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Abstract. State of the art formal verification is based on formal methods and its 

goal is proving given correctness properties. For example, a PSTM scheduler was 

modeled in CSP in order to prove deadlock-freeness and starvation-freeness. 

However, as this paper shows, using solely formal methods is not sufficient. 

Therefore, in this paper we propose a complete formal verification of trustworthy 

software, which jointly uses formal verification and formal model testing. As an 

example, we first test the previous CSP model of PSTM transaction scheduler by 

comparing the model checker PAT results with the manually derived expected 

results, for the given test workloads. Next, according to the results of this testing, 

we correct and extend the CSP model. Finally, using PAT results for the new CSP 

model, we analyze the performance of the PSTM online transaction scheduling 

algorithms from the perspective of the relative speedup. 

Keywords: Formal Verification, Process Algebra, Transaction Scheduling, 

Python, Software Transactional Memory. 

1. Introduction 

As contemporary society is becoming increasingly dependent on software, which is 

ubiquitously used in everyday life, software verification is gaining paramount 

importance for our society and the environment. State of the art formal verification 

based on model checking is performed in two steps: (i) constructing a formal model of a 

given safety critical software, and (ii) proving that this formal model satisfies a given set 

of correctness properties, which consists of safety and liveness properties. For example, 

a PSTM (Python Software Transactional Memory) transaction scheduler was recently 

modeled (see [1]) in process algebra Communicating Sequential Processes (CSP) [2], in 

order to automatically prove the subject’s deadlock-freeness (a safety property) and 

starvation-freeness (a liveness property) by the model checker PAT (Process Analysis 

Toolkit) [3]. 

                                                           
* A preliminary version of this paper appears in the Proceedings of the 7th Conference on the Engineering of 

Computer Based Systems (ECBS), article no. 10, pages 1-10, Novi Sad, Serbia, May 2021 [25]. 
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However, as this paper shows, conducting traditional formal verification in two steps 

(described above) as was, for example, done in [1], [4], [5], and [6] is not sufficient. As 

will be elaborated in more detail in Section 1.1 (related work), the main problem with 

the traditional two-steps formal verification is that the formal model constructed in the 

first step is not directly tested. Therefore, possible formal model shortcomings may not 

be discovered, and consequently, they may compromise the formal verification results. 

As a solution to this problem, in this paper, we propose a method for a complete formal 

verification of trustworthy software, which jointly uses formal verification and formal 

model testing. Our method is based on the iterative procedure with the following steps 

(the procedure inputs comprise the initial formal model and the manually derived 

expected results): 

1. Test the formal model by using the model checker and the expected results. 

2. If the results are not as expected, correct the formal model and return to step 1. 

3. Make the final report. 

In the paper, we demonstrate our method using an example in which we applied the 

complete formal verification on the PSTM transaction scheduler. Within the example, 

we: (i) tested the previous CSP model of PSTM transaction scheduler by comparing the 

model checker PAT results with the manually derived expected results, for the given test 

workloads, (ii), according to the testing results, we corrected and extended the CSP 

model in each iteration (see the last two paragraphs in Section 1.1 for the history of all 

the corrections that were made in more iterations), and (iii) using PAT results for the 

final CSP model (henceforth called “the new CSP model”), we analyzed the 

performance of PSTM online transaction scheduling algorithms from the perspective of 

the relative speedup. 

The rest of the paper is organized as follows. Section 1.1 presents closely related 

work, Section 2 presents the testing of the previous CSP model, Section 3 presents the 

new CSP model, Section 4 presents the performance analysis of the four PSTM online 

transaction scheduling algorithms, and Section 5 presents the paper conclusions. 

1.1. Related Work 

A brief overview of the most closely related research presented in this section covers 

formal verification and its testing, PSTM, and PSTM transaction scheduler formal 

verification chronology. 

The formal verification process used in this paper is based on model checking. 

“Model checking is a technique for automatic verification of software and reactive 

system, and it consists of verifying some properties of the model of the system”, see [7]. 

We selected three recent papers in order to illustrate formal verification state of the art 

[4], [5], and [6]. 

The paper [4] was motivated by the importance of the discovery and control service 

of an IoT system based on the Chord protocol, and the obvious fact that errors in 

concurrent systems are difficult to reproduce and find using solely program testing. The 

authors manually proved the correctness of the Chord protocol using the logic of time 

and knowledge with the respect to the set of possible executions (that maintain ring 

topology while the nodes can freely join or leave). The given proof was not 
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automatically verified in one of the formal proof assistants (e.g., Coq, Isabelle/HOL), 

and the authors only mention this as a possible challenge for their future work. 

