
Computer Science and Information Systems 13(1):287–308 DOI: 10.2298/CSIS150222046T

Capability-oriented Architectural Analysis Method

Based on Fuzzy Description Logic

Zhang Tingting1, Liu Xiaoming
2
, Wang Zhixue

2
, Dong Qingchao

3

1 Software Engineering Department PLA University of Science and Technology,
210017 JiangSu, NanJing, China

zhangtings@sohu.com
2 Technology of Command and Control Department, PLA University of Science and Technology

210017 JiangSu, NanJing, China
3 Naval Aeronautical and Astronautical University

264000 YanTai, China

Abstract. A number of problems may arise from architectural requirements

modeling, including alignment of it with business strategy, model integration and

handling the uncertain and vague information. The paper introduces a method for

modeling architectural requirements in a way of ontology-based and capability-

oriented requirements elicitation. The requirements can be modeled within a

three-layer framework. The Capability Meta-concept Framework is provided at

the top level. The domain experts can capture the domain knowledge within the

framework, forming the domain ontology at the second level. The domain

concepts can be used for extending the UML to produce a domain-specific

modeling language. A fuzzy UML is introduced to model the vague and uncertain

features of the capability requirements. An algorithm is provided to transform the

fuzzy UML models into the fuzzy Description Logics ontology for model

verification. A case study is given to demonstrate the applicability of the method.

Keywords: Description Logics; Enterprise Architecture; Fuzzy UML; Fuzzy

Model Checking; Ontology.

1. Introduction

A capability, as defined by DoD Architecture Framework 2.0 (DoDAF 2.0), is “the

ability to achieve a desired effect under specified standards and conditions through

combinations of means and ways to perform a set of tasks.” [1] But how to describe the

capability requirements precisely and without logical concept conflicts may become a

problem. Currently, many architecture frameworks, like DoDAF, recommend using

Unified Modeling Language (UML) [2, 3] to model the complicated architectural

concepts and Command, Control, Communication, Computing, Intelligence,

Surveillance, Reconnaissance (C4ISR) requirements. Applying the UML modeling

approach brings a number of advantages: (1) as standard modeling language, the UML

models are understandable for most engineers; (2) it offers multiple viewpoints for

different stakeholders to model an integrated architecture; (3) it has an extension

mechanism so that the modelers can tailor the modeling language for their specific

usage.

288 Zhang Tingting et al.

However, the real world is full of uncertain and imprecise information which is hard

to model, particularly for the efficiency features of the C4ISR capability requirements.

Such features cannot be modeled with standard UML. For example, a statement “we

need a fast vehicle” expresses a vague requirement for the Maneuver capability. Here,

fast is an uncertain and imprecise concept of efficiency. You may simply define an

attribute speed for the class vehicle, but soon find it difficult to determine the quantity.

On the other hand, as a semi-formal modeling language, UML does not support

formal specification and verification. While the DoD Architecture Framework provides

meta models for architectural modeling constructs and rules, there are no rigid

definitions and formal specifications for them. This leads to difficulty in checking the

models of different viewpoints.

To solve the problem and enable automatic model checking with reasoning technique,

the paper presents a technique of capability requirements modeling and verification. It

extends the UML modeling constructs with the Meta Model of DoDAF so that

requirements models can be built within the standard framework. A fuzzy UML is

introduced so as to model the fuzzy efficiency features of capabilities. To enable

automatic model checking, we present a three-layer framework for modeling C4ISR

capability requirements and provide an algorithm to convert the fuzzy UML models into

the ontology specified in fuzzy Description Logic (f-DL), so that the built model can be

checked for consistency and reasonability through logical inference.

The rest of the paper is organized as follows. Section 2 discusses in detail a domain

reusable and vague enable modeling method for the capability requirements elicitation

and architectural analysis. Section 3 provides an algorithm converting the capability

requirements models into the knowledge base in the f-DLs system to enable automatic

model checking. The last section demonstrates the applicability of the method by

analyzing an example of an Air Surveillance & Warning system.

2. Related Work

This work is most closely related with prior art in the following three categories:

complex system modulation, enterprise/requirements modeling and formal specification

and verification.

2.1. Complex System modulation

C4ISR is a complex information system consists of a set of large-scale, concurrent and

distributed system. The methods of modeling and simulation of complex systems

include: complex network theory and discrete-event system simulation etc.

Theory and method of the complex network have caused widespread concern

command and Control (C2) researchers. Complex network theory has achieved

numerous fruitful researches and applications on C2’s representation of system

modeling, the analysis of its systematic functions and performances and the building and

running of the system. In 2013, Jensen [4], of the Swedish National Defense University,

thought of the C2 function in the C2 system as the necessary and sufficient function for a

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 289

series of other systems, and proposed a modeling method able to reflect the C2 function

through a network of geographically-distributed entities. This modeling process

preliminarily classifies the C2 function as data collection, data analysis and data

planning, and explores how these C2 function are indicated through network modeling

in different C2 methods.

Simulation methods based on Petri nets and a variety of extended Petri nets (i.e.:

CPN, OPN, etc.) are a widely used discrete-event system simulation method [5]. Such

methods need to convert the system model into corresponding Petri nets model. Thus,

the modeling language and type of the targeted Petri net model determine and affect the

application of the simulation method.

2.2. Requirements modeling

It is argued that the capability-oriented thinking is a robust enterprise architecture

strategy for the successful SOA (service-oriented architecture) solution, for “it can

abstract the stable from the volatile, encapsulate the volatile within services and manage

change through the information system requirements evolution” [6]. Besides, in a

capability model, an enterprise service model (ESM) is proposed to map services in an

IT solution to capabilities [7].

To enhance software development to the level of hardware development, NASA is

using model-based languages (such as SequenceL [8]) and risk analysis methodologies.

It also hopes to achieve a fusion between systems and software engineering by replacing

conventional software development techniques with capability engineering which

focuses on a system’s full set of functionalities [9].

In [10], the Formal Design Analysis Framework (FDAF) is proposed for software

architecture modeling to bridge the gap between enterprise and early software models

(requirements and architecture). Meanwhile, the authors utilize an UML business

modeling extension [11] to model the business goals and standard UML use cases, so as

to analyze the software requirements.

Jeffrey et al. [12] claims that a formal requirements specification language plays an

important role in software development. The experiences gained from the FRORL

project is reported, and they also state the value of research in knowledge-based

software engineering in verification, validation, requirements analysis, debugging, and

transformation.

It has been found by Kang et al. [13] that, the enterprise model cannot express the

semantics enough. Meanwhile, they define the fact-based ontologies, through which the

relationships can be defined and reasoned semantically.

