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Abstract. Animal migration optimization (AMO) searches optimization solutions 

by migration process and updating process. In this paper, a novel migration 

process has been proposed to improve the exploration and exploitation ability of 

the animal migration optimization. Twenty-three typical benchmark test functions 

are applied to verify the effects of these improvements. The results show that the 

improved algorithm has faster convergence speed and higher convergence 

precision than the original animal migration optimization and other some 

intelligent optimization algorithms such as particle swarm optimization (PSO), 

cuckoo search (CS), firefly algorithm (FA), bat-inspired algorithm (BA) and 

artificial bee colony (ABC). 

Keywords: animal migration optimization algorithms, exploration and exploita- 

tion, functions optimization 

1. Introduction 

In recent years, many research have been inspired by animal behavior phenomena for 

developing optimization techniques, such as firefly algorithm (FA) [1] in 2008, cuckoo 

search (CS) [2] in 2009, bat algorithm (BA) [2] in 2010, artificial bee colony (ABC) [3] 

in 2007, monkey algorithm (MA) [4] in 2008, frog-leaping algorithm (SFLA) [5], [6] in 

2003. FA mimics flashes of fireflies attract mating partners or potential prey to find 

optima. CS simulates cuckoos choose a nest where the host bird just laid its own eggs 

and the first hatched cuckoo evicts the host eggs by blindly propelling the eggs out of 

the nest. BA simulates the behavior of bats’ echolocation to find food or avoid obstacles 

by frequency and loudness. And ABC simulates natural bee colony foraging process to 

search and optimize the objectives by mutual cooperation. Because of its advantages of 

global, parallel efficiency, robustness and universality, these bio-inspired algorithms 

have been widely used in constrained optimization and engineering optimization[7], [8], 

[9], scientific computing, automatic control and other fields [10], [11], [12], [13], [14]. 

Animal migration behavior is found throughout the animal kingdom, the behavior 

stems from the change of natural environment, such as the change of feed, breeding, and 

climate, and then adaptive survival migration behavior. Animal migration usually has 

certain laws and routes, for instance, when an area is fall of temperature or lack of food, 
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the animals will move to an area with mild climate and abundant food, this is a 

universal phenomenon exists in nature. The same birds, mammals, fish, reptiles, 

amphibians, insects and crustaceans all migrate, for example, the reindeer move 

southward to the taiga to escape from blizzard in winter, and move northward to tundra 

with rich food in spring. The wildebeest and zebra in Africa move to an area with rich 

aquatic plants when the rainy season comes, and return back to the usual habitats when 

the rainy season ends. The white whale, small stripe grain whale and other cetaceans 

often migrate by following the big fish as their food. The seal, fur seal and other sea 

mammal animals often climb back to a definite reproduction destination or an ice block 

to reproduce. In summary, animals like in food rich, water abundant, climatic conditions 

suitable area for survival, with time goes on, food and water reduce, climate change, 

living conditions change, the area can no longer provide the needs of the animals to 

survive, animal population will migrate to a new food and water rich, climatic 

conditions suitable area. Because of the long difficult journeys, individual animals will 

leave the migration of population in the process of animal population migration, and 

also some new individuals will join the migration of population in the process of animal 

population marching. 

2. Related Work 

Biogeography-based optimization is a recently proposed evolutionary algorithm, 

inspired by the migration behavior of island species [15]. Cuckoo search algorithm is 

inspired by the obligate brood parasitic behavior of some cuckoo species in combination 

with the Lévy flight behavior of some birds and fruit flies [16], and applied to 

classification problem [17], constrained global optimization [18], and various 

modification version cuckoo algorithm. 

Bat Algorithm (BA) is a novel meta-heuristic optimization algorithm based on the 

echolocation behavior of micro-bats, which was proposed by Xin-she Yang in 2010 [2]. 

This algorithm is applied to different area. Pei-wei Tsai etc. proposed an improved EBA 

to solve numerical optimization problems [19]; A multi-objective bat algorithm 

(MOBA) is proposed by Yang [20], which is first validated against a subset of test 

functions, and applied to solve multi-objective design problems such as welded beam 

design. In 2012, BA to solve the Brushless DC wheel motor problem [21]. 

Animal migration optimization (AMO) algorithm is a novel bio-inspired 

optimization algorithm by simulating animal migration behavior that proposed by X. Li 

and J. Zhang in 2013 [22], and applied to clustering analysis [23]. AMO simulates the 

widespread migration phenomenon in the animal kingdom, through the change of 

position, replacement of individual, and finding the optimal solution gradually. AMO 

has obtained good experimental results on many optimization problems. 

These algorithms have been applied to various research areas and have gained a lot 

of success [24], [25], [26], [27], [28]. However, up to new, there is no algorithm that 

performs well in all the fields. Some algorithms perform much better for some 

particular problems, while worse for other problems. Until now, how to design a new 

heuristic algorithm for optimization problem is still open problem [29]. 

This paper presents a modified animal migration optimization (MAMO) algorithm. 

We proposed MAMO algorithm to improve the performance of AMO, this method 

http://www.hindawi.com/journals/ddns/2015/194792/
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guarantees the MAMO rapid convergence. By means of selecting the better solution 

space around the current solution, it will improve search ability and accelerate 

convergence speed, and it has obtained the global optima. 