The paper [5] addresses the issues of safety-critical software verification and testing 

that are key requirements for achieving DO-178C and DO-331 regulatory compliance 

for airborne systems. The verification is performed by the symbolic model checker 

MCMAS+ that uses OBDDs. To validate their model, the engineers need to perform 

review and tracing activities. Review means fixing syntax errors, whereas tracing means 

checking model behaviour along all the possible traces within the complete model’s 

state space. Both activities are conducted manually, so they are time-consuming and 

error-prone. Moreover, it seems that validation is not based on theoretically expected 

results, so the engineers are left to handle it according to their experience and intuition. 

The paper [6] presents an approach for specifying, verifying, and deploying time- 

constrained business processes (BPs) in a mono-cloud, multi-edge context. At design-

time, four stages take place: (i) specification in Business Process Model and Notation 

(BPMN), (ii) placement of tasks and data on cloud or edge, (iii) transformation from 

BPMN model to Timed Petri-Nets (TPN) model, and (iv) verification whether TPN 

model has any time violations (this is done automatically using a model checker like 

TINA). The main disadvantage of this approach is that the initial BPMN model is not 

checked. Additionally, the engineers: (i) do not derive some kind of theoretically 

expected results of the placement, and (ii) they do the placement manually as a series of 

trial-and-error attempts. 

Testing as defined in the Cambridge Dictionary is “the process of using or trying 

something to see if it works, is suitable, obeys the rules, etc.” [8]. In this paper, we test 

the formal model, or more precisely we test the formal verification process itself, in 

order to cross-check whether it produces the expected theoretical results. To the best of 

our knowledge, this is the first paper that advocates and demonstrates such an approach 

to the complete formal verification. So, the testing performed in this paper should not be 

confused with software testing, which is considered to be woefully inadequate for 

detecting errors in highly concurrent designs [7]. 

Transactional memory (TM) was conceived as an extension of a cache-coherence 

protocol that supports transactions executed on multicores, which operate on shared 

variables (called t-variables, or t-vars) [9], [10]. Software TM (STM) appeared as a TM 

implemented in software [11]. Python STM (PSTM) [12] is a general purpose STM for 

Python, which is applicable in a wide range of application-specific domains, from 

computational chemistry simulations [13], to data science, to IoT-based systems such as 

smart homes, vehicles, and cities. 

PSTM was formally verified in three complementary papers. The authors of the first 

paper [14] constructed a formal model as a network of timed automata [15] 

representing: linear and cyclic transactions, the queue used by the remote procure call 

mechanism, and the transactional memory itself. Using the model checker UPPAAL 

[16], they automatically proved the following three properties: safety (atomicity), 

liveness (in a set of concurrent transactions, one must get committed), and termination 

(the cyclic transactions must eventually get committed). 

The authors of the second paper [17] constructed a formal model as a group of CSP 

processes representing: a transaction, PSTM API, PSTM server, and PSTM dictionary. 

Using the model checker PAT, they automatically proved the following three properties: 
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deadlock freeness, ACI (atomicity, consistency, and isolation), and optimism (essentially 

the same as the liveness in [14]). 

The authors of the third paper [18] constructed a formal PSTM push/pull semantic 

model as the mapping of operations within the PSTM’s generic transactional algorithm 

to the four relevant push/pull rules: PULL, APPLY, PUSH, and CMT (the general 

push/pull semantic model is defined in [19]). They manually proved that the model 

satisfies correctness criteria for the relevant push/pull rules, and that therefore PSTM 

satisfies serializability (i.e. sequential consistency). 

Generally, STM transactions are easy to program (as a simple sequential code that is 

executed atomically), they cannot deadlock (since one of the concurrent transactions 

gets committed), and they provide great performance for low concurrency workloads 

(since they are executed speculatively, i.e. without the overhead incurred by locks). 

However, in case of high concurrency workloads, the system performance may be 

degraded, because many transactions may get aborted and re-executed, or even worse, 

some of the transactions may be starved. Therefore, various transaction schedulers (or 

contention managers) were introduced in order to sustain good performance even for 

high concurrency workloads, e.g. [20], [21], [22]. 

PSTM transaction scheduler architecture and the four online scheduling algorithms, 

named Round Robin (RR), Execution Time Load Balancing (ETLB), Avoid Conflicts 

(AC), and Advanced Avoid Conflicts (AAC), were developed with the main goal to 

minimize the makespan (the total execution time) and consequently to maximize the 

throughput (the number of transactions per second) for an arbitrary workload [23], [24]. 

These algorithms were developed hierarchically, from the simplest RR to the most 

advanced AAC, and they were compared from the perspectives of time complexity, 

quality of theoretical initial schedules, and the experimentally measured speedup over 

RR and the number of aborts. 

