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Abstract. Existing biomedical wavelet based applications exceed the 
computational, memory and consumption resources of low-complexity 
embedded systems.  In order to make such systems capable to use 
wavelet transforms, optimization and implementation techniques are 
proposed. The Real Time QRS Detector and “De-noising” Filter are 
developed and implemented in 16-bit fixed point microcontroller 
achieving 800 Hz sampling rate, occupation of less than 500 bytes of 
data memory, 99.06% detection accuracy, and 1 mW power 
consumption.  By evaluation of the obtained results it is found that the 
proposed techniques render negligible degradation in detection 
accuracy of -0.41% and  SNR of -2.8%, behind 2-4 times faster 
calculation, 2 times less memory usage and 5% energy saving. The 
same approach can be applied with other signals where the embedded 
implementation of wavelets can be beneficial.       

Keywords: wavelet transform, microcontroller, QRS, denoising. 

1. Introduction 

The Fourier Transform (FT) is an extremely important and useful tool in signal 
processing. However since it in its original form treats the global signal in its 
entirety, it has the drawback that some time-local specific features and 
peculiarities, especially if they occur rarely, well may be lost in the analysis. 
This limitation can be partly overcome by the introduction of Short Time 
Fourier Transform (STFT), which uses a sliding time window of fixed length to 
localize the analysis in time. Among a number of alternative time–frequency 
methods, the most promising seems to be the Wavelet Transform (WT) [1]. In 
contrast to FT, which is restricted to the use of a sinusoid, the WT uses a 
variety of basic functions, known as wavelets [1]. In its discrete form (DWT), 
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based on orthogonal wavelet, it is particularly useful in signal compression, 
detection of local discontinuities, feature extraction, filtering (“de-noising”) and 
other applications [2],[3],[4]. 

Among others, the DWT has been applied to a wide range of biomedical 
(BME) signals, including Electrocardiogram (ECG), Electromyogram (EMG), 
Electroencephalograph (EEG), Photoplethysmograph (PPG), clinical sounds, 
respiratory patterns, blood pressure trends and DNA sequences [5]. Existing 
applications perform its calculations off-line using desktop computers or 
servers with special software or mathematical tools, like MATLAB. The input 
data are prerecorded in special database such as MIT-BIH, QT, etc, and then 
later analyzed.  Also, data can be imported from memory cards of logger 
devices, like holters. Such calculations suffer from limited autonomy, 
bulkiness and obtrusiveness and prevent timely action to the patient.  

Recently, a surge in industrial, research and academic interest into 
telemedicine and home care has been noticed, where low-cost, miniature, 
telemetry devices overcome the distance barrier between the doctor and 
patient, e.g. remote vital signs monitors [7], [8]. Such devices are, in fact, 
Systems on Chip (SoC), consisting of a single Microprocessor/Microcontroller 
(MC) [9], Programmable Logic Device (PLD) or Application-Specific Integrated 
Circuit (ASIC). In addition to the sensing, digitalization, data storage, 
visualization and communication, such chips need to perform real-time signal 
processing even in time-frequency domain. This is not a trivial task 
considering the limitations in arithmetic power, memory and power 
consumption resources. 

This paper presents a methodology and techniques to implement WT in 
low-complexity fixed point embedded architectures, like existing low-cost 
MCs. The real-time QRS detector and “de-noising” filter are implemented in a 
16-bit MC from TI’s MSP430 series [6]. For these purposes, the Haar wavelet 
transform is rewritten from floating point to integer arithmetic. The approach 
resulted in increased processing speed, minimized memory request and 
decreased power consumption. The detection accuracy of QRS complexes 
and signal to noise ratio (SNR) remains on satisfactory level. In addition, the 
MC is capable to output wavelet and “de-noised” coefficients in the form of 
analog signal and the RR intervals in the form of digital impulses or in the 
form of ACSII strings.    