3. Animal Migration Optimization Algorithm (AMO) 

Animal migration algorithm can be divided into animal migration process and animal 

updating process. In the migration process the algorithm simulates how the groups of 

animals move from current position to a new position. During this process, each 

individual should obey three main rules: (1) move in the same direction as its neighbors; 

(2) remain close to its neighbors; (3) avoid collisions with its neighbors. During the 

population updating process, the algorithm simulates how animals update by the 

probabilistic method. 

3.1. Animal Migration Process 

 

Fig. 1 The concept of the neighborhood of an animal 

During the animal migration process, an animal should obey three rules: (1) avoid 

collisions with your neighbors; (2) move in the same direction as your neighbors; and 

(3) remain close to your neighbors. In order to define concept of the local neighborhood 

of an individual, we use a topological ring, as has been illustrated in Fig. 1. For the sake 

of simplicity, we set the length of the neighborhood to be five for each dimension of the 

individual. Note that in our algorithm, the neighborhood topology is static and is 

defined on the set of indices of vectors. If the index of animal is i then its neighborhood 

consists of animal having indices 2 1 1 2i i i i i   , , , , , if the index of animal is 1, the 

neighborhood consists of animal having indices 1,NP NP , 1, 2, 3, etc. Once the 

neighborhood topology has been constructed, we select one neighbor randomly and 

update the position of the individual according to this neighbor, as can be seen in 

Formula (1): 

, 1 , , ,( )i G i G neiborhood G i GX X X X     (1) 
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where 
,neiborhood GX  is the current position of the neighborhood,   is produced by 

using a random number generator controlled by a Gaussian distribution. 
,i GX  is the 

current position of i th individual, and 
, 1i GX 

 is the new position of i th individual.   

3.2. Population Updating Process 

During the population updating process, the algorithm simulates how some animals 

leave the group and some join in the new population. Individuals will be replaced by 

some new animals with a probability Pa. The probability is used according to the 

quality of the fitness. We sort fitness in descending order, so the probability of the 

individual with best fitness is 1/NP, the individual with worst fitness, by contrast, the 

probability is 1, and this process can be shown in Algorithm 1. 

 

1. For 1i   to NP  

2.   For 1j   to D  

3.      If rand Pa  

4.         
, 1 1, , , 2, ,( ) ( )i G r G best G i G r G i GX X rand X X rand X X                  

5.      End If 

6.   End For 

7. End For 

Algorithm 1. Population updating process 

 

1 2, [1,..., ]r r NP  are randomly chosen integers, and
1 2r r i  . After producing the new 

solution
, 1i GX 

, it will be evaluated and compared with the
,i GX , we choose the 

individual with a better objective fitness, as can be seen in Formula (2): 

, , , 1

, 1

( ) ( )i G i G i G

i

i G

X if f X isbetter than f X
X

X otherwise






 


 (2) 

To verify the performance of AMO, 23 benchmark functions were tested. The results 

show that the proposed algorithm clearly outperforms other evolution algorithms. 

4. The Modified Animal Migration Process  

In nature, animals to survive, all animals migrate toward the place with enough food. In 

this paper, the place is namely living area, and migrating animals have a leader. The 

proposed modified AMO algorithm established a living area by the leader animal (the 

individuals with best fitness value) and animals migrate from current locations migrate 

into this new living area to simulate animal migration process. 

At first, there are NP animals live in living area, as shown in Fig. 2 (a), movement, 

eating, drinking, reproduction and so on, some individuals move randomly, and its’ 

position update, then we calculate the best position of animals by fitness function and 
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record it. But the amount of food or water gradually diminished as the time wore on, as 

shown in Fig. 2 (b), some animals migrate from the current areas which have no food 

and water to a new area with abundant food and water, as shown in Fig. 2 (c). In Fig. 2, 

the green parts represent the living areas with abundant food and water, animals can live 

in these areas, and the yellow parts represent the areas that lack of food or water, 

animals can no longer live in these areas, they must migrate to a new living area (the 

green parts in Fig. 2 (c)). We shrink the living area after a period of time, as shown in 

Fig. 2 (a) and (c)), and then animals migrate to the new living area ceaselessly. Because 

the animals living area is smaller to smaller (by Formula (3) and (4)), after each 

iteration, the individuals get closer and closer to the best individual, so we can 

accelerate the convergence velocity and precision of the algorithm to some extent. 

 

(a) The G -th iteration living area (b) Begin to migrate  (c) The 1G  -th iteration living area  

Fig. 2 Animals migration process 

The boundary of the living area is established by  

bestlow X R  ,
bestup X R   (3) 

R R   (4) 

where 
bestX  is the leader animal, low  and up  are the lower and upper bound of the 

living area, R  is living area radius,   is shrinkage coefficient,  0,1  , low , 

up  and R  are all 1 D  row vector. 

In general, the original value of R  depends on the size of the search space. As 

iterations goes on, a big value of R  improves the exploration ability of the algorithm 

and, a small value of R  improves the exploitation ability of the algorithm. 