The theoretical schedules in [24] were manually derived for three test workloads: 

CFW (Conflict Free Workload), RDW (Read Dominated Workload), and WDW (Write 

Dominated Workload), which were previously used for the experimental evaluation in 

[23]. The experimental results and the theoretical results are well aligned, and this fact 

validates both the theoretical analysis in [24] and the algorithms’ implementations in 

Python and their experimental evaluation in [23]. 

The authors of the paper [1] constructed the formal model of the PSTM scheduler 

architecture and the first three online transaction scheduling algorithms (RR, ETLB, and 

AC) from [23] as a group of CSP processes representing: an application, the scheduler 

input queue, the scheduler, the worker input queues, the workers, and the processes 

formalizing RR, ETLB, and AC algorithms. Using the model checker PAT, they 

automatically proved deadlock and starvation freeness properties and analyzed 

algorithms performance from the perspective of makespan, relative speedup, number of 

aborts, and throughput. However, instead of using test workloads from [23] and [24], 

they introduced three simplified test workloads: CFW, CW-1 (Conflict Workload 1), 

and CW-2 (Conflict Workload 2), so a direct comparison of their results with the results 

of [23] and [24] was not possible. Moreover, the formal verification in [1] was made 

with some shortcomings, which we discovered and remedied in [25]. 

In [25], we tested the CSP# model of the PSTM transaction scheduler introduced in 

[1] by comparing the model checker PAT results with the manually derived expected 

results, for the test workloads defined in [1], and we discovered six shortcomings. Next, 
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we extended the CSP# model in order to eliminate the discovered shortcomings. Finally, 

using PAT, we automatically analyzed the performance of the PSTM transaction 

scheduling algorithms from the perspective of makespan and throughput. 

In this paper, we conduct a complete formal verification of the PSTM transaction 

scheduler for the three test workloads similar to those used in [23] and [24], in order to 

be able to compare the PAT’s results with the results in [23] and [24]. More precisely, 

we first derived complete theoretical schedules for these workloads and tested the CSP# 

model from [25] with them. We discovered two additional shortcomings of the CSP# 

model from [25], and we extended the model accordingly. Next, using PAT, we 

analyzed the performance of the PSTM transaction scheduling algorithms from the 

perspective of the relative speedup. Finally, we compared the PATs results with the 

previous experimental results in [23]. 

2. Testing 

This section presents the testing of the formal models developed in [1] and [25]. The 

main goal of the testing was to check whether the formal verification results are aligned 

with the theoretical results. The next three subsections present the testing method, 

theoretical schedules for the given test workloads, and the testing findings. 

2.1. Testing Method 

The testing method is based on the analysis of theoretical schedules, which are expected 

to be produced by the subject online transaction scheduling algorithms for the given test 

workloads. The method comprises the following steps: 

 derive theoretical schedules; 

 calculate the makespan and the number of aborts; 

 compare the results of the previous step with the model checker PAT’s results. 

In addition to the test workloads used in [1] and [25], in this paper, we introduce the 

new test workload, named: CF (Conflict Free), RD (Read Dominated), and WD (Write 

Dominated) workloads, which are similar to the three test workloads (CFW, RDW, and 

WDW) used in [24]. The main difference between the former and the latter is that the 

former have 6 transactions, whereas the latter have 12 transactions. The second 

difference is that each transaction in the CF workload writes to a single t-variable, 

whereas each transaction in the CFW in [24] is a money transfer (MT) transaction i.e. it 

reads and writes two t-variables. 

The new test workloads (CF, RD, and WD) are modeled in CSP# as arrays of six 

transactions [T0, …, T5]. There are three kinds of transactions: M, R, and W 

transactions. M transaction writes to a single t-variable from the set of t-variables {A, B, 

C, D, E, F}, R transaction sequentially reads all the t-variables, and W transaction 

sequentially writes to all the t-variables. The duration of the M transaction is 10 time 

units, whereas the durations of the R and W transactions are 40 time units each (these 

durations are the same as in [24]). The CF workload is a series of M transactions 
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operating of different t-variables, the RD workload is the interleaving of R transactions 

and M transactions, and the WD workload is the interleaving of W and M transactions. 

2.2. Theoretical Schedules 

As cores in a multicore processor use the same clock, a multicore processor is a 

synchronous system and therefore transactions assigned to separate workers’ cores 

execute synchronously in parallel. The experiments conducted in [23] confirm this fact, 

and it was accepted as a postulate when formalizing PSTM transaction scheduler 

architecture and deriving the theoretical schedules for the given number of workers and 

given test workloads. 