The work is organized as following: short introduction on WTs; the 
proposed optimization techniques; application of WTs in QRS detection and 
“de-noising” as well as an overview of related work are given in Section 2 and 
Section 3. Section 4 describes the corresponding hardware and software 
architectures with associated components and algorithms. The testing 
procedure and results obtained against qualitative and quantitative criteria are 
elaborated and discussed in Section 5. The conclusion and references used 
are enclosed at the end. 
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2. Related Work 

In existing literature, there are several contributions on using ASICs and Field 
Programmable Gate Arrays (FPGAs), which are a type of PLDs, in wavelet-
based processing of biomedical signals, and especially ECG. The paper [10] 
presents QRS detection algorithm implemented in ASIC with 0.18 μm CMOS 
technology, consuming 176 μW, under 1.8 V supply voltage. The algorithm is 
based on the Dyadic Wavelet Transform and Multiscale-product Scheme. The 
algorithm is evaluated on the MIT-BIH database, achieving a high accuracy, 
>99%. In work [11] the authors propose a structure of QRS detector, which 
concludes Wavelet Filter Banks and Multi-scale Products to increase 
detection performances. The filters with Quadratic Spline Wavelet function are 
chosen to reduce leakage and dynamic power consumption. The design had 
been prototyped on an Altera’s Cyclone-FPGA and synthesized on 0.18 μm 
Samsung libraries. The paper [12] proposes the algorithm and hardware 
architecture for QRS detection system based on Mathematical Morphology 
and Quadratic Spline Wavelet transform, with implementation in Xilinx 
Virtex

TM
-4SX35 FPGA. The detection accuracy for MIT/BIH arrhythmia 

database records and resource consumption are reported and seems to be 
very high. To filter ECG signal and to extract QRS signs the authors in [13] 
employ the Integer Wavelet Transform. Their system includes several 
components, which are incorporated in a single FPGA chip from Altera 
Cyclone Series, achieving sufficient accuracy (about 95%), remarkable noise 
immunity and low cost. 

One of the first references to the introduction of Digital Signal Processors 
(DSP) in real time processing of ECG signal, by using wavelets, is given in 
[14]. In particular, QRS complexes, P and T waves are distinguished from 
noise, baseline drift or artefacts by SPROC-1400 DSP running on 50 MHz. 
Follow the implementations on modern DSPs, like TI TMS320C6713 [15], 
where ECG signal is processed in real-time by using DWT and Adaptive 
Weighting Scheme. An increasing emphasis has been placed in recent years 
on approaches based on highly integrated, low-power, low-cost MCs like PICs 
(from Microchip) [16] or MSP430s (from TI). However, their algorithms are still 
based on traditional methods based on cascade of derivative and averaging 
filters.   

Although much faster, the ASICs and PLDs are more expensive, power 
demanding, bulky and complicated for rapid prototyping, massive production 
and maintenance. Thus, the MC remains to be an appropriate solution and a 
variety of biomedical algorithms, including those WT based, need to be 
adopted for using in this technology. 
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3. Methodology 

3.1. WT and DWT 

 Analytically, the continuous form of WT for a signal f(t) is defined by:  
 

            
 

  

            (1) 

 

         
 

  
   

   

 
    (2) 

where * denotes complex conjugation and         is a window function called 

the daughter wavelet,   is a scale factor and   is a translation factor. Here, 

   
   

 
  is a shifted and scaled version of a mother wavelet     , which is 

used as a basis for wavelet decomposition. However, the continuous wavelet 
transform provides certain amount of redundant information. 

Discrete form of WT, known as DWT, is sufficient for most practical 
applications, providing enough information and offering a significant reduction 
in the computation time. For a discrete function f(n), it is given by: 

                              ,   (3) 

where         presents a discrete wavelet defined as           
 

        

    The parameters  ,   are defined as      and         
In practice, DWT is computed by passing the signal through a Low-Pass 

(Ld) and a High-Pass (Hd) filters successively, according to the Mallat’s 
decomposition scheme, Fig. 1 [17]. For each decomposition level i,  1≤i≤N, 
the Ld and Hd filters are followed by a downsampling operator, ↓2 expressed 
as (X↓2)[n]=X[2n], which is in fact the reduction of a sampling rate by 2. CAi(n) 
and CDi(n) are approximate and detailed coefficients for i

th
 decomposition 

level. The number of coefficients for i
th
 decomposition level is equal to 

li=length(CAi(n))=length(CDi(n))=length(X(n))/2
i
. The reconstruction consists of 

upsampling by ↑2 and filtering by filters Lr and Hr. The Ld, Hd, Lr, Hr   
coefficients can vary from the simplest ones like Haar, over Daubechies up to 
those like Quadratic Spline, having different vector lengths and, usually, 
floating point interpretation. 