5. The Modified Animal Migration Optimization Algorithm 

(MAMO) 

The basic framework of the MAMO algorithm including: (1) animals live in living area; 

(2) as time goes on, food and water rations are reduced, hence, animals migrate to food 

rich, water sufficient, climate conditions suitable area; (3) individuals of animal 

population update; (4) animals live in new living area. So in modified animal migration 

optimization, mainly includes: living process, migration process, populations updating 

process. 
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5.1. Initializing the Population 

During the initialization process, The algorithm begins by initializing a set of NP  

animal positions 
1 2 3, , ,..., NPX X X X ,each animal position 

iX  is a D -dimensional 

vector containing parameter values to be optimized, such values are randomly and 

uniformly distributed between the pre-specified lower initial parameter bound 
ja and 

the upper initial parameter bound 
jb . So the j th component of the i th vector as 

Formula (5): 

, , [0,1] ( )i j j i j j jx a rand b a    , 1,...,i NP , 1,...,j D  (5) 

where
, [0,1]i jrand  is a uniformly distribution random number between 0 and 1. 

5.2. Animals Migration  

During the migration process, because animals hunting, foraging or drinking in the 

living area, some parts of the living area are lack of food or water or climate condition 

change, some animals migrate from the current living area to the new area which has 

abundant food and water or climate condition suitable for living. We assume that there 

is only one living areas, animals out of the new living area would be generated 

randomly in the new living area, as depicted in Section 3. 

5.3. Animals Live Area   

During the living process, algorithm simulates individuals’ positions randomly change 

in living area. Following the biological model, animals hunting, foraging or drinking in 

habitat, their positions randomly change, an individual move to a new position 

according to the current position of its neighborhoods, such behavioral rule is move 

randomly in living area and implemented considering by Formula (1) in Section 2.1. 

5.4. Population Updating 

During the population updating process, algorithm simulates some individuals get lost, 

some animals are preyed by their enemies or some animals leave the group and some 

join in the group from other groups or some new animals are born. In MAMO, we 

assume that the number of available animals is fixed, and every animal will be replaced 

by Pa, as shown in Section 2.2. Specific implementation steps of the modified animals 

migration optimization algorithm can be shown as follows: 
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1. Begin 

2. Set the generation counter 0G  , living area radius R ,  

    shrinkage coefficient  , and randomly initialize with a  

       population of NP  animals 
iX  in solution space 

3. Evaluate the fitness for each individual 
iX , record the best  

      individual 
bestX  

4.  While stopping criteria is not satisfied do 

5.     Establish a new living area by 
bestlow X R  ,

bestup X R   

6.     Animals migrate into the new living area 

7.     For 𝑖 = 1 to NP do 

8.         For 𝑗 = 1 to D do 

9.              , 1 , , ,i G i G neighborhood G i GX X X X      

10.        End For 

11.    End For 

12.    For i=1 to NP do 

13.        Evaluate the offspring 
, 1i GX 

 

14.        If 
, 1i GX 

 is better than 
,i GX then  

15.            
, 1i i GX X   

16.        End If 

17.    End For 

18.    For 𝑖 = 1 to NP 

19.       For 𝑗 = 1 to D 

20.           Select randomly 1 2r r i   

21.           If rand > Pa then  

22.               
, 1 1, , , 2, ,( ) ( )i G r G best G i G r G i GX X rand X X rand X X         

23.           End If  

24.       End For 

25.    End For 

26.    For 𝑖 = 1 to NP do 

27.       Evaluate the offspring 
, 1i GX 

 

28.       If 
, 1i GX 

 is better than 
iX  then  

29.          
, 1i i GX X   

30.       End If 

31.    End For 

32.    Memorize the best solution achieved so far 

33.    R R    

34.  End while 

35.  End 

Algorithm 2. A modified animal migration optimization algorithm (MAMO) 
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6. Experiments Result and Analysis 

In this section, the 23 benchmark test functions have been used to test the performance 

of the proposed MAMO algorithm. The test functions are classified into 3 different 

categories:  

(1) Unimodal high-dimensional test functions :
0701 ff  .  

(2) Multimodal high-dimensional test functions:
1308 ff  .  

(3) Multimodal low-dimensional test functions:
2314 ff   

Table 1. Benchmark functions 

Benchmark test functions D Range Optimum 

2

01

1

( )
n

i

i

f x x



 

30 [-100,100] 0 

02

1 1

( ) | | | |
nn

i i

i i

f x x x
 

  
 

30 [-10,10] 0 

2

03

1 1

( ) ( )
n i

j

i j

f x x
 

 
 

30 [-100,100] 0 

04 ( ) max | |,1if x x i n  
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2 2 2 2

05 1

1

( ) [100( ) (1 ) ]
n

i i i

i

f x x x x


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30 [-30,30] 0 

06

1

( ) 0.5
n

i

i

f x x


   
 

30 [-100,100] 0 

4

07

1

( ) [0.1)
n

i

i

f x i x random


  
 

30 [-1.28,1.28] 0 

08

1

( ) sin( | |)
n

i i

i

f x x x


  
 