We derived the theoretical schedules for the workloads introduced in [1] in the 

preliminary version of this paper [25] (see them there). Here we consider the new test 

workloads (CF, RD, and WD). In order to save space, we derive the theoretical 

schedules for the PSTM scheduler architecture only with two workers, because these 

simple schedules are easy to comprehend and interpret even by readers not too familiar 

with this topic. The theoretical schedules for three test workloads CF, RD, and WD are 

shown in Fig. 1, Fig. 2, and Fig. 3, respectively.  

In each figure, the queue with input transactions is shown at its top, where each 

transaction is labeled with its index (i.e. its ID in the CSP# model) and its type (M, R, or 

W). The expected schedules for individual online transaction scheduling algorithms are 

shown below the input queue, where the two workers’ queues are labeled W0 and W1, 

respectively. 
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Fig. 1. The theoretical schedules for CF workload 

Fig. 1 shows the expected schedule for the CF workload, which is conflict free, 

because all the transactions operate on different t-variables. Since there are two workers, 

the RR algorithm works by modulo two, so it assigns even transactions to W0 and odd 

ones to W1 in its first scheduling iteration. This schedule is executed without aborts 

(because there are no conflicts) and therefore this schedule happens to be the complete 

schedule with the makespan equal to 30 (3 x 10) and the number of aborts equal to 0. 

Because all the transactions have the same duration, the ETLB algorithm behaves as 

the RR algorithm, and because there are no potential conflicts among transactions (since 

they operate on different t-variables), the AC and the AAC algorithms behave as the 
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ETLB algorithms, i.e. the RR algorithm. So, all the algorithms produce the same 

schedule shown in Fig. 1. 

Figure 2 shows the expected schedule for the RD workload, which has 9 potential 

conflicts – these are the conflicts between each R transaction (T0, T2, and T4) and each M 

transaction (T1, T3, and T5) because R transactions sequentially read all the t-variables 

and M transactions (T1, T3, and T5) write to a single t-variable (B, D, and F, resp.). Since 

there are two workers, the RR algorithm works by modulo two, so it assigns even 

transactions to W0 and odd to W1 in its first scheduling iteration. In this initial schedule, 

T0 (assigned to W0) is in conflict with all the M transactions (assigned to W1). Because 

all the M transactions end before T0, they all get committed, whereas T0 gets aborted, 

rescheduled and successfully re-executed in the second iteration. So the complete 

schedule has the makespan equal to 160 (4 x 40), and the number of aborts is equal to 1. 
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Fig. 2. The theoretical schedules for RD workload 

The ETLB algorithm performs load balancing by making the following sequence of 

assignments in its first iteration (see Fig. 2, ETLB schedule): T0 to W0, T1 to W1, T2 to 

W1, T3 to W0, T4 to W0, and T5 to W1. However, this initial schedule is worse than the one 

produced by the RR algorithm, because it is executed with the following 3 conflicts 

causing 3 aborts: (i) T0 and T1 are in conflict, and T1 is faster, so T0 gets aborted, (ii) T2 

and T3 and in conflict, and they end simultaneously, so in the worst case T2 gets aborted 

(this is the worst case because T2’s duration is greater than T3’s) and (iii) T4 and T5 are in 

conflict, and T5 is faster, so T4 gets aborted. In the second iteration, the ETLB makes the 

following series of assignments (see Fig. 2): T0 to W0, T2 to W1, and T4 to W0. This 

schedule is executed without aborts because it is conflict free. So the complete schedule 

has the makespan equal to 170 (4 x 40 + 10), and the number of aborts is equal to 3. 
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The AC and the AAC algorithms do better than the ETLB algorithm because they are 

aware of the potential conflicts. Actually, for this particular workload, the AC algorithm 

produces the same result as the optimal AAC algorithm using a simple heuristic 

(schedule the next transaction to the least loaded worker if that does not cause a 

conflict). Both algorithms make the following sequence of assignments (see Fig. 2, AC 

and AAC schedule): T0 to W0, T1 to W0 (because of the potential conflict between T0 and 

T1), T2 to W1, T3 to W1 (because there is no conflict between T2 and T3), T4 to W0, and T5 

to W0 (because of the potential conflict between T4 and T5). This initial schedule is 

conflict free, and therefore constitutes the complete schedule with the makespan equal to 

100 (2 x 40 + 2 x 10), and the number of aborts equal to 0. 
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Fig. 3. The theoretical schedules for WD workload 

Figure 3 shows the expected schedule for the WD workload, which has potential 

conflicts among all the transactions. The RR algorithm works by modulo two, so it 

assigns even transactions to W0 and odd to W1 in its first scheduling iteration. In this 

initial schedule, T0 (assigned to W0) is in conflict with all the M transactions (assigned to 

W1). Because all the M transactions end before T0, they all get committed, whereas T0 

gets aborted, rescheduled and successfully re-executed in the second iteration. So the 

complete schedule has the makespan equal to 160 (4 x 40), and the number of aborts is 

equal to 1. This result is practically the same as that for the RD workload (see Fig. 2). 