While our research is inspired with the above approaches, the non-functional

requirements features, such as performance requirements, are not addressed. Both The

suggested modeling language (like SequenceL) and frameworks (like FDAF) focuses on

functional analysis. However, the capability requirements analysis can deal with both

functions and performances of complex system. The efficiency should be taken into

consideration as an inseparable factor of complex system requirements in capability

engineering.

290 Zhang Tingting et al.

2.3. Formal specification and verification

By exploiting the formal techniques by a round trip mapping of KAOS [14]

requirements level notations to the languages of formal V&V tools, Ponsard et al. [15]

present an integrated toolbox (named FAUST formal toolbox) to ensure at an early stage

that the right system is being built and the requirements model is right.

As Chapurlat et al. [16] suggests enterprise modeling should be made in three

processes: conceptualization, modeling and verification. First, in the conceptualization

process, the domain expert captures the domain knowledge in the Properties Reference

Repository, defining a formal ontology for the selected domain. Second, in the modeling

process, the user models the enterprise using UEML [17] and specifies the properties

corresponding to the needs he or she wants to verify, using the domain ontology. And

finally, in the verification process, the user will then prove some chosen properties on

the model by making use of formal mechanisms, allowing him to increase his own

knowledge and improve the model’s quality and relevance.

Floch et al. [18] propose a model-driven development approach, in which they

combine UML modeling and ontology techniques to specify and validate software

component properties and a middleware platform which supports component discovery,

compatibility checking and deployment.

However, the aforementioned approaches and techniques do not address uncertain

domain modeling and specification. As a result, they cannot be used to reason on fuzzy

knowledge. As for our approach, we leverage a fuzzy extended UML (fuzzy UML) to

cope with fuzzy concepts for the complex objects, so that both the function and non-

function features of SoS requirements can be modeled. Additionally, we propose an

effective algorithm to convert the fuzzy UML models into the ontologies described in f-

SHIN to enable model verification through the logic inference mechanism.

3. Domain Reusable Capability Requirements Modeling

3.1. A three-tier modeling framework

As introduced above, we adopt both ontology and UML techniques to model the

enterprise architecture. The enterprise requirements analysis and architecture

development is processed in two phases and the capability requirements are modeled

within the three layered modeling framework. The figure 1 gives an example of how the

domain concept ArmedCar of the capability requirements to be modeled referencing up

to the Meta concept Resource and reusable down to the application concept Saracen

FV603.

The top level, called framework level, reflects fundamental concepts of the enterprise

architecture framework and provides the meta-model for the enterprise modeling.

Particularly, for developing the architectures of the C4ISR systems, the meta-model can

be defined, as shown in figure 2, according to the Capability Meta Model (CMM) of

DoDAF2.0 [1]. Those concepts and the meta-model form the capability meta-concept

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 291

framework (CMCF) providing guidelines and constraints for capability requirements

modeling and architecture design. They can be applied as new constructs to extend a

universal modeling language to improve its domain applicability and specialty.

Fig. 1. An example of the conceptual modeling within the three-layer framework

The second layer, the domain level, reflects the domain-specific concepts. For the

domain of army command and control management, for example, the ArmedCar (shown

in figure 1) is a domain concept of capability requirements featured by the type of

vehicle used in the army operation and attributes like weight, capacity, maximum speed

and operation range of the armed car. Those domain-specific concepts form the domain

ontology which functions as: (1) being the modeling constructs and constraints to

improve the applicability of the modeling language for capability requirements

modeling; (2) explaining the semantics of both function and efficiency features of

capability requirements in either certain or vague concepts of the domain knowledge; (3)

prescribing the guidelines or rules for modeling the application requirements.

The third layer reflects the application concepts of the capability requirements, which

results in the final products of capability requirements analysis. The concepts at this

layer are related to real objects and stereotyped by the domain concepts. For example,

Saracen FV603 (shown in figure 1) is an application concepts stereotyped by the domain

concept ArmedCar with the attributes valued like weight of 11 ton, capacity of 13

people, maximum speed of 70 kilometers and operation range of 400 kilometers. The

software engineers make use of the domain concepts to model the real world needlessly

worrying that they lack of domain knowledge while focusing on elicitation of the

application requirements such as how many soldiers would be in the operation and who

be the team leader.

Therefore, the capability requirements are modeled in two phases. In the first phase,

the domain experts model the domain knowledge under the guide and constraints of

architecture framework and export the domain ontology. In the second phase, the

software engineers make use of the domain ontology to extend a general purpose

292 Zhang Tingting et al.

modeling language and model the application with the domain-specific modeling

language.

To enable semantic checking, we formalize the requirements models using f-SHIN, the

subsystem of fuzzy Description Logics, which is powerful in expressivity and

decidability for a knowledge system. The model checking can guarantee the application

requirements models semantically consistent with enterprise architectural concepts and

domain concepts. Furthermore, the fuzzy inference system can find out deficiency of the

capability requirements due to the unsatisfied efficiency features, for example, an anti-

missile mission will impossibly be committed because of the limited operational range

of the warning system.

The following passage gives formal definitions of the capability meta-concept

framework and the domain ontology, and explains the modeling and verification

mechanism.

3.2. Capability meta-concept framework

Definition 1: the capability meta-concept framework (CMCF) is composed of three

parts, <MetaConcept, MetaAssociation, MetaRule>.

MetaConcept is a finite set of concepts which contains all capability related meta-

concepts from the CMM [1], such as Activity, Capability, Task, Resource, Performer

etc., and which keep the same semantics as those in the CMM. The figure 2 shows those

meta-concepts in MetaConcept.

MetaAssociation is a finite set of relations which contains all capability related meta-

relations from the CMM, such as DesiredEffectPartOfCapability,

ActivityPerformedByPerformer, RuleConstrainsActivity etc., and which keep the same

semantics as those in CMM. The figure 2 shows those meta-relations in Meta

Association.

Meta Rule is a finite set of rules which provides the architectural constraints

necessarily held by all concepts and relations in the capability models, and which

provides a set of domain general rules for capability model checking. All rules in

MetaRule are those suggested in the CMM, such as “every DesiredEffect must be a

result of one or more Activities”, “every Performer must perform one or more

Activities”, “every Rule can constrain one or more Activities”, etc. And they will be

specified in Description Logics while constructing the domain or application ontologies.

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 293

Fig. 2. A sample of capability meta-concept framework

3.3. Domain knowledge acquisition

Domain ontology for capability requirements. The meta-concepts like Performer in

the CMCF are still too abstract and have little domain meanings. The capability

requirements are necessarily modeled with domain concepts like Radar Unit. Those

concepts are captured in the domain ontologies, forming the domain knowledge base.

The concepts and relations of the ontologies are domain concretion (instantiation) of the

CMCF. To enable fuzzy information modeling, we introduce fuzzy sets of the concepts

and relations.