The Haar wavelet is considered to be the simplest one with two coefficients 
per filter: 

   Ld=[    ,     ], Hd=[    ,     ] ,                                     (4) 

 

                       Lr=[    ,    ] ,  Hr=[     ,    ] .                                    (5) 
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Fig. 1. Wavelet decomposition and reconstruction scheme 

Haar transform (HT) has a number of advantages; it is (i) conceptually 
simple, (ii) fast, (iii) memory efficient, since it can be calculated in a place 
without a temporary array. Also, it is reversible without the edge effect that 
can be of a problem with some other WTs. But, this transform has several 
limitations, which can be of a problem in some applications, mainly in signal 
compression and noise removal from relatively high speed signals like audio 
or video. But, in the case of biomedical signals this is not an issue. 

3.2. Integer-Based Optimization 

Although very simple in its nature, HT is still complicated for implementation 
on low-complexity calculation devices like MCs. However, it can be 
generalized to an integer version. A technique proposed in [18] is in the form 
of S Transform (ST), whose Forward (FST) and Reverse (RST) versions are 
defined as:  

        
 

 
      

 

 
         , (6) 

                     , (7) 

              
        

 
  , (8) 

                
      

 
  , (9) 

where    
denotes rounding operator. Because  

 

 
     , FST and RST 

can be computed by mere adder-subtractor and shifter, what is, in practice, a 
key advantage. 
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3.3. WT-Based QRS Detection 

WT is capable to distinguish the QRS-complexes within the ECG signal by 
implementing Mallat’s decomposition scheme. CDi(n) coefficients across the 
scales show that the peak of the QRS complexes corresponds to the zero 
crossing (ZC) between two modulus maxima within the coefficients CDi(n) 
[19]. Fig. 2 illustrates the decomposition of discrete ECG signal X(n) up to the 
4

th
 level, CD1(n), CD2(n), CD3(n) and CD4(n), by using above defined FST. For 

each decomposition level, the QRS complex produces two modulus maxima 
(min and max) with opposite signs and ZC between, see diagram CD4. 

 

 

Fig. 2. QRS detection using wavelet decomposition based on FST. Signal X[n] is 
sampled by 800 Hz. CDi(n) are the details after i

th
 decomposition level 

The method is very robust and allows direct application over raw ECG data. 
The frequency domain filtering is performed implicitly by computing the 
coefficients which is an additional positive feature, very useful in QRS 
detection. As can be observed, Fig. 2, the original signal becomes practically 
clear from 4

th
 decomposition level.  

Often, the modulus maxima (min and max) are found by thresholding 
techniques where the threshold Tr varies from one scale to another. For 
example, the thresholds can be calculated by Root Mean Square (RMS) 
function, as Tr=RMS(CDi(n)) for i=1,2 and 3 and Tr =0.5RMS(CDi(n)) for i=4, 
or by Maximum or Mean functions, Tr =MAX(CDi(n)) or Tr =MEAN(CDi(n) [19].   
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In practice, the selection of the most suitable decomposition level/levels is 
of a challenge. The most of the energy of QRS complex lies between 3 Hz 
and 40 Hz. Translated to WT, it means somewhere between scales 2

3
 and 2

4
, 

with the largest at 2
4
. The energy of motion artifacts and baseline wander (i.e. 

noise) increases for the scales greater than 2
5
. Article [20] states that most 

energies of a typical QRS-complex are at scales 2
3
 and 2

4
, and the energy at 

scale 2
3
 is the largest. According to [21], for QRS-complex with high 

frequency components, the energy at scale 2
2
 is larger than that at scale 2

3
 

and authors recommend mainly the scales 2
3
 to 2

4
 for satisfactory detection.  