30 [-500,500] -418.9829*n 

2

09

1

( ) [ 10cos 2 10]
n

i i

i

f x x x


  
 

30 [-5.12,5.12] 0 

 

e

x
n

x
n

xf
n

i

i

n

i

i


























 



20

2cos
1

exp
1

2.0exp20
11

2

10 
 30 [-32,32] 0 

2

11

1 1

1
( ) cos( ) 1

4000

nn
i

i

i i

x
f x x

i 
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30 [-600,600] 0 

1
2 2 2 2

12 1 1

1 1

( ) 10sin ( ) ( 1) 1 10sin ( ) ( 1) ( ,10,100,4)
D D

i i D i

i i

f x y y y y u x
D


 





 

 
         

 
 

 
1

1
4

i

i

x
y


     

( )

( , , , ) 0

( )

m

i i

i i

m

i i

k x a x a

u x a k m a x a

k x z x a

  


   
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30 [-50,50] 0 

1
2 2 2 2

13 1 1

1 1

( ) 0.1 10sin ( ) ( 1) 1 10sin ( ) ( 1) ( ,10,100,4)
D D

i i D i

i i

f x y y y y u x 




 

 
         

 
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1
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14 2
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1

1 1
( )
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( )j

i ii

i

f x

j x a







 
 
  
 

 
 
 




 

2 
[-65.53, 

65.53] 
0.998004 

2
211

1 2

15 2
1 3 4

( )
( ) i i

i

i i i

x b b x
f x a

b b x x

 
  
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

 

4 [-5,5] 0.0003075 

2 4 6 2 4

16 1 1 1 1 2 2 2

1
( ) 4 2.1 4 4

3
f x x x x x x x x     

 

2 [-5,5] -1.0316285 

2 2

17 2 1 1 12

5.1 5 1
( ) ( 6) 10(1 )cos 10

84
f x x x x x

 
      

 

2 
[-5,10]* 

[0,15] 
0.398 

2 2 2

18 1 2 1 1 2 1 2 2( ) [1 ( 1) (19 14 3 14 6 3 )]f x x x x x x x x x        
 

2 2 2

1 2 1 1 2 1 2 2[30 (2 3 ) (18 32 12 48 36 27 )]x x x x x x x x       
 

2 [-5,5] 3 

4 3
2

19

1 1

( ) exp ( )i ij j ij

i j

f x c a x p
 

 
   

 
 

 

3 [0,1] -3.8628 

4 6
2

20

1 1

( ) exp ( )i ij j ij

i j

f x c a x p
 

 
   

 
 

 

6 [0,1] -3.3224 

  
5 1

21

1

( )
T

i i i

i

f x X a X a c



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 

 

4 [0,10] -10.1532 

  
7 1

22

1

( )
T

i i i

i

f x X a X a c



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 

 

4 [0,10] -10.4029 

  
10 1

23

1

( )
T

i i i

i

f x X a X a c




     
 

 

4 [0,10] -10.5364 

 

The mean and standard deviation results of 25 independent runs for each algorithm 

have been summarized in Tables 2, 3 and 4. 

6.1. Experimental Setup 

All of the algorithms were programmed in MATLAB R2008a, numerical experiment 

was set up on AMD Athlon(tm)II *4 640 processor and 2GB memory. 

6.2. Parameters Setting 

We initialize D -dimensional row vector  j jR b a   ,  1,2,...,j D , ja  and 

jb  are the lower bound and upper bound of the solution space. the population size NP  

is 50. The maximum numbers of iterations are 1500 for 01 06 10 12, , ,f f f f  and 13f , 

2000 for 02f  and 11f , 3000 for 
0807, ff  and 09f , 5000 for 0403, ff  and 05f , 

400 for 15f , 100 for 
222119171614 ,,,,, ffffff  and 23f , 30 for 18f , and 200 for 

20f . 
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Different test functions have different iterations, shrinkage coefficient  for all test 

functions should be changed according to the each number of iteration to get a living 

area with same size at the end of iteration. In order to set a unified model to define  , 

Numerical experiments results showed that MAMO algorithm can achieve more ideal 

effect if we choose the parameter values  = 0.99 for iteration iter =2000, and the 

final living area radius 
finalR = 0.99

2000 
=1.8638E-09 (by Algorithm 2) which is small 

enough to gather the individuals into the living area. We set this
finalR as standard to set 

other  . An empirical model has been developed by following equation: 

2000

0.99 iter   (6) 

where  is shrinkage coefficient, iter is the number of iteration. 

6.3. Comparison of MAMO with PSO, CS, FA, BA, ABS, and AMO 

To demonstrate that the MAMO algorithm’s performance, we compared MAMO with 

FA [1], CS [2], BA [3], ABC [4], AMO [22], PSO [28], respectively using the best, 

worst, mean and standard deviation value to compare their performance. The setting 

values of algorithm control parameters of the mentioned algorithms are given below. 

FA: according to [1], 
0 0.5  ,

0 0.2   and 1.0  , the population size is 100.  

CS: according to [2], 1.5  , 0.25Pa  , the population size is 50, because of this 

algorithm has two phases.  

BA: according to [3], loudness 0.25A  , pulse rate 0.5r  , 0.95  , 0.5  , the 

population size is 50, because of this algorithm has two phases.  