Definition 2: the domain ontology is composed of four parts: <DomConcept,

DomAssociation, DomFunction, DomConstraint>.

DomConcept is a finite set of domain-specific concepts, every of which is defined by

a unique meta-concept of the CMCF. DomConcept should satisfy such conditions:

DomConcept = DomPreciseConcept U DomFuzzyConcept; e: Concept  [0, 1],

where each e is an instance defined by a Concept which is a member of DomConcept;

DomPreciseConcept DomFuzzyConcept =   , where the DomPreciseConcept is a

finite set of the certain concepts, e.g. AdvancedMobility, and the DomFuzzyConcept is a

finite set of the uncertain concepts, e.g. a wide operational scope and a fast moving

speed.

DomAssociation is a finite set of domain-specific relations associated with a pair of

the concepts, each defined by a unique meta-relation of the CMCF, and each can be

divided into three types association, generalization and aggregation according to the

294 Zhang Tingting et al.

fuzzy UML. DomAssociation should satisfy such a condition r: Association  [0, 1],

where each r is an instance defined by an Association which is a member of

DomAssociation.

DomFunction is a complete function, specifying the mappings from DomConcept to

MetaConcept or from DomAssociation to MetaAssociation. It is used for tracing the

type of domain concepts or relations in the CMCF.

DomConstraint is a finite set of domain model constraints specified in fuzzy

Description Logics according to the rules of MetaRule.

Enhanced OO Modeling Technology. To model the C4ISR capability domain and

build the fuzzy domain ontology, we adopt the extended fuzzy UML to describe the

uncertain domain-specific concepts.

According to the literature 3, we can specify a domain-specific modeling language by

extending the Meta Object Facility (MOF) of UML with CMCF. Accordingly, the new

stereotypes are defined by the concepts such as Performer, Capability, System etc., and

the new association stereotypes are defined by the relations such as

ActivityPartOfCapability, RuleConstraintActivity etc.

The certain domain concepts, usually describing the functional features of capability

requirements, can be modeled as ordinary UML classes stereotyped by the CMCF

concepts such as Capability, while the uncertain domain concepts, usually describing the

efficiency features, can be modeled as either fuzzy UML classes stereotyped by the

CMCF concepts such as DesiredEffect. Moreover, the domain constraints can be

specified as fuzzy DL expressions. As the mappings of the domain concepts to the

CMCF concepts have been built in the models, the model verification can be easily

made against the CMCF ontology through logic reasoning, provided that they can be

transformed into ontology models specified in fuzzy DL.

Capability requirements modeling. The domain model captures the domain concepts

which describe the requirements from user perspectives. But the application

requirements involve more concrete description. For example, the general concept

Warning Radar needs to be instantiated as Type-Y Radar with attribute specified in the

application, e.g. equipmentID, numOfOperator and so on.

In the UML models of capability requirements for an application, the things of the

problem world are conceptualized with the application-level defined concepts which are

stereotyped either by the domain-level concepts, or by the framework-level concepts if

the user finds no such domain concepts available to map the application concepts. Those

application concepts can be used for building the capability application ontology, which

is then used for checking the model integrity.

Definition 3: The capability application ontology for an application system is

composed of three parts: <AppConcept, AppAssociation, AppFunction >.

AppConcept is a finite set of application-level defined concepts, every of which is

defined either by a unique concept of the domain ontology or by a unique concept of

CMCF.

AppAssociation is a finite set of application-level defined relations, every of which is

defined either by a unique relation of the domain ontology or by a unique relation of

CMCF.

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 295

AppFunction is a complete function, specifying the mappings from AppConcept to

MetaConcept U DomConcept or from AppAssociation to MetaAssociation U

DomAssociation.

Definition 4: the function type is a total function, mapping the concepts and relations

of the capability requirements model to the corresponding type of UML constructs.

Definition 5: the function multiplicity is a total function, indicating how many

instances may fill an association in a UML model.

The domain concepts/relations modeled as classes/associations now become the

stereotypes for the application class and association, with the tags which specify the

attributes and assigned values of the instance of the domain class or association. By

reusing the domain ontologies, the engineers are able to model both functional and non-

functional features of the application requirements and analyze whether the built models

satisfy the domain constraints or whether the designed systems can achieve the desired

effect with the model checking technique as discussed in next section, needlessly

worrying about lack of domain knowledge.

4. Capability Requirements Model Conversion and Verification

4.1. Two kinds of verification

The model verification can be classified into two kinds: consistency checking and

rationality checking. The consistency checking is to examine whether the capability

requirements model built is consistent with both the architecture framework CMCF and

the domain ontology, or more specifically, whether the concepts of application models,

typed by the domain-specific concepts or CMCF concepts, break the domain-specific

constraints or CMCF rules declared by the ontologies. Such checking may also solve the

interoperability issue, since all related models will be converted into ontologies which

comprise a knowledge base, where logic inference can be made to check the whole

requirements.

The rationality checking is to examine whether the model has some unreasonable

efficiency features, i.e. some efficiency features do not meet the needs of the mission. It

could be a useful tool for making a decision in the phase of system integration.

Automation of model verification depends on formalization of the models, but UML

is believed a semi-formal language. One popular solution is to use Object Constraint

Language (OCL) [19] to define constraints that apply to the concepts in the model. But

to avoid undecidability problem of OCL [20-23], we argue to transform the models into

the ontologies specified in DL which enable verification through logic inference.

296 Zhang Tingting et al.

4.2. Fuzzy ontology and Fuzzy Description Logic

Ontology constitutes a key component of domain knowledge re-usability and high

interoperability. Two-valued-based logical methods are insufficient to handle ill-

structured, uncertain or imprecise information encountered in real world knowledge. A

tolerance for imprecision by a positive use of Fuzzy Logic may be exploited to enhance

the power of knowledge representation [24]. It has been shown that Fuzzy Logic allows

bridging the gap between human-understandable soft logic and machine-readable hard

logic. Indeed, there has been a natural integration of Fuzzy Logic in ontology in order to

define a new theoretical paradigm called Fuzzy Ontology [25].

Description Logics (DLs) are a logical reconstruction of the so-called frame-based

knowledge representation languages, with the aim of providing a simple well-established

Tarski-style declarative semantics. Essentially, DLs are the theoretical counterpart of the

Web Ontology Language OWL DL, and play a particular role in the representation and

inference of ontologies. In order to deal with the vagueness knowledge, some related

works have extended the DLs with Fuzzy Logic [26-28]. In our research, we choose f-

SHIN, the subsystem of fuzzy DL, to describe the capability requirements, because it is

powerful in expressability and decidability for a knowledge system and allows to make

use of some handy inference engines like Pellet and Racer [28].