Another complication is the acquisition of certain thresholds for finding the 
modulus maxima, because the values of thresholds differ, usually, from one 
level to another. The mentioned restrictions and complications confine the 
method to off-line use and put heavy demand on the computing resources. 

3.4. Wavelet-Based Denoising 

WT should be effectively used in signal filtering, here known as “de-noising”, 
especially in the elimination of high frequency and white noise [22]. “De-
noising” consists of three successive procedures: decomposition, thresholding 
and signal reconstruction, Fig. 3a. Firstly, the wavelet transform is derived to a 
chosen level N. Secondly, the detail coefficients from level 1 to N are 
thresholded. Lastly, the original signal is synthesized using the altered detail 
coefficients from level 1 to N and approximation coefficients of level N. 

There are several methods to define a threshold for the purpose of “de-
noising”: global thresholding, where one threshold Thr exists for all samples 
under consideration and level-based thresholding, where the vector of 2

N
 

length, Thr(1..2
N
), is used as a threshold [3]. Fig 3b. shows the case of global 

thresholding applied to the approximation coefficients of 4
th
 level and detailed 

coefficients of 1
st
  2

nd
 , 3

rd
  and 4

th
  levels.   

From another point of view, thresholding can be either soft or hard [3]. Hard 
thresholding zeroes out all the values smaller than Thr. Soft thresholding does 
the same thing, and apart from that, subtracts Thr from the values larger than 
Thr. In the contrast to hard thresholding, soft thresholding causes no 
discontinuities in the resulting signal. Fig. 3b shows the effect of the wavelet-
based filtering for ECG signal. The signal X(n) is decomposed by FST till 4

th
 

level, then thresholded by hard threshold Thr=0.23 V and lastly reconstructed 
by RST. As can be seen, the reconstructed, filtered, signal X’(n) is obtained 
from only 2.5% of nonzero coefficients.  
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Fig. 3. a) Denoising steps, b) Effect on real ECG signal 

4. Embedded Implementation  

For the purpose of biomedical processing, the optimized QRS detection and 
“de-noising” algorithms are implemented in MSP430F169 microcontroller from 
MSP430 family, Texas Instruments TI [6]. It is a family of ultralow power 
microcontrollers optimized for using in portable battery powered devices like 
medical ones. The MSP430F169 has 16-bit RISC CPU, 16-bit registers, two 
16-bit timers, fast 12-bit A/D converter with 8 external input channels, dual 12-
bit D/A converter, USART, I2C, DMA, and 48 I/O pins, etc. 

On-chip architecture for QRS detection is shown in Fig. 4. The analog ECG 
signal is fed to the channel A1 of internal ADC. After digitalization and 
processing in real-time, the output signals are generated in different forms: 
analog form of details CDN(n) and CDN-1(n) through the pins P6.6 and P6.7; 
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pulse form of RR intervals on P1.0 and string (ASCII) form of RR intervals 
through the USART’s TX pin. The RR intervals are distances between QRS 
complexes, given in ms.  

As it is mentioned in Section 2.3, the wavelet decomposition by itself 
presents a good noise filter used in QRS detection. “De-noising” technique, 
whose algorithmic steps are elaborated in Section 2, is an additional way to 
use wavelets as a filter. It is proved, in practice, as very effective tool for 
signal filtering. Fig. 5 presents wavelet based architecture for “de-noising”, 
implemented in a single MC. The input signal is fed to A1 input of ADC, 
digitalized, decomposed by FST, thresholded, and finally reconstructed by 
RST. After reconstruction it is returned to analog form by DAC, see Fig.5 pin 
P6.7. Overall filtering process is performed in real-time.    

 

 

Fig. 4. MC architecture for QRS detection 
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Fig. 5. MC architecture for denoising 
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The real-time implementation of forward and reverse wavelet transform is 
done through the FST and RST, because of their simplicity and fast 
calculation. Before processing, the signal is digitalized by 12-bit A/D 
converter. The sampling frequency is set at 800 Hz for QRS detection and at 
762 Hz for denoising. The A/D conversion is performed in an interrupt routine. 
Between the interrupts, the MSP430 MC uses a low-power operating mode.   