The ETLB algorithm performs load balancing by making the following sequence of 

assignments in its first iteration (see Fig. 3, ETLB schedule): T0 to W0, T1 to W1, T2 to 

W1, T3 to W0, T4 to W0, and T5 to W1. This initial schedule is practically the same as for 

the RD workload (see Fig. 2), and for the same reasons T0, T2, and T4 get aborted (in the 

worst case) and rescheduled in the second iteration. However, unlike the case for the RD 
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workload, T0 and T2 are now in conflict, so one of them (say T0) gets aborted and re-

executed in the third iteration. So, the complete schedule has the makespan equal to 210 

(5 x 40 + 1 x 10) and the number of aborts equal to 4. 

The AC and AAC algorithms serialize all the transactions (because of the conflicts 

among them) by assigning them all to W0, whereas W1 stays idle (see Fig. 3, AC and 

AAC schedule). So, this initial conflict-free schedule constitutes the complete schedule 

with the makespan equal to 150 (3 x 40 + 3 x 10) and the number of aborts equal to 0. 

Table 1 summarizes the expected theoretical results for the makespan (ms) and the 

number of aborts (na) for the number of workers (Index) equal to 2 (derived above), as 

well as for the Index equal to 3, and 4 (which are derived analogously). 

Table 1. The expected theoretical results for CF, RD, and WD workloads 

Load & Alg. Index = 2 Index = 3 Index = 4 

Load Alg. ms na ms na ms na 

 

CF 

RR 30 0 20 0 20 0 

ETLB 30 0 20 0 20 0 

AC 30 0 20 0 20 0 

AAC 30 0 20 0 20 0 

 

RD 

RR 160 1 90 3 120 2 

ETLB 170 3 100 3 90 3 

AC 100 0 60 0 70 0 

AAC 100 0 50 0 50 0 

 

WD 

RR 160 1 180 7 160 3 

ETLB 210 4 180 6 170 6 

AC 150 0 150 0 150 0 

AAC 150 0 150 0 150 0 

2.3. Testing Findings 

Formal model testing was organized in two phases. The object of the first phase was the 

initial CSP# model from [1], whereas the object of the second phase was the extended 

CSP# model from [25]. The first phase was conducted in [25] using the three test 

workloads defined in [1], (CFW, CW-1, and CW-2), whereas the second phase was 

conducted in this paper using the three test workloads very similar to those used in [23] 

and [24], namely CF, RD, and WD workloads. 

Table 2 summarizes the testing findings. In the first testing phase, we discovered 

items 1, 5, and 6 in Table 2, as well as the initial shortcomings in items 2-4. Next, in the 

second testing phase, we discovered items 7 and 8, as well as additional shortcomings in 

items 2-4. 

By comparing the expected values of makespan and the values in [1], we found that, 

by an oversight, the time used (TU) for the model checking by the model checker PAT 

was interpreted as equal to the makespan. Next, the fact that the expected values for the 

number of aborts and the values in [1] were different, indicated that the real schedules 

from [1] are different from the expected schedules derived in [25]. A rather tedious 

reconstruction of the real schedules from the model checker PAT’s log files confirmed 

this indication. 
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Table 2. The summary of testing findings 

No. Finding 

1 PAT’s time used (TU) reported as the makespan 

2 The macro isConflict shortcomings 

3 Pessimistic concurrency control 

4 Asynchronous transactions’ execution 

5 The number of workers fixed to Index = 2 

6 AAC algorithm not supported 

7 Read operations and the star convention not supported 

8 The macros findmin and findmax shortcomings 

The three main root causes of the discrepancies between the real and the expected 

schedules (the findings 2-4 in Table 2) are the following: (i) the macro isConflict, which 

checks whether there are conflicts between the next transaction to be scheduled x and 

any already scheduled transaction i, included the case i = x, (ii) the CSP# model from 

[1] uses the pessimistic concurrency control, whereas the real PSTM uses the optimistic 

concurrency control (see Sec. 2-1 in [10]), and (iii) the workers in the CSP# model from 

[1] execute transactions asynchronously, and therefore this model violates the postulate 

of the synchronous transaction execution introduced in Section 2.2. 