4.3. Model transformation

Ma et al. [29, 30] present a way of translating a fuzzy UML model into the f-DLs

knowledge base and reasoning on f-DLs. The underlying principle includes: (1)

translating the fuzzy UML models into the f-DLs knowledge bases (f-DLs TBox) at

terminological level; (2) translating the fuzzy UML instantiations (i.e., object diagrams)

with respect to fuzzy UML models into the f-DLs knowledge bases (f-DLs ABox) at

assertion level. Upon their work, we provide an algorithm as follows to convert the

capability requirements models into the capability knowledge base according to the

definitions introduced before.

Algorithm: convert a capability requirements model into the capability knowledge

base.

Input: the CMCF; domain ontology; the capability requirements model

Output: the capability knowledge base

Step1: extending the domain concepts

Step2: creating the concepts and their instances.

Step3: establishing the relationships between the concepts and instances.

Step4: specifying the domain rules.

The end

Extending the domain concepts. As discussed in section 3, the capability requirements

are modeled in three-tier framework. While the f-DLs knowledge base is built in two-tier

structure (concepts-instances), the concepts at CMCF level and domain level need to be

flattened out onto application level to define the application concepts. In other word, the

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 297

CMCF meta-concepts need to be added to the domain ontology and a class hierarchy to

be established.

Step 1.1: combining the domain ontology with the CMCF.

 NewDomainConcept = MetaConcept U DomConcept,

 NewDomainAssociation = MetaAssociation U DomAssociation.

Step 1.2: creating generalization relationships between them. For every domain

concept
dom

C DomConcept and DomFunction (Cdom) = Cmeta, add a new relationship

R(Cmeta,Cdom) in the NewDomainAssociation and set the mapping function Type(R) =

generalization.

Creating the concepts and their instances. The knowledge base is built by creating the

concepts and their instances respectively in Tbox and Abox and establishing the

relationship between them.

Step 2.1: creating concepts. For every definite concept CNewDomainConcept,

create a same name concept C in TBox T. If concept C has an attribute Att and the range

of Att is P, then create a same name concept P and a relation Att, and add an

axiom .C Att P into the TBox T. If the attribute has a multiplicity, multiplicity(Att) =

[i…j], add an axiom C iAtt jAtt   ;

For every fuzzy concept FCNewDomainConcept , create a same name concept FC in

TBox T and specify its fuzziness in following way:

1) The μ at the first level of fuzziness is implicitly defined in the fuzzy concept;

2) At the second level of fuzziness, the fuzzy attribute named Att, owned by a

fuzzy concept FC and of type C, is defined by an axiom .FC Att C . If the

attribute has a multiplicity(Att) = [i…j], add an axiom FC iAtt jAtt   .

3) The third level of fuzziness is defined by the Step 3.2.

Step 2.2: creating instances. For every object o AppConcept which is mapped by

AppFunction(o) = C to a definite domain concept C with an attribute Att valued a, create

the same name instances o and a in the ABox A, specify the class-of relationship

between C and o, and add the assertions <o: C = 1> and <(o, a): Att = 1>;

For every object o AppConcept which is mapped by AppFunction(o) = FC to a fuzzy

domain concept FC with an attribute Att valued a where the objects membership degree

is  n and the attribute membership degree is m ( , , ,     , n and m are

between 0 and 1), create the same name instances o and a in the ABox A, specify the

class-of relationship between C and o, and add the assertions <o: FC  n> and <(o, a):

Att m>.

Establishing the relationships between the concepts and instances. There are three

types of relationships in the requirements model: association, generalization and

aggregation. The conversion will be done in following steps.

Step 3.1: dealing with association relationship. For every domain relation

R A,B NewDomainAssociation() typed by the function Type(R) = association (i.e., R is a

association relationship), if A and B are fuzzy classes with cardinality constraints

(ma,na) and (mb,nb), create in TBox T the same name relations R with the reversed

relation R where R R and add in TBox T such axioms:

298 Zhang Tingting et al.

A R.B ；
-

B R .A ；
b b

m nA R R   ;
a a

m nB R R
 

   .

For every instance relation r (a, b)  AppAssociation typed by the function

AppFunction(r) = R and Type (R) = association where the possibility of the relation

r(a, b) is n, add such assertion in the ABox A as <(a, b): R n> and <(b, a): R－
 n >.

Step 3.2: dealing with generalization relationship. For every domain relation

R A,B NewDomainAssociation() typed by the function Type(R) = generalization (i.e.,

B is a subclass of A), create in the TBox T the relation SubConcept and add in TBox T

such axioms: B A ; .B SubConcept A .

For every instance relation r (a, b)  AppAssociation typed by the function

AppFunction(r) = R and Type (R) = generalization where the possibility of the relation

r(a, b) is n, add such assertion in the ABox A as <(b, a): SubConcept  n>.

Step 3.3: dealing with aggregation relationship. For every domain-specific relation

Agg A,B NewAssociation() typed by the function Type (Agg) = aggregation (i.e., A

is aggregate part, B is constituent part), if B are fuzzy classes with cardinality constraints

(m,n), create in TBox T the same name relations Agg with the reversed relation Agg

where Agg Agg and add in TBox T such axioms as:

m nA Agg.B Agg Agg    u u ；
_ _ _

B Agg .A 1Agg 1Agg    u u
.

For every application relation agg (a, b)  AppAssociation typed by the function

AppFunction(agg) = Agg and Type(Agg) = aggregation where the possibility of the

relation r(a, b) is n, add such assertion in the ABox A as < (a, b): Agg  n >；

< (b, a): Agg  n >.

Specifying the domain rules for model checking. The domain checking rules can be

formally specified as the cardinality restrictions imposed on the instance associations of

meta-concepts. To explain the rule-base construction algorithm, we classify those rules

into two categories so as to handle them respectively.

Step 4.1: specifying the Qualified Cardinality Restriction (QCR) rules. The QCR

rules are expressed as:   
1 2

. () # | () (,) 1x C x y C y R x y    . The examples of such

rules are like: each Capability must be the result of one or more Activities; each

Organization must be the Performer of one or more Activities; etc.

Step 4.2: specifying the Constant Cardinality Restriction (CCR) rules.

The CCR rules are the strictest meta rules, expressed as:

  
1 2

. () # | () (,)x C x y C y R x y n    . The examples provided by DoDAF are like:

each Materiel must be used by one or more Persons, where each Person must be the

member of only one Organization at a certain time; etc. Based on the above

classification, the domain-general rules are added in f-SHIN system in following way,

forming the domain-general rule base.

Step 4.3: constructing the rule base. For every Type (Rule(R(C1,C2))) = QCR, add

in TBox T the axioms C1   R.C2 and C1  1R . For every Type

(Rule(R(C1,C2))) = CCR, add in TBox T the axioms C1  R.C2 , C1 nR and

C1 nR .