ABC: according to [4], limt 5D , the population size is 50, because of this 

algorithm has two phases.  

AMO: according to [22], the population size is 50, because of this algorithm has two 

phases.  

PSO: according to [28], weight factor   linear decrease from 0.9 to 0.4, 

1 2 1.49445c c  . The population size is 100. 

Unimodal High-dimensional Functions Test Results and Analysis. In the 

experiments, the mean results of 25 independent runs for 0701 ff 
 are listed in Table 2. 

Functions 0701 ff 
 are minimum problems, the convergence rate of search algorithm is 

more important for unimodal function than the final results. The best value, the worst 

value, mean value and the standard deviation value (Std) are recorded in Table 2 to 4. 

Generally, we use the index Std measure the performance of the algorithm. 
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Table 2. Experiment results of benchmark functions 01 07f f for different algorithms 

Functions  PSO CS FA BA ABC AMO MAMO 

f01 

Best 0.0624 2.8652E-08 0.0191 8.4804E-04 5.9638E-16 9.0170E-42 7.3729E-54 

Worst 38.2278 1.4278E-07 0.0382 0.0014 7.7049E-16 2.2853E-40 2.9655E-51 

Mean 13.0262 7.0670E-08 0.0261 0.0011 7.0846E-16 6.7408E-41 2.9896E-52 

Std 13.7716 3.4388E-08 0.0050 1.1911E-04 4.4759E-17 5.9947E-41 6.2616E-52 

Rank 7 4 6 5 3 2 1 

f02 

Best 3.8578 4.3873E-04 0.5810 0.3792 5.6790E-15 4.0383E-33 1.4117E-37 

Worst 26.7085 0.0040 0.8523 226.6767 2.6254E-14 2.1191E-32 1.2250E-36 

Mean 14.2709 0.0020 0.6951 82.5828 1.6987E-14 1.0470E-32 4.3153E-37 

Std 7.8466 0.0008 0.0816 75.5580 5.5061E-15 5.0989E-33 3.2046E-37 

Rank 6 4 5 7 3 2 1 

f03 

Best 0.8527 5.6861E-04 1.4882 0.0016 1585.0790 8.3322E-05 7.7566E-13 

Worst 4814.2524 0.0097 3.9049 0.0034 4953.2237 0.0014 2.4874E-12 

Mean 2162.9249 0.0019 2.7936 0.0023 3212.6733 4.9669E-04 1.6245E-12 

Std 2043.5511 0.0019 0.5359 0.0004 851.0100 3.8937E-04 4.1675E-13 

Rank 7 4 5 3 6 2 1 

f04 

Best 0.2846 0.0022 0.2861 9.0079 10.5251 6.6727E-06 1.7786E-47 

Worst 20.8728 0.1305 0.3577 37.7763 24.8377 1.2931E-04 1.7475E-43 

Mean 10.0156 0.0533 0.3281 20.6236 17.5951 3.0408E-05 2.0915E-44 

Std 7.2464 0.0411 0.0178 8.3156 4.2192 2.6094E-05 4.5596E-44 

Rank 6 4 3 7 5 2 1 

f05 

Best 
5.1569E+ 

04 
5.0827 33.7130 22.3030 0.0009 0.6576 2.5076 

Worst 
9.3616E+ 

05 
11.8798 116.1006 29.4389 1.1830 11.1951 31.7648 

Mean 
2.3551E+ 

05 
8.0953 43.7220 24.9738 0.1229 3.0220 11.2995 

Std 
2.6421E+ 

05 
1.5060 22.8373 2.0811 0.2638 3.1375 5.5476 

Rank 1 3 7 5 2 4 6 

 

f06 

Best 618 0 0 11604 0 0 0 

Worst 1181 0 0 35776 0 0 0 

Mean 892 0 0 24728 0 0 0 

Std 214 0 0 6704 0 0 0 

Rank 2 1 3 1 1 1 1 

f07 

Best 8.1299 0.0050 0.0066 0.0009 0.0973 0.0201 0.0010 

Worst 37.6529 0.0183 0.0788 0.0047 0.1815 4.1672 0.0057 

Mean 21.7959 0.0091 0.0202 0.0026 0.1357 0.5973 0.0023 

Std 9.7284 0.0028 0.0160 0.0009 0.0245 1.3479 0.0011 

Rank 7 5 3 1 4 6 2 

 

 

From Table 2, we can conclude that the results (Rank) obtained by MAMO are 

clearly better than the other algorithms for all 7 test functions except
05f ; AMO is a little 
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better than MAMO; the PSO is the worst for most functions. For
01f , the mean and 

standard deviation value of MAMO are 2.9896E-52 and 6.2616E-52 respectively which 

are 9 orders of magnitude better than AMO. The mean value of CS and ABC are 

7.0670E-08 and 7.0846E-16. For f02, the best solution that MAMO, AMO and ABC 

give are 1.4117E-37, 4.0383E-33 and 5.6790E-15, and the standard deviation value of 

MAMO is more better. For
03f  and

04f , MAMO provides the outstanding solution, and 

the means of MAMO are at least 8 and 39 orders of magnitude better than AMO and 

other algorithms. For
05f , the mean value of MAMO and AMO are 3.0220 and 11.2995 

respectively, while ABC gives a better solution 0.1229. For 
07f , The mean value of 

MAMO is 0.0023 which is better than other algorithms. Fig.3 (a-g) shows that the 

fitness function curve evolution of each algorithm for 
01f to

07f . These figures show 

that MAMO has faster convergence rate and the higher optimizing precision in solving 

multidimensional unimodal functions. Fig.4 (a-g) shows that the graphical analysis 

results of the ANOVA tests. As can be seen in Fig. 4, when solving function 
01f  to 

07f , most of the algorithms can obtain the stable optimal value after 25 iteration except 

PSO algorithm. 