In the case of QRS detection, after A/D conversion, each sample is stored 
in a circular buffer of 2

N
 length, where N represents the number of 

decomposition levels. When the buffer is filled, the FST is calculated, while 
the buffer continues to accept new samples. In this research, the 
decomposition is done till CD4(n). Then, the CD4(n) are examined on ZC using 
negative and positive modulus maxima which are isolated by adaptive 
thresholding technique. Namely, five successive vectors of 50 CD4 
coefficients are examined. For each of them the maximum 
Mjmax=max(CD4(1..50)) and minimum Mjmin=min(CD4(1..50)) are 
determined, Mjmax, and Mjmin, j=1..5. Then the negative (T1) and positive 
(T2) thresholds  are defined as: 

   
 

 
 
 

 
   

 
        , (10) 

     
 

 
 
 

 
   

 
        . (11) 

Further, the process repeats with values from four old vectors and one new 
vector. ZC is detected by finding the coefficients associated to the condition 
CD4(n-1)<0 and CD4(n)> 0.  

Detailed algorithm is given in Fig. 6. After computing a new CD4 coefficient, 
check is performed to see whether that coefficient presents 50

th
 or not? If yes, 

the T1 and T2 thresholds are set. Then, searching for the negative modulus 
begins and in case of finding it search for ZC begins. After finding negative 
modulus and ZC, the algorithm is continuing to search for the positive 
modulus. If the negative modulus, ZC and the positive modulus are detected 
successively, then the QRS complex is detected and the algorithm starts to 
search for a new QRS complex. 

In the case of “de-noising”, the thresholding is implemented to each 
decomposition level. The detailed coefficients, whose absolute values are not 
greater than the threshold, are set to zero. For every decomposition level 
there is a separate adaptive threshold. For i

th
 (i=1..4) level, ten successive 

vectors v of Wi (i=1..4) coefficients, v i,j[1..Wi] (i=1..4, j=1..10) are taken in 
consideration. For each of them, the maximal value Ai,jmax=max(vi,j[1..Wi]) is 
found and stored in memory. Then, the adaptive threshold for i

th
 level, Ti,  is 

calculated as average of the ten maximal values from that level, which is 
defined as: 

   
 

  
      

  

   
      (12) 
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In order to maintain adaptability of the system for “de-noising”, calculation 
of the threshold continues with nine old maximal values and one new, which is 
found within a new vector of CDi coefficients. 

 
 

 

Fig. 6. The Algorithm for QRS detection which is implemented on MSP430 MC.  
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5. Results 

For purpose of MC implementation and testing, the above presented 
algorithms for QRS detection and “de-noising” are developed in C code using 
IAR Embedded Workbench Compiler and then uploaded to MSP430F169 
chip, through the Olimex MSP430-P169 development board. The verification 
of operation and necessary measurements are performed by tool-set 
consisting of PC, ELVIS II

+
 NI Platform [23] and digital oscilloscope AGILENT 

DSO3120A. Designed, LabView Virtual Instrument (VI) read ECG signals 
from corresponding MIT-BIH files or PPG signals from laboratory files and 
convert them into analog form via ELVIS II

+ 
platform.   

MSP430 chip accepts the emulated signals, performs FST and RST, QRS 
detection or “de-noising” in real-time. It returns the different analog or digital 
signals on output pins depending on the running program; CD4(n) and CD3(n) 
in the analog form; RR intervals in pulse (digital) form and RS232 RR intervals 
in ASCII string form. These signals are observed by oscilloscope or by 
terminal emulator in case of serial RS232 transmission. Further, the 
qualitative and quantitative analyses are performed.  

5.1. Qualitative Analysis 

This analysis is mainly performed by on-chip measurements. MC is 
configured to work in three modes, wavelet decomposition, QRS detector with 
digital outputs and “de-noising”.  