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 299

Through the above steps, the capability requirements knowledge base can be built.

Such knowledge base comprises all the concept of three levels and is used for verifying

the capability requirements models through logic inference. Similarly, the domain

knowledge base which is composed of the CMCF concepts and domain concepts can be

established from the domain models through step 2 to 4, and the domain model can be

verified.

4.4. Automating verification using existing reasoning engines

The model verification can be made by checking the knowledge base consistency and

rationality, and the process can be automated by applying the existing Description Logic

reasoning engines such as Pellet [31,32].

Bobillo et al. [33] also present the DeLorean (Description Logic REason with

vAgueNess) system, a reason that supports a fuzzy extension of the DL SROIQ [34]

under Zadeh semantics. They show that a fuzzy DL SROIQ knowledge base (KB) can

be reduced into a crisp KB, and the procedure preserves reasoning under Zadeh

semantics so that existing reasons such as FaCT++ and Pellet could be applied to the

resulting KB.

5. A Case Study

5.1. Introduction

To examine the proposed approach, we lead a pilot study on architectural design for a

large-scaled C4ISR system of city air defense. There are thousands of key concepts in

the capability requirements, many of them relating to both functional and non-functional

features and being vague and imprecise. Those concepts might be misunderstood among

engineers or between the engineers and stakeholders, which may hinder building the

system architectures. The models in following sections concentrate on a few of them,

such as the capability of early warning, the capability of anti-air preparation, and

importance of the objects protected, which are critical to the mission of city air defense

and which are likely to cause misunderstanding.

We apply a popular UML modeling tool Enterprise Architecture v7.0 in the case. The

tool supports creating, exporting and importing a UML profile, which allows you to

model the domain-specific concepts of the capability requirements to extend the

stereotypes of UML constructs and acquire a domain-specific language for capability

requirements modeling. It can export the built models to an XML file which can then be

converted into the capability knowledge base by a standalone application realizing the

model transformation algorithm in Section 4.4. The model verification is automated with

the help of the popular reasoned Pellet 1.5, after the fuzzy KB of the capability

requirements is turned into crispy one.

300 Zhang Tingting et al.

5.2. The domain model and fuzzy efficiency evaluation functions

The Air Surveillance & Warning (ASW) system is a system of the complex C4ISR

system of city air defense. A fragment of the domain model of ASW system is shown in

the figure 3. The air surveillance and warning activity is performed by the Warning

Radar which belongs to the Intelligent Station and which has an Air Warning Capability

to perform the activity. The capability is featured by a fuzzy efficiency concept Early

Warning, one of the indicators for measuring whether the activity can be executed

satisfying the mission effectiveness specified in the Warning Ahead Requirement. The

concept Early Warning describes how early the flying objects can be recognized for the

air defense force to get fully prepared for action on them before they may endanger the

protected area, and therefore the time consumed in identifying the flying object and

judging its danger is modeled as an attribute to it. The air defense activity is performed

by an anti-air missile system (not presented in the diagram), which has a

DestroyingFlyingObject capability. The capability is also a fuzzy concept and has an

attribute named timeForPrepared. Another fuzzy concept is the Protection of

DesiredEffect, describing the effect of protection such as whether the important object

protected is damaged, and hence the importance is modeled as an attribute to it. Those

fuzzy concepts can be modeled as fuzzy classes.

Fig. 3. An example of the city integrated air defense domain model

To determine the objects membership degrees u, we introduce an important concept,

fuzzy efficiency evaluation functions (FEEFs). For this case, three FEEFs are defined.

The fuzzy objects membership degree u of the class Early Warning is calculated with the

function:

1-0.01t 0 t 100min
Early(t)=

0 t 100 min

 








 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 301

where t is a variable representing the time consumed in identifying the flying object and

judging its danger, the constant 100 is the maximum minutes for an air defense force to

commit a mission, and the fuzzy coefficient 0.01 is given by the domain experts.

If 0 t 100 minutes  , Early(t) generates a valid fuzzy efficiency value which describes

the degree of Early Warning. Otherwise, it generates 0 representing an invalid time

variable entered or the mission failure.

5.3. The application model and knowledge base

The capability requirements model built at application-level is shown in figure 4. The

EW-SystemX, a concrete concept of Early Warning for the system X, is stereotyped by

the domain concept Early Warning, with the tagged values timeConsumed=20 and fuzzy

objects membership degree u=0.8 calculated by the FEEF Early(t). TypeXMissile, a

concrete concept of DestroyingFlyingObject capability, is stereotyped by the domain

concept DestroyingFlyingObject, with the tagged values timePrepared=15 and fuzzy

objects membership degree u=0.8 calculated by the FEEF Preparation(t). ProtectionA

and ProtectionB, the concrete concepts of Protection, are stereotyped by the domain

concept Protection, with the tagged values importance=1 and fuzzy objects membership

degree u=0.9 calculated by the FEEF important(x).

The capability requirements models is converted into the knowledge base, which is

composed of the concepts, relations, instances, axioms and assertions.

Concepts: Task, Rule, Performer, Activity, Capability, Efficiency, OrganizationType

(OT), DesiredEffect (DE), IntelligentStation (ID), WarningRadar (WR),

AirWarningCapability (AWC), AirSurveillance&Warning (ASW), EarlyWarning (EW),

CityAirDefense(CAD), WarningAheadRequirement (WAR), Protection,

DestroyingFlyingObject (DFO).

Relations: ActivityPerformedByPerformer (APBP), RuleConstraintsActivity, (RCA),

ActivityPartOfCapability (APOC), DesiredEffectGuideActivity (DEGA),

DesiredEffectPartOfCapability (DEPOC), PerformerCapabilityManifestation (PCM) ,

PerformerPerformsAtLocation (PPAL), HasEfficiency(HE), NeedEfficiency(NE),

DependOn (DO).

Concept instances: RadarStationX (RSX), TypeYRadar(TYR), EW-SystemX (EW-

SX), AWC-SystemX(AWC-SX), ASW-Activity-SystemX (ASW-A-SX), WAR-

SystemX (WAR-SX), Mission-AD-SystemX (M-AD-SX), TypeXMissle (TXM),

ProtectionA(PA), ProtectionB(PB).

The model verification is made for consistency and rationality separately.

302 Zhang Tingting et al.

Fig. 4. The Air-target Interception Capability of the x-Air Defense Force

Model checking for consistency. There is, for an instance, an architecture rule in the

DoDAF 2.0 declaring that “every DesiredEffect must be a result of one or more

Activities”. Accordingly, we can specify it as a DL axiom in the knowledge base as

follow, adding a constraint upon the meta concept DesiredEffect:
1DE DEGA.Activity DEGA  u

.