Multimodal High-dimensional Functions Test Results and Analysis. For multimodal 

functions f08-f13, in contrast to unimodal, have many local minima/maxima which are, in 

general, more difficult to optimize. The final results are more important because of this 

function can reflect the algorithm’s ability to escape from local optima and obtain the 

global optimum. We have tested the experiments on f08-f13 where the number of local 

minima increases exponentially as long as the dimension of the function increases. 

Table 3 summarizes the best value, the worst value, mean value and the standard 

deviation value results of 25 independent runs for the selected functions. Generally, we 

use the index StdDev measure the performance of the algorithm. 
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(c)                                   (d) 

 

 
(e)                                  (f) 

 

 
(g) 

Fig. 3. Fitness function curve evolution for f01-f07 
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(a)                                   (b) 

 

 
(c)                                   (d) 
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(g) 

Fig. 4. ANOVA tests for f01-f07 

Table 3. Experiment results of benchmark functions 08 13f f for different algorithms 

Functions  PSO CS FA BA ABC AMO MAMO 

f08 

Best -6794.0585 -9447.6445 -7947.6445 -9391.2125 -12569.4866 -12569.4866 -11760.1553 

Worst -2753.3192 -7433.8598 -5933.8598 -6587.5532 -12569.4866 -12569.4866 -9430.7862 

Mean -3597.9022 -8754.0246 -7234.9052 -8169.9329 -12569.4866 -12569.4866 -10755.3884 

Std 897.3297 591.0898 553.2876 761.6005 1.0668E-07 4.0674E-13 600.5346 

Rank 7 4 3 6 2 1 5 

f09 

Best 331.8060 34.4147 12.6914 131.4967 0 0 7.9597 

Worst 402.7944 67.2098 45.5377 232.0392 3.4106E-13 0 32.8336 

Mean 365.0584 52.2082 23.9947 190.2430 8.8107E-14 0 17.6108 

Std 17.1292 9.0984 6.4741 30.3222 8.1338E-14 0 5.5406 

Rank 6 5 4 7 2 1 3 

f10 

Best 16.7332 0.0263 0.3164 15.7627 2.9885E-10 4.4409E-15 4.4409E-15 

Worst 19.7878 1.3344 0.4961 19.2294 4.3636E-09 4.4409E-15 4.4409E-15 

Mean 18.2910 0.4648 0.4186 18.0883 1.9940E-09 4.4409E-15 4.4409E-15 

Std 0.7456 0.4337 0.0465 0.8667 1.1632E-09 0 0 

Rank 5 4 3 6 2 1 1 

f11 

Best 29.2946 9.34444E-09 0.8163 379.8683 0 0 0 

Worst 108.3321 2.14236E-07 0.9571 1954.0418 3.7526E-14 0 0 

Mean 57.2072 4.59672E-08 0.9008 1354.8913 2.9143E-15 0 0 

Std 15.6863 4.40214E-08 0.0379 492.8702 8.1411E-15 0 0 

Rank 5 3 4 6 2 1 1 

f12 

Best 1.3873E+07 0.0700 0.0014 0.0372 4.6085E-16 1.5705E-32 1.5705E-32 

Worst 1.9462E+08 1.0173 0.0028 0.9320 7.6901E-16 1.5705E-32 1.5705E-32 
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Mean 6.9715E+07 0.4865 0.0020 0.5112 6.5351E-16 1.5705E-32 1.5705E-32 

Std 5.5922E+07 0.2755 0.0003 0.2857 8.4555E-17 2.7369E-48 2.7369E-48 

Rank 3 5 4 6 2 1 1 

f13 

Best 5.5425E+07 0.0426 0.0012 0.0054 3.7274E-16 1.4998E-32 1.4998E-32 

Worst 3.4650E+08 1.1267 0.0023 1.2763 7.7667E-16 1.4998E-32 1.4998E-32 

Mean 1.8237E+08 0.4748 0.0019 0.6838 6.7482E-16 1.4998E-32 1.4998E-32 

Std 8.1652E+07 0.2814 0.0003 0.3803 1.1951E-16 5.4738E-48 5.4738E-48 

Rank 3 5 4 6 2 1 1 

 

 