In the first mode, the emulated ECG signals are fed to the A/D input A1, 
digitalized and processed generating analog signals, CD3(n) and CD4(n) 
equivalents, on D/A pins P6.6 and P6.7, see Fig. 4. Simultaneously, the input 
and output waveforms are traced by digital oscilloscope. Then, the same ECG 
signals are processed by MATLAB, off-line, and results are plotted. For 
illustration, Fig. 7 shows the oscillographs and MATLAB plots of the input 
ECG signal and corresponding CD4(n) coefficients. As seen, the waveforms in 
Fig. 7 b) and Fig. 7 c) match very well. Note that the oscillograph amplitude 
and time division are printed in legend, bellow waveforms, as example, CH1 
200 mV/div, 200.0 ms/div.     
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Fig. 7. FST calculated by MATLAB, off-line, and by MSP430F169, on-line. a) the 
oscillograph of the original ECG signal, b) CD4(n) coefficients plotted by MATLAB, c) 
oscillograph of CD4(n) coefficients, recorded on P6.7 pin. The sampling frequency was 
800 Hz 

In the second mode, the ECG signal is fed to the A/D pin A1, see Fig. 4. 
The MC performs QRS detection in real time and generates the RR impulses 
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(pin P1.0), whose positions correspond to the QRS complexes. The time 
distance between two successive impulses gives a RR interval in ms. Fig. 8 
shows the oscillographs of original signal (up) and RR intervals (down). For 
example, the distance between 1

st
 and 2

nd
 impulse is  580 ms and between 

2
nd

 and 3
rd

 is 560 ms that corresponds to the heart rates of 60*1/0.58=103 
and 60*1/0.56=107 beats/pm, pm=per minute, indicating an effect of heart 
rate variability. As can be seen, the generated RR impulses are delayed, 
shifted, in relation to input signal, for about 50 ms.   

 

 

Fig. 8. ECG signal with QRS complexes (up) and RR impulses (down) obtained as a 
result of QRS detection. The sampling frequency was 800 Hz 

Third mode is related to real-time “de-noising”, see Fig. 5. Analog forms of 
ECG and PPG signals, corrupted by 50 Hz or white noise, are fed to the A/D 
pin A1. The MC digitalize signal, runs “de-noising” code and, in real time, 
generates the filtered analog signals, D/A pin P6.7. Fig. 9 illustrates the 
situation with ECG signal corrupted by 50 Hz noise, while Fig. 10 shows 
filtering results against white noise. Fig. 11 illustrates the case of PPG signal 
corrupted by 50 Hz noise. The sampling frequency is 762 Hz and filtered 
signal is delayed for 40 ms. As can be seen, in all cases, the input signals are 
well filtered after passing “de-noising” code.  
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Fig. 9. ECG signal corrupted with 50 Hz noise (up) and filtering output (down) 

 

Fig. 10. ECG signal corrupted with white noise (up) and filtering output (down) 
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Fig. 11. PPG signal corrupted with 50 Hz noise (up) and filtering output (down) 

5.2. Quantitative Analysis 

In addition to the qualitative analysis, the proposed algorithms are evaluated 
against five (5) quantitative criteria: calculation time, data memory occupation, 
power consumption, detection accuracy and SNR. In all cases the MC is 
clocked by 0.75 MHz and powered by 3.3 V. 

The calculation time is considered for floating point forward and inverse 
Haar Transformations (HTs) and proposed fixed point FST and RST. Table 1 
gives the results. It is evident that fixed point implementation is more than two 
times faster for case of forward transform and more than three times faster for 
case of inverse transform. This fact allows MC to perform real time sampling 
and processing till 800 Hz, up to 4 levels, what significantly improves the 
quality of acquisition as well as detection accuracy.   