For the model shown in figure 4, the application concept WAR-SystemX defined by

the domain concept WarningAheadRequirement (which is sub concept of DesiredEffect)

holds the constraint, but ProtectionA and ProtectionB defined by Protection do not. That

might be misunderstanding of the architecture framework or making mistakes by the

project engineers. The concept clash detection is processed in following way.

When building the domain rule-base with the algorithm introduced in section 4.4,

there are some clash axioms automatically added in the TBox T:

A1. WAR Protection  ;

A2. WAR DE ;

A3. Protection DE ;

A4. 1DE DEGA.Activity DEGA  ;

A5. DE Activity  ;

and also some clash assertions in the ABox A:

a1. WAR-SX: WAR= 1;

a2. PA: Protection = 0.8;

a3. PB: Protection = 0.9;

a4.  # | (,) : 0 0PA x DEGAx   ;

a5.  # | (,) : 0 0x PB x DEGA  ;

The clash detection is then progressed through such reasoning:

(1) a new axiom A6 can be deduced from axiom A3 and axiom A4:

A6. 1Protection DEGA.Activity DEGA  ;

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 303

(2) a new axiom A7 can be deduced from axiom A6:

A7. 1Protection DEGA ;

(3) a new assertion a6 can be deduced from assertion a2, axiom A7 and extended

rule:

a6.  # | (,) : 0.8 1PA x DEGAx   ;

(4) a new assertion a7 can be deduced from assertion a3, axiom A7 and extended

rule:

a7.  # | (,) : 0.9 1PB x DEGAx   ;

(5) a new assertion a8 can be deduced from assertion a2, axiom A1 and  extended

rule:

a8. PA: WAR =0.2;

(6) a new assertion a9 can be deduced from assertion a3, axiom A1 and  extended

rule:

a9. PB: WAR =0.1;

As a4 and a6, a5 and a7 are a conjugated pair, there is a clash in the knowledge base.

With such inference technique, we can automatically examine the consistency of

application models. Currently, most UML techniques, like the tool EA, do model

checking against the UML syntax and semantics and do not allow adding new semantics

and constraints without loss of automation. Due to undecidability issue as mentioned

before, the OCL based tools might not support the inference either.

Model checking for rationality. Suppose that when designing the air defense system X,

the project manager would first want to make use of the existing AirWarningCapability

AWC-systemX that has an EarlyWarning efficiency EW-SystemX. The capability seems

to meet the requirement if only considering the factor of air defense force preparation,

since the objects membership degree (or the fuzzy effectiveness value) calculated by the

FEEF Early(t) is 0.80, no less than that of required by the DestroyingFlyingObject

capability TypeXMissile (which is also 0.8 calculated by the FEEF Preparation(t)).

However, it is noticed that the mission requires, on other hand, a desired Protection

effect ProtectionA. The importance of ProtectionA produces a fuzzy effectiveness value

0.9, which implies that the efficiency of EarlyWarning should be no less than 0.9, and

hence there is a capability gap between the existing AWC-SystemX and the mission

requirement. That might be a result of lack of domain experience, or some other factors

(for the case, the importance of the protected objects) would be added later to the

project. The concept clash detection is processed in following way.

Some clash axioms are automatically added in the TBox T when making the model

conversion:

A1. AWC Capability HE.EW ;

A2. WAR NE.EW ;

A3. WAR AWC  ;

A4. DFO DO.AWC ;

A5. Protection DO.WAR

A6. DFO AWC  ;

A7. CAD WAR Pr otection   ;

304 Zhang Tingting et al.

A8. AWC EW  ;

And also some clash assertions added in the ABox A:

a1. WAR-SX: WAR =1;

a2. EW-SX: EW = 0.8;

a3. AWC-SX: AWC = 1;

a4. TXM: DFO = 0.8;

a5. PA: Protection = 0.9;

a6. PB: Protection = 0.8;

a7. (WAR-SX, EW-SX): NE = 1;

a8. (AWC-SX, EW-SX): HE= 1;

a9. (PB, WAR-SX): DO = 1;

a10. (TXM, AWC-SX): DO = 1;

a11. (PA, WAR-SX): DO = 1;

The clash detection is then progressed through such a reasoning:

(1) a new assertion a12 can deduced from assertion a3 and axiom A1:

a12 AWC-SX: Capability NE.EW  1;

(2) a new assertion a13 can be deduced from assertion a1 and axiom A2:

a13. WAR-SX： NE.EW  1;

(3) a new assertion a14 can be deduced from assertion a4, a10, axiom A4 and

  extended rule:

a14. AWC-SX: AWC  0.8;

(4) a new assertion a15 can be deduced from assertion a8, a14, axiom A1 and

  extended rule:

a15. EW-SX: EW  0.8;

(5) a new assertion a16 can be deduced from assertion a5, a11, axiom A5 and

  extended rule:

a16. WAR-SX: WAR  0.9;

(6) a new assertion a17 can be deduced from assertion a7, a16, axiom A2 and

  extended rule:

a17. EW-SX: EW  0.9;

(7) a new assertion a18 can be deduced from assertion a1, axiom A3 and  extended

rule:

a18. WAR-SX: AWC = 0;

(8) a new assertion a19 can be deduced from assertion a3, axiom A6 and  extended

rule:

a19. AWC-SX: DFO= 0;

(9) a new assertion a20 can be deduced from assertion a4, axiom A6 and  extended

rule:

a20. TXM: AWC =0.2;

(10) a new assertion a21 can be deduced from assertion a2, axiom A8 and  extended

rule:

a21. EW-SX: AWC =0.2;

As a2 and a17 are a conjugated pair, there is a clash in the knowledge base.

Compared with consistency checking, rationality checking is more difficult and the

confidence of the results depends on the FEEFs given. So far as we know, the

UML/OCL techniques seldom address the issue. The popular way to do it is with the

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 305

help of some model simulation tools, but the process is complicated, with a lot of work

on building simulation models and preparing data. Here we intend to explore a new and

simpler way.

These two reasoning examples reflect only a small fragment of the case for model

verification, since we cannot show the whole case including all axioms and assertions in

the limited pages. Practically, it is a hard work to find all those logical conflicts

manually. But the reason Pellet will do it in a minute due to the high efficiency of

reasoning mechanism.

6. Conclusions

The paper investigates several problems in enterprise system engineering and

integration. It first discusses on several ways of bridging the gap between business

strategies and the IT solutions, compares on a number of enterprise modeling

approaches including UEML and ontology-based modeling methods, and then focuses

on model verification and validation with formal techniques. Based on extensive

research, we propose an ontology-based, capability-oriented and domain-specific

modeling approach for the enterprise requirements elicitation and verification. It

converts the requirements models into requirements ontology so that the verification can

be automated with the help of a poplar DL reasoner such as Pellet. The reasoner will

determine whether capability requirements are sufficient for the desired efficiency. With

the help of the approach, the engineer will foresee the results of the IT solutions, and

then reduce the risk of the system developments.

