from assertion a3 and axiom A1:  

a12   AWC-SX: Capability NE.EW  1; 

(2) a new assertion a13 can be deduced from assertion a1 and axiom A2:  

a13.  WAR-SX： NE.EW  1; 

(3) a new assertion a14 can be deduced from assertion a4, a10, axiom A4 and 

  extended rule:    

a14.  AWC-SX: AWC  0.8; 

(4) a new assertion a15 can be deduced from assertion a8, a14, axiom A1 and 

  extended rule:    

a15.  EW-SX: EW  0.8; 

(5) a new assertion a16 can be deduced from assertion a5, a11, axiom A5 and 

  extended rule:    

a16.  WAR-SX: WAR  0.9; 

(6) a new assertion a17 can be deduced from assertion a7, a16, axiom A2 and 

  extended rule:    

a17.  EW-SX: EW  0.9; 

(7) a new assertion a18 can be deduced from assertion a1, axiom A3 and  extended 

rule:    

a18.  WAR-SX: AWC = 0; 

(8) a new assertion a19 can be deduced from assertion a3, axiom A6 and  extended 

rule:    

a19.  AWC-SX: DFO= 0; 

(9) a new assertion a20 can be deduced from assertion a4, axiom A6 and  extended 

rule:    

a20.  TXM: AWC =0.2; 

(10) a new assertion a21 can be deduced from assertion a2, axiom A8 and  extended 

rule:    

a21.  EW-SX: AWC =0.2; 

As a2 and a17 are a conjugated pair, there is a clash in the knowledge base. 

Compared with consistency checking, rationality checking is more difficult and the 

confidence of the results depends on the FEEFs given. So far as we know, the 

UML/OCL techniques seldom address the issue. The popular way to do it is with the 
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help of some model simulation tools, but the process is complicated, with a lot of work 

on building simulation models and preparing data. Here we intend to explore a new and 

simpler way. 

These two reasoning examples reflect only a small fragment of the case for model 

verification, since we cannot show the whole case including all axioms and assertions in 

the limited pages. Practically, it is a hard work to find all those logical conflicts 

manually. But the reason Pellet will do it in a minute due to the high efficiency of 

reasoning mechanism. 

6. Conclusions 

The paper investigates several problems in enterprise system engineering and 

integration. It first discusses on several ways of bridging the gap between business 

strategies and the IT solutions, compares on a number of enterprise modeling 

approaches including UEML and ontology-based modeling methods, and then focuses 

on model verification and validation with formal techniques. Based on extensive 

research, we propose an ontology-based, capability-oriented and domain-specific 

modeling approach for the enterprise requirements elicitation and verification. It 

converts the requirements models into requirements ontology so that the verification can 

be automated with the help of a poplar DL reasoner such as Pellet. The reasoner will 

determine whether capability requirements are sufficient for the desired efficiency. With 

the help of the approach, the engineer will foresee the results of the IT solutions, and 

then reduce the risk of the system developments. 

The further research will be on developing a domain-specific rules description 

language with the fuzzy knowledge query language. Such language may completely 

relieve the domain experts from formal description and allow them to define more 

domain rules with their familiar terms. Besides, we will develop a DL reasoner for 

requirements analysis; it supports large-scale ontology reasoning, and has 

better inference efficiency than the common DL reasoner, such as Pellet and Racer.  

We acknowledge all authors of the literatures referenced for their valuable research 

results, especially the DM2 Groups for the Meta-model that provides a basis for our 

research. 
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