Table 2 gives the memory occupation for floating point and fixed point  
implementations. And here, the difference is about two times in favor of fixed 
point. It should be noted that QRS detector implemented by FST occupies in 
total 224 bytes of DATA memory (+ 44 absolute), 39 bytes of CONST memory 
and 2 022 bytes of CODE  memory. For the case of “de-noising” it is 302 
bytes of DATA memory (+ 33 absolute) and 1902 bytes of CODE memory.  
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Table 1. Calculation times for floating and fixed point transforms  

# of 
decomposition 
levels 

FST [ms] RST [ms] Forward HT 
[ms] 

Inverse HT 
[ms] 

4 2,35 2,23 5,82 6,90 
5 3,96 4,37 11,86 13,99 
6 6,93 8,63 23,91 28,14 
7 12,64 17,10 47,99 56,41 

 

Table 2. Memory occupation, DATA MEMORY, RAM, for floating and fixed point 
transforms 

# of 
decomposition 
levels 

FST [bytes] RST [bytes] Forward HT 
[bytes] 

Inverse    HT 
[bytes] 

4 74 74 138 138 
5 138 138 266 266 
6 266 266 522 522 
7 522 522 1034 1034 

   
By its nature MSP430x is an ultra low power controller. Additionally, the 

integer point optimization slightly decreases consumption. QRS detector and 
filter, implemented in this arithmetic, consumed 319 μA and 315 μA that is 
about 5% less than in case of floating point calculations, 336 μA, 332 μA. 

In order to verify the QRS detection accuracy, the 11.094 heart beats within 
five characteristic files are observed (MIT-BIH Records 101, 103, 202, 230, 
234). The particular detection error rate for each record,  DERi, is defined as: 

              
       

  
   

(13) 

where are: NFP - number of false positives in Xi[n], NFN - number of false 
negatives in Xi[n] and TN - total number of QRS complexes in Xi[n]. The 
averaged accuracy is defined as: 

        
 

 
     

   
       . (14) 

First, the files are passed through the wavelet based QRS detector realized 
in MATLAB by algorithm structure and method of modulus maxima given in 
[24] with distinction that Mexican hat wavelet is replaced with Haar. Then, the 
analog ECG signals are feed to the proposed MC’s QRS detector. ASCII 
forms of RR intervals are collected by terminal emulator and then statistically 
analyzed by MATLAB. The averaged accuracies were 99.47% and 99.06%, 
respectively. Obviously, the proposed MC detector decreases accuracy for -
0.41% what can be considered as negligible. 

In order to quantitative estimate “de-noising” technique, the output SNR, 
SNRo, is considered for initial value of SNR, SNRi : 
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   (15) 

 

          
       

   

       
   

 , (16) 

 
where, X(i) is the original signal, Xr(i) is “de-noised” signal, n(i) noise signal 
and N is the length of the signals.  

The ECG signals from above MIT-BIH records are corrupted by 50 Hz 
noise of different amplitudes and passed through the MATLAB codes of 
proposed MC’s “de-noising” algorithm and algorithm based on HT with hard 
thresholding from [22]. The results are shown in Table 3.   

Table 3. SNRo values for “de-noising” algorithms 

SNRi 30dB 20dB 10dB 5dB 

SNRo – HT 32.5601    23.2341    13.5353 8.6026 

SNRo – 
Proposed alg. 

 31.9473    22.7246    13.2348 8.3626 

Improvement -
Degradation 
[%] 

-1.8821     -2.1929     -2.2201     
-2.7899 
 

 
As can be noted, the classical HT with hard thresholding has better SNRo. 

However, the degradation for proposed algorithm, even in the worst case, is 
negligible, less than 2.8%.  

6. Conclusion 

Wavelet transforms can be successfully used to solve many tasks in 
biomedical signal processing. After certain optimizations in the terms of fixed 
point arithmetic, they can be implemented in low-cost general purpose 
microcontrollers. Case studies for real-time QRS detection and ECG and PPG 
“de-noising”, implemented in MSP430F169, are presented. The benefits are 
obvious,  800 Hz sampling rate, 2-4 times faster calculation,  less than 500 
bytes of data memory occupation, 1 mW power consumption, 99.06% 
detection accuracy, 5% decreased power consumption and satisfied SNR. 
The degradations are negligible about -0.41% in accuracy and -2.8%, in SNR. 
The same approach can be applied with other signals where the embedded 
implementation of wavelets can be beneficial.         
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