The further research will be on developing a domain-specific rules description

language with the fuzzy knowledge query language. Such language may completely

relieve the domain experts from formal description and allow them to define more

domain rules with their familiar terms. Besides, we will develop a DL reasoner for

requirements analysis; it supports large-scale ontology reasoning, and has

better inference efficiency than the common DL reasoner, such as Pellet and Racer.

We acknowledge all authors of the literatures referenced for their valuable research

results, especially the DM2 Groups for the Meta-model that provides a basis for our

research.

Acknowledgments. This work is supported by the Twelfth Five-year Equipment Pre-research

Fund of China under the project number 9140A06010115DZ38016; the Army Military Graduate

Funded of China under the project number 2014JY182; Laboratory of simulation of complex

electronic systems research under the project number DXZT-JC-ZZ-2014-015.

References

1. US Department of Defense, DoD Architecture Framework Version 2.0. Department of

Defense, Washington D.C.(2009).

2. OMG, UML 2.0 Superstructure Specification, Revised Final Adopted Specification, ptc/04-

10-02, Object Management Group, Needham, MA, USA ,(2004).

http://dict.youdao.com/w/engineer/

306 Zhang Tingting et al.

3. Fatolahi A., Shams, F.: An investigation into applying UML to the Zachman Framework.

Journal of Information Systems Frontiers, Vol. 8, No. 6, 133-1143. (2006)

4. Evolving Command and Control to an LTE Infrastructure, Leveraging proven technologies

for powerful and effective mission-critical communications,(2013)

5. Wang, Z., Wei, D.: Modeling Complex System Using T-subnet based Hierarchical Petri

Nets, Journal of Computers,Vol 4, No9,829-836.(2009)

6. Tuna, H.: An enterprise Architecture Strategy for SOA. The Architecture Journal, Vol. 21,

6-23. (2009)

7. Madrid, C., Shaw, B.: Enabling Business Capabilities with SOA. The Architecture Journal,

Vol. 21, 24-28. (2009)

8. Brad, N., Daniel, C., Nelson, R.: Transparency and Multi-core Parallelisms. Proc. of the 5th

ACM SIGPLAN Workshop on Declarative Aspects of Multicore Programming, New York,

NY, USA: ACM. (2010)

9. Daniel, E.: NASA's Exploration Agenda and Capability Engineering. Computer, Vol.21,

No.1, 63-73. （2006）

10. Dai, L., Cooper, K.: Using FDAF to Bridge the Gap Between Enterprise and Software

Architectures for Security. Science of Computer Programming, Vol.66, No.1, 87-102.

(2007)

11. Eriksson, H., Penkar, M.: Business Modeling with UML. The OMG Press, John Wiley and

Sons, Inc., USA, (2000)

12. Tsai, J., Liu, A.: Experience on Knowledge-based Software Engineering: A logic-based

Requirements Language and Iits Industrial Applications. The Journal of Systems and

Software, Vol. 82, No. 10, 1578-1587. (2009)

13. Kang, D., Lee J., Kim, K.: Alignment of Business Enterprise Architectures using Fact-based

Ontologies. Expert Systems with Applications, Vol. 37, No.4, 3274-3283. (2010)

14. Lamsweerde, V.: Requirements Engineering: from System Goals to UML Models to

Software Specifications. Wiley, (2009).

15. Ponsard, C., Massonet, P.: Early Verification and Validation of Mission Critical Systems.

Electronic Notes in Theoretical Computer Science, Vol. 13, No.2, 237-254. (2005)

16. Anaya, V., Berio, G.: The Unified Enterprise Modelling Lanuage-overview and Future

Work. Computers in Industry, Vol. 16, No. 2, 99-111. (2010)

17. Chapurlat, V., Kamsu-foguem, B.: A Formal Verification Framework and Associated Tools

for Enterprise Modeling: Application to UEML. Computers in Industry, Vol. 57, No. 2,

153-166. (2006)

18. Floch, J., Carrez, C.: A Comprehensive Engineering Framework for Guaranteeing

Component Compatibility. Journal of Systems and Software, Vol. 83, No. 10, 1759-1779.

(2010)

19. OMG: OMG Unified Modeling LanguageTM, Superstructure. Version 2.2.

http://www.omg.org/spec/UML/2.2/Superstructure.

20. Farré, C., Queralt, A., Rull, G., Teniente, E., Urpí, T.: Automated Reasoning on UML

Conceptual Schemas with Derived Information and Queries. Information & Software

Technology. 55:1529-1550. (2013)

21. Cabot, J., Claris, R., Riera, D.: On the Verification of UML/OCL Class Diagrams using

Constraint Programming. Journal of Systems and Software, Vol. 93, No. 1, 1-23. (2014).

22. Cabot, J., Teniente, E.: Incremental Iintegrity Checking of UML/OCL Conceptual Schemas.

Journal of Systems and Software, Vol. 9, No. 28, 1459-1478. (2009)

23. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-based Specification Environment for

Validating UML and OCL. Science of Computer Programming, Vol. 3, No. 69, 27-34.

(2007)

24. Ma, Z.: Representing and Reasoning on Fuzzy UML Models: A Description Logic

Approach. Expert Systems with Applications, Vol. 38, No. 3, 2536-2549. (2011)