By a quick inspection of the model from [1], we saw that the number of workers is 

fixed to Index = 2 and that the AAC algorithm is not supported (items 5-6 in Table 2). In 

the second testing phase, we needed to model RD and WD workloads, and at that time 

we discovered that the model in [25] does not support read operations and the star 

convention by which * means all the t-variables (item 7 in Table 2). While fixing item 7, 

we found additional shortcomings related to items 2-4 and we discovered that in the case 

when the array load has equal elements, both macro findmin and macro findmax return 

the index of the last of them, whereas in the theoretical schedules we took the index of 

the first such element (item 8). 

3. The New Model 

This section presents the new CSP# model, which evolved from the previous model 

presented in [25]. The next subsections present the three most important parts of the 

model related to (i) conflict detection, (ii) optimistic concurrency control, and (iii) 

synchronous transactions’ execution. This organization was made according to the 

findings 2-4 and 7 in Section 2.3 (other extensions are skipped because of the space 

limits). 

3.1. Conflict Detection 

The macro isConflict sets the variable IsConflict to 0 if the new transaction x starting at 

t1 and ending at t2 is not in conflict with the already scheduled transactions; otherwise it 

sets IsConflict to 1, see Algorithm 1. Initially, it sets the variables i and IsConflict to 0 

(lines 4-5; i is the index of the i-th transaction). Next, it repeats the loop while i is less 

than TNum (the number of transactions) and there is no conflict (lines 6-18). 
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Within the loop, it performs a series of nested if statements, which is equivalent to a 

single if statement with a conjunction of all the conditions, in order to check whether the 

transaction i is scheduled (line 7), and the transactions i and x overlap in time (lines 8-

9), and i is not x, and the transactions i and x operate on the same t-variable or one of 

them operates all the t-variables as indicated by the constant Star (line 10), and the 

transactions i or x write to the t-variable(s) (line 11), and if yes it sets isConflict to 1. 

Algorithm 1. The macro isConflict 

01: var IsConflict = 0; 

02: #define isConflict(x, t1, t2) 

03: { 

04:   var i = 0; 

05:   IsConflict = 0; 

06:   while(i<TNum && IsConflict!=1) { 

07:     if(T_isScheduled[i]==1) { 

08:       if((T_StartTime[i]<t2 && t2<=T_EndTime[i])|| 

09:       (t1<T_EndTime[i] && T_EndTime[i]<=t2)) { 

10:         if((i!=x)&&(T_Var[i]==T_Var[x]||T_Var[i]==Star||T_Var[x]==Star)) { 

11:           if(T_VarOp[i]==Wtvar || T_VarOp[x]==Wtvar) { 

12:             IsConflict = 1; 

13:           } 

14:         } 

15:       } 

16:     } 

17:     i++; 

18:   } 

19: }; 

3.2. Optimistic Concurrency Control 

The PSTM’s optimistic concurrency control model is shown in Algorithm 2. This model 

is much simpler than the complete PSTM models developed in [14] and [17], and it was 

made as such, in order to keep the model state space exploration fast and feasible. 

The array T_VarVer (line 1) models the PSTM dictionary, and its elements store the 

versions of the respective t-variables (TvarNum is the number of t-variables). Since the 

number of transactions in a workload is equal to TNum, we bounded the number of 

versions for each t-variable by TNum, in order to reduce the state space to be explored 

(if TNum transactions update a single t-variable, its final version would be TNum-1). 

The number of a t-variable versions is effectively bounded by counting them with 

modulo TNum (line 13 for single t-variable updates and line 18 for the updates using the 

star convention). 

In order to support updates using the star convention (i.e. updates of all the t-

variables), we define the star version (i.e. the version of all the t-variables) as the sum of 

the versions of all the t-variables. The macro calciver (called in line 6) stores its result in 

the variable iver (line 2), and the result is either the star version if the argument key is 

equal to Star, or the version T_VarVer[key] if key is not equal to Star. 

The process Pstm models the PSTM itself (lines 3-29). The worker processes send 

their messages to Pstm over the channel worker2pstm, whereas Pstm sends its replies to 

the worker process Wi via the channel pstm2worker[i]. 
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Algorithm 2. The PSTM’s optimistic concurrency control model 

01: var T_VarVer[TvarNum]:{0..TNum-1} = [0(TvarNum)]; 

02: var iver:{0..TvarNum*TNum} = 0; 

 

03: Pstm() = 

04:   worker2pstm?i.req.op.key.ver-> 

05:   atomic { 

06:     {call(calciver, key)}-> 

07:     if(req == GetVars) { 

08:       pstm2worker[i]!iver->Pstm() 

09:     } else { // commitVars 

10:       if(ver == iver) { // T_VarVer[key] replaced with iver 

11:         if(op == Wtvar) { 

12:           if(key != Star) { 

13:             {T_VarVer[key] = (T_VarVer[key]+1)%TNum}-> 

14:             pstm2worker[i]!1->Pstm() 