As can be seen rank line in Table 3, for test functions 
1308 ff  , most of the solutions 

of MAMO and AMO get similar solution except 08f  and 09f . For 08f  and 09f , 

AMO achieves the optimal value. For 10f  to 13f , AMO and MAMO provide the 

same best mean and standard deviation value of all algorithms. For 
10f , the best, worst, 

mean and standard deviation value of AMO and MAMO are all 0. Fig. 5 (a-f) shows the 

fitness function curve evolution. From Fig. 6, we can conclude that although MAMO 

and AMO converge to the same value, MAMO has a faster convergent rate than AMO 

when solving 10 11 12, ,f f f  and 13f . Fig. 6 (a-f) shows the graphical analysis results 

of the ANOVA tests. 
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(c)                                 (d)  

 

 
(e)                                   (f) 

Fig. 5. Fitness function curve evolution for f08-f13 

 
(a)                                   (b) 
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(c)                               (d) 

 

 
(e)                              (f) 

Fig. 6. ANOVA tests for f08-f13 

Multimodal Low-dimensional Functions Test Results and Analysis. For multimodal 

low-dimensional functions f14-f23, they have only a few local minima and the dimension 

of the function is also small, so we use lower iterations to compare MAMO with other 

algorithms. In the experiment, the mean results of 25 independent runs are summarized 

in Table 4. Generally, we use the index StdDev measure the performance of the 

algorithm. 

Table 4. Experiment results of benchmark functions f14-f23 for different algorithms 

Functions  PSO CS FA BA ABC AMO MAMO 

f14 

Best 0.99801 0.99800 0.99800 0.99800 0.99800 0.99800 0.99800 

Worst 499.80461 0.99800 0.99800 0.99800 0.99800 0.99800 0.99800 

Mean 382.97052 0.99800 0.99800 0.99800 0.99800 0.99800 0.99800 
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Std 189.27530 2.2067E-12 1.1764E-10 1.0066E-15 1.1827E-11 2.1642E-13 1.9860E-16 

Rank 7 4 6 2 5 3 1 

f15 

Best 0.00113 0.00052 0.00051 0.00031 0.00064 0.00032 0.00031 

Worst 0.00527 0.00105 0.00159 0.00159 0.00153 0.00049 0.00072 

Mean 0.00289 0.00084 0.00098 0.00081 0.00099 0.00041 0.00057 

Std 0.00127 0.00013 0.00030 0.00030 0.00020 4.5475E-05 0.00014 

Rank 6 2 5 5 4 1 3 

f16 

Best -1.03150 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 -1.03163 

Worst -1.02072 -1.03163 -1.02915 -1.03163 -1.03161 -1.03163 -1.03163 

Mean -1.02929 -1.03163 -1.03148 -1.03163 -1.03163 -1.03163 -1.03163 

Std 0.00268 1.4305E-07 0.00053 1.1850E-07 3.8469E-06 1.4745E-11 2.9790E-16 

Rank  7 4 6 3 5 2 1 

f17 

Best 0.39899 0.39789 0.39789 0.39789 0.39789 0.39789 0.39789 

Worst 2.30267 0.39796 0.39798 0.39789 0.39790 0.39789 0.39789 

Mean 0.82386 0.39790 0.39791 0.39789 0.39789 0.39789 0.39789 

Std 0.51750 1.5795E-05 2.1140E-05 5.2758E-08 3.6487E-06 0 0 

Rank 6 4 5 2 3 1 1 

f18 

Best 3.08497 3.00977 3.00088 0.39789 3.02122 3.00100 3 

Worst 12.15882 5.63852 3.03221 0.39789 18.07006 3.03955 3 

Mean 5.18553 3.44519 3.01060 0.39789 5.37064 3.00902 3 

Std 2.24017 0.77291 0.00878 5.2758E-08 3.94782 0.01072 1.5132E-14 

Rank 6 5 3 2 7 4 1 

f19 

Best -3.85076 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 -3.86278 

Worst -3.02071 -3.86267 -3.86099 -3.86274 -3.86031 -3.86278 -3.86278 

Mean -3.60090 -3.86277 -3.86258 -3.86277 -3.86266 -3.86278 -3.86278 

Std 0.22133 2.3902E-05 0.00051 9.0408E-06 0.00054 1.6347E-15 1.9885E-16 

Rank 7 4 5 3 6 2 1 

f20 

Best -2.62396 -3.32214 -3.32234 -3.32219 -3.32237 -3.32207 -3.32237 

Worst -1.50458 -3.31778 -3.15394 -3.20192 -3.32235 -3.32206 -3.32237 

Mean -2.00192 -3.32126 -3.27488 -3.25630 -3.32237 -3.32207 -3.32237 

Std 0.30426 0.00106 0.06519 0.05936 3.4784E-06 1.9844E-06 9.9711E-08 

Rank 5 4 7 6 3 2 1 

f21 Best -5.05520 -10.08303 -10.15039 -10.15303 -10.15319 -10.15320 -10.15320 
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Worst -2.16927 -9.24270 -2.68018 -2.63045 -9.39489 -8.27469 -2.63047 