http://www.radisys.com/2013/evolving-command-and-control-to-an-lte-infrastructure/
http://www.texasmulticoretechnologies.com/content/2004_SL_Transparency_and_Multicore_Parallelisms.pdf
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B75H1-4G65CG5-G&_user=1019048&_coverDate=05%2F31%2F2005&_alid=1487824812&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=13109&_sort=r&_st=13&_docanchor=&view=c&_ct=1&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=7b6de191cf57eb9624a6fdf68d15c047&searchtype=a
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V2D-4H27BVC-1&_user=1019048&_coverDate=02%2F28%2F2006&_alid=1405383604&_rdoc=1&_fmt=high&_orig=search&_cdi=5700&_sort=r&_docanchor=&view=c&_ct=29833&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=df75e028e143970107c6b8a8d883ab65#vt1#vt1
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V2D-4H27BVC-1&_user=1019048&_coverDate=02%2F28%2F2006&_alid=1405383604&_rdoc=1&_fmt=high&_orig=search&_cdi=5700&_sort=r&_docanchor=&view=c&_ct=29833&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=df75e028e143970107c6b8a8d883ab65#vt2#vt2
http://ha.njnu.edu.cn:1088/science/journal/01663615
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V0N-50B5PFM-1&_user=1019048&_coverDate=10%2F31%2F2010&_alid=1488038562&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5651&_st=13&_docanchor=&view=c&_ct=2&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=24546a56ce84fb0837d823dffcc89f98&searchtype=a
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V0N-50B5PFM-1&_user=1019048&_coverDate=10%2F31%2F2010&_alid=1488038562&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5651&_st=13&_docanchor=&view=c&_ct=2&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=24546a56ce84fb0837d823dffcc89f98&searchtype=a
http://www.omg.org/spec/UML/2.2/Superstructure
http://www.bsc.es/about-bsc/publications/scientific-publications?f%5bauthor%5d=3670
http://www.bsc.es/about-bsc/publications/scientific-publications?f%5bauthor%5d=3664
http://www.bsc.es/about-bsc/publications/scientific-publications?f%5bauthor%5d=3669
http://www.bsc.es/about-bsc/publications/scientific-publications?f%5bauthor%5d=3665
http://www.bsc.es/about-bsc/publications/scientific-publications?f%5bauthor%5d=4365
http://www.bsc.es/publications/automated-reasoning-uml-conceptual-schemas-derived-information-and-queries
http://www.bsc.es/publications/automated-reasoning-uml-conceptual-schemas-derived-information-and-queries
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V03-50X3TSS-5&_user=1019048&_coverDate=08%2F31%2F2010&_alid=1490034977&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=3&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=108aee3805921d15a1cdfbb467f6965a&searchtype=a
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V03-50X3TSS-5&_user=1019048&_coverDate=08%2F31%2F2010&_alid=1490034977&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=3&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=108aee3805921d15a1cdfbb467f6965a&searchtype=a

 Capability-oriented Architectural Analysis Method Based on Fuzzy Description Logic 307

25. Dong, Q., Wang, Z.: Capability Requirements Modeling and Verification Based on Fuzzy

Ontology. Journal of System Engineering and Electronics, Vol. 23, No.1, 178-188. (2012)

26. Li, Y., Xu, B.: Extended Fuzzy Description Logic ALCN. In Proceedings of the 9th

International Conference on Knowledge Based Intelligent Information and Engineering

Systems, 896-902. (2005)

27. Stoilos, G., Stamou, G.: Reasoning with Very Expressive Fuzzy Description Logics.

Artificial Intelligence Research, Vol. 30, 273-320. (2007)

28. Bobillo, F., Delgado, M.: Fuzzy Description Logics under Gödel Semantics. International

Journal of Approximate Reasoning, Vol. 50, No. 3, 494-514. (2009)

29. Maksimovic, M., Vujovic, V., Perisic, B., Milosevic, V.: Developing a Fuzzy Logic based

System for Monitoring and Early Detection of Residential Fire based on Thermistor

Sensors. Computer Science and Information Systems. Vol.12, No. 1, 63-89. (2015)

30. Ma, Z., Zhang, F.: Representing and reasoning on fuzzy UML models: A description Logic

Approach. Expert Systems with Applications, Vol. 38, No. 3, 2536-2549. (2011)

31. Sirin, E., Parsia, B.: Pellet: a Practical OWL-DL Reasoner. Journal of Web Semantics, Vol.

2, No. 5, 51-53. (2007)

32. Tsarkov, D., Horrocks, I.: FaCT++ description logic Reasoner: System Description. In:

Proceedings of the 3rd International Joint Conference on Automated Reasoning, 292-297.

(2006)

33. Bobillo, F., Delgado, M., Gomez-Romero, J.: A Crisp Representation for Fuzzy SHOIN

with Fuzzy Nominals and General Concept Inclusions. Lecture Notes in Computer Science,

Vol. 5327, 174-188. (2008)

34. Horrocks, I., Kutz, O., Sattler, U.: The Even More Irresistible SROIQ. In: Proceedings of

the 10th International Conference of Knowledge Representation and Reasoning (KR 2006),

Lake District, UK, AAAI Press, New York, 57-67. (2006)

Zhang Tingting (corresponding author) is a PhD student of PLA University of Science

and Technology University, where she received B.S. and M.S. degrees, all in Computer

Science. She currently is a lecturer and teacher of the Software Engineering Center, PLA

University of Science and Technology. Her research interests include Software

Engineering and system engineering. Tel: +86-13062563872; E-mail:

zhangtings@sohu.com

Liu Xiaoming is a professor of Institute of Command and Automation, PLA University

of Science and Technology. His research interests are software engineering,

requirements engineering, theory and technology of command automation, currently

focusing on domain-specific modeling and formal verification. He received M.S. degree

from National PLA University of Science and Technology, and used to be a visiting

researcher in University of Tsukuba, Japan.

Wang Zhixue is a professor of Institute of Command and Automation, PLA University

of Science and Technology. His research interests are software engineering,

requirements engineering, theory and technology of command automation, currently

focusing on domain-specific modeling and formal verification. He received B.S. degree

from Hefei Polytechnic University, M.S. degree from National University of Defense

and Technology, and used to be a visiting researcher in Faculty of Information

Technology, University of Brighton, England.

http://dblp.uni-trier.de/pers/hd/m/Maksimovic:Mirjana
http://dblp.uni-trier.de/pers/hd/v/Vujovic:Vladimir
http://dblp.uni-trier.de/pers/hd/m/Milosevic:Vladimir
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V03-50X3TSS-5&_user=1019048&_coverDate=08%2F31%2F2010&_alid=1490034977&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=3&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=108aee3805921d15a1cdfbb467f6965a&searchtype=a
http://ha.njnu.edu.cn:1088/science?_ob=ArticleURL&_udi=B6V03-50X3TSS-5&_user=1019048&_coverDate=08%2F31%2F2010&_alid=1490034977&_rdoc=1&_fmt=high&_orig=search&_origin=search&_zone=rslt_list_item&_cdi=5635&_sort=r&_st=13&_docanchor=&view=c&_ct=3&_acct=C000050441&_version=1&_urlVersion=0&_userid=1019048&md5=108aee3805921d15a1cdfbb467f6965a&searchtype=a
http://ha.njnu.edu.cn:1043/content/32007jgkm4h38418/
http://ha.njnu.edu.cn:1043/content/32007jgkm4h38418/
http://ha.njnu.edu.cn:1043/content/32007jgkm4h38418/
http://ha.njnu.edu.cn:1043/content/0302-9743/

308 Zhang Tingting et al.

Dong Qingchao is a PhD student of Institute of Command and Automation, PLA

University of Science and Technology University, where he received B.S. and M.S.

degrees. His research interests are requirements engineering, focusing on specification

and formal verification.

Received: February 22, 2015; Accepted: September 25, 2015.