15:           } else { 

16:             { 

17:               var ii = 0; 

18:               while(ii<TvarNum){T_VarVer[ii]=(T_VarVer[ii]+1)%TNum;ii++} 

19:             }-> 

20:             pstm2worker[i]!1->Pstm() 

21:           } 

22:         } else { 

23:           pstm2worker[i]!1->Pstm() 

24:         } 

25:       } else { 

26:         pstm2worker[i]!0->Pstm() 

27:       } 

28:     } 

29:   }; 

The compound messages sent by Wi to Pstm, over the channel worker2pstm, have the 

format i.req.op.key.ver, where i is the worker’s index, req is the type of request (the 

existing types of requests are: GetVars and CommitVars, which correspond to the PSTM 

API functions getVars and commitVars, respectively), op is the type of operation (the 

existing types of operations are: Wtvar and Rtvar, which correspond to the write and 

read operations, respectively), key is the index of the t-variable or Star, and ver is the 

version of the t-variable or the star version. 

The replies sent from Pstm to Wi, over the channel pstm2worker[i], have a single 

element whose semantics depend on the type of the request: for GetVars request, the 

reply is the t-variable’ version, whereas for CommitVars request, the reply is either 0 or 

1 whether the transaction gets aborted or successfully committed, respectively. 

After receiving the message i.req.op.key.ver (line 4) the process Pstm atomically (line 

5) serves the request as follows. It calls the macro calciver (line 6) to set the iver for the 

given key (which may be an index of a t-variable or Star). Then it checks the type of the 

request (line 7). In the case of the GetVars request (line 8), it returns iver (which may be 

the version of a t-variable or the star version). Alternatively, in the case of the 

CommitVars request, Pstm checks whether the version ver from the input message is 

equal to iver (line 10). If they are equal, Pstm checks the type of op (line 11). 
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If op is equal to Wtvar (line 11), Pstm compares key with Star (line 12). If key is not 

equal to Star, Pstm increments the current version of the t-variable key (line 13), 

whereas if key is equal to Star, Pstm increments current versions of all the t-variables 

(line 18), and in both cases Pstm sends the reply 1 signaling successful commit (line 20). 

If op is not equal to Wtvar (i.e. op is the read operation), Pstm sends the reply 1 

signaling successful commit (line 23).  If ver is not equal to iver, Pstm sends the reply 0 

signaling abort (line 26). 

As defined above, Pstm provides optimistic concurrency control by servicing two 

types of requests made by synchronous concurrent workers executing transactions. Each 

transaction starts with the GetVars request (to get local copies of specified t-variables), 

proceeds with some data processing (on local copies), and ends with the CommitVars 

request (to update the specified shared t-variables). 

3.3. Synchronous Transactions’ Execution 

The worker’s behavior model is shown in Algorithm 3 (excluding unimportant parts). 

The worker Wi initially behaves as the process Worker(i) (line 1). After receiving the 

signal READY from the scheduler, it behaves as the process Worker_1(i) (line 2). 

The process Worker_1(i) is an iterative process (line 3). In each iteration, it checks 

the input queue Queue[i] (line 4). If there are no transactions in the input queue, 

Worker_1(i) executes the process Worker_2(i), sends the signal done to the scheduler, 

and continues behaving as the process Worker(i) (line 5). Alternatively, if there is a 

transaction in the input queue (line 6), Worker_1(i) dequeues the transaction, estimates 

the duration of the transaction, sets the variables related to the transaction (these steps 

are not shown in Algorithm 3), and executes the process Working(i, currentT[i]), where 

currentT[i] is the index of the current transaction executed by Wi (line 7). 

By the definition of the parallel composition operator ||, all the parallel processes 

must simultaneously engage in their common events (i.e. the events in the intersection of 

their alphabets) [2]. In Algorithm 3, all the workers synchronize using the so-called 

lock-step synchronization, i.e. they engage in their common event tick simultaneously. 

Therefore, all the workers must engage in the same number of ticks, nt, in each 

scheduling iteration. In order to calculate nt, let nti be the total load plus the number of 

transactions allocated to Wi (the number of transactions is added because starting each 

transaction requires one tick). Then, nt is the maximal nti, ntm (nti for the worker i = m), 

for i = 0, …, Index – 1: 

nti = loadi + count(Queuei) . (1) 

nt = ntm = maxi nti . (2) 

Next, let iti be the number of idle ticks that must be executed by Wi after it processed 

all the transactions from its input queue, Queuei: 

iti = nt - nti . (3) 

The processes Working(i, txn) and Working_1(i, txn) model the behavior of Wi 

processing its current transaction txn. The former models the start of the transaction, 

whereas the latter models the rest of the transaction. 
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Algorithm 3. The worker’s behavior 