Mean -4.49265 -9.79876 -8.33948 -5.90740 -10.04447 -10.01521 -8.40389 

Std 1.11378 0.23143 3.12530 3.53661 0.18117 0.41829 3.14839 

Rank 4 2 5 7 1 3 6 

f22 

Best -5.08767 -10.37347 -10.40096 -10.40293 -10.40287 -10.40294 -10.40294 

Worst -1.58721 -9.51770 -10.37968 -2.75189 -9.81857 -10.09594 -10.40294 

Mean -4.48409 -9.97271 -10.39251 -5.48586 -10.30291 -10.38664 -10.40294 

Std 1.21181 0.24158 0.00615 2.61886 0.15940 0.06672 3.4628E-15 

Rank 6 5 2 7 4 3 1 

f23 

Best -5.12847 -10.45131 -10.53431 -10.53604 -10.53625 -10.53641 -10.53641 

Worst -2.85665 -7.22276 -10.49722 -2.42733 -9.67901 -10.40656 -10.53641 

Mean -4.57954 -9.71234 -10.52331 -6.04331 -10.33162 -10.52719 -10.53641 

Std 0.73895 0.77320 0.01074 3.36106 0.24255 0.02931 9.9823E-16 

Rank 5 6 2 7 4 3 1 

 

From rank line in Table 4, we can seen the best, worst, mean and standard deviation 

value of MAMO algorithm are superior when solving the multimodal low-dimensional 

functions. For 14f , results of all algorithms except PSO approximate to the optimal 

value 0.99800, while the standard deviations of MAMO is 1.9860E-16, which is better 

than 2.2067E-12, 1.1764E-10, 1.0066E-15, 1.1827E-11, 2.1642E-13 that obtained 

respectively by CS, FA, BA, ABC, AMO. For
15f , the most solutions of the algorithms 

are in the same order of magnitude, but the solution of AMO is more approximate to the 

optimum value. For polynomial functions 16f , 17f  and 18f , the mean of most of the 

algorithms achieve the same order of magnitude, but the mean value of MAMO are -

1.03163, 0.39789 and 3 which all reached the globally optimal solution. For 

19f and 20f , the best, worst and the mean value are all -3.86278 and -3.32237 

respectively, which embody the steady performance of MAMO. For 21f , 22f and 23f , 

though the solution of MAMO is not satisfied when solving 21f , the mean values are 

significantly more approximate to the optimal value when solving 22f and 23f , the 

best, worst and the mean value are the same and the standard deviation values are at 

least 13 orders of magnitude better than AMO and other algorithms. The optimization 

result of multimodal low-dimensional functions shows that the algorithm presented can 

solve premature convergence problem effectively and converge to the globally optimal 

solution. Fig. 7 (a-j) and Fig. 8 (a-j) show the fitness function curve evolution and the 

graphical analysis results of the ANOVA tests. 
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(g)                               (h) 

 

 
(i)                               (j) 

Fig. 7. Fitness function curve evolution for f14-f23 
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(c)                                    (d) 
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(i)                                     (j) 

Fig. 8. ANOVA tests for f14--f23 

7. Evaluation of Living Area Radius 

The performance and results of the proposed algorithms are greatly affected by the size 

of living area, a big value of R can provide a big solution space, which could enhance 

the diversity of individuals, and a small value of R  can fast gather the individuals 

around the best individual. We adopted different shrinking coefficient  to change the 

living area radius after each iteration, as shown in Formula (3) and (4), and set a unified 

model 
2000

0.99 iter   in Formula (6). To study the extent of R  impacts on the proposed 

algorithm, we selected one unimodal high-dimensional function and one multimodal 

high-dimensional function separately, set different  to evaluate the proposed algorithm. 

Fig. 9 (a) shows the results of an experiment on 01f , we can conclude that if we 

choose 0.90  , it has a better convergence precision than 0.93  , 0.96  , 

0.99  , while if we choose 0.85  and 0.80  , MAMO algorithm plunges into 

local optima. So the best  for 01f must exist between 0.85 and 0.90. And likewise in 

Fig. 9 (b), for 11f , MAMO algorithm quickly converged at global optimum before 400 

iterations if we choose 0.99  , 0.96  or 0.93  , while MAMO could not escape 

from poor local optima and to global optimum if we choose 0.90  , 0.85  or 

0.80  . So the best  for 11f must exist between 0.90 and 0.93. The results suggest 

that a proper  can greatly improve the algorithm convergence velocity and 

convergence precision, and an improper  may lead the MAMO fall into local optimum. 

The evaluation experiment show that a big value of R  improves the exploration 

ability of the algorithm and a small value of R  improves the exploitation ability of the 

algorithm. 
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                  (a)                             (b) 

Fig. 9. Fitness function curve evolution for 01f and 11f with different   

8. Conclusions 

In this paper, to improve the deficiencies of the AMO algorithm, we modified the 

algorithm by using a new migration method. By 23 benchmark test functions, include 

unimodal high-dimensional, multimodal high-dimensional and multimodal Low-

dimensional functions, we provide some comparisons of MAMO with PSO, CS, FA, 

BA, ABS, AMO and an experimental results show that MAMO algorithm has strong 

global searching ability and local optimization ability, MAMO has improved the 

convergence speed and convergence precision of AMO, therefore, it is very effective to 

solve complex functions optimization problems. At last, how to define a proper and 

unified radius of living area need to be considered in subsequent work. 
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