01: Worker(i) = 

02:   comSW[i]?READY->Worker_1(i); 

 

03: Worker_1(i) = 

04:   if(Queue[i].Count() == 0) { 

05:     Worker_2(i); output!done -> Worker(i) 

06:   } else { 

           … 

07:     Working(i, currentT[i]); 

           … 

 

08: Worker_2(i) = 

09:   if(idleTicks[i] > 0) { 

10:     tick -> tau{idleTicks[i]--} -> Worker_2(i) 

11:   } else {Skip}; 

 

12: Working(i, txn) = 

13:   tick -> 

14:   worker2pstm!i.GetVars.0.currentT_Var[i].0 -> 

15:   pstm2worker[i]?tvarver -> 

16:   {currentT_VarVer[i] = tvarver; workertime[i]++} -> 

17:   Working_1(i, txn); 

 

18: Working_1(i, txn) = 

19:   tick -> 

20:   if(workertime[i] < currentT_Time[i]) { 

21:     working{workertime[i]++} ->  

22:     Working_1(i, txn) 

23:   } else { 

24:     worker2pstm!i.CommitVars.T_VarOp[txn].currentT_Var[i].currentT_VarVer[i] -> 

25:     pstm2worker[i]?resp -> 

26:     {currentT_Cmt[i] = resp; workertime[i] = 0} -> 

27:     Skip 

28:  }; 

The process Working(i, txn) (lines 12-17): (i) sends the GetVars request to the 

process Pstm (line 14) and receives the value of tvarver (which is either the version of 

the t-variable key if key is not Star or the star version if key is equal to Star) in the reply 

from Pstm (line 15), and (ii) stores tvarver into currentT_VarVer[i] and increments its 

working time by updating workertime[i] (line 16). 

The process Working_1(i, txn) (lines 18-28) checks whether it has to do more 

processing (line 20), and if yes, it increments its working time (line 21). At the end of 

the transaction (line 23), it: (i) sends the CommitVars request to the process Pstm (line 

24) and receives the Pstm’s reply resp, which is 1 if the transaction got successfully 

committed, otherwise it is 0 (line 25), and (ii) stores resp into currentT_Cmt[i] and 

resets the working time (for the next scheduling iteration) by clearing workertime[i] (line 

26). 

After the process Working_1(i, txn) terminates, the process Worker_1(i) resumes at 

line 5, where it executes the process Worker_2(i) (lines 8-11). The latter checks whether 
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the number of its idle ticks idleTicks[i] is greater than zero (line 9), and if yes, 

decrements idleTicks[i] (line 10); otherwise it terminates (line 11). 

4. Formal Verification 

This section presents the formal verification for the new CSP# model. The next two 

sections present the verification results and the performance analysis. 

4.1. Verification Results 

First, we define the following three system conditions, which are used in the assertions: 

 the condition Done requires that snum is equal to TNum (where snum is the number 

of the successfully executed transactions), which means that all the transactions have 

been successfully executed; 

 the condition MaxNA requires that na is nonnegative and that Done is satisfied; 

 the condition MaxMS requires that ms is nonnegative and that Done is satisfied. 

Next, we introduce the five assertions that were checked for each workload defined in 

the previous paper [25] (CFW, CW-1, and CW-2) and in this paper (CF, RD, and WD 

workloads) and each version of the system, where the version of the system is defined by 

the given number of workers (Index) and the given online transaction scheduling 

algorithm (RR, ETLB, AC, and AAC). The first assertion corresponds to a safety 

property, and the other assertions correspond to liveness properties. 

These five assertions are defined as follows: 

 the system is deadlock-free; 

 the system reaches a state satisfying the condition Done; 

 all the system’s evolution paths satisfy the CSP# LTL formula []<>comSA.complete, 

which means that always eventually ([]<>) the signal complete is sent from the 

scheduler to the application, over the channel comSA; 

 the system reaches a state satisfying the condition MaxNA over a path that maximizes 

na (this is achieved by using the clause “with max(na)”, which instructs PAT to 

search and report the maximal value of na); 

 the system reaches a state satisfying the condition MaxMS over a path that maximizes 

the expression (ms+na) (this is achieved by using the clause “with max(ms+na)”). 

Using PAT, we checked these five assertions for each of the six workloads (CFW, 

CW-1, CW-2, CF, RD, and WD workloads) and for each of the system versions. There 

are system versions with 2, 3, and 4 workers (i.e. Index = 2, 3, 4), and for each of the 4 

online transaction scheduling algorithms (RR, ETLB, AC, and AAC), i.e. there are 12 

system versions (3 x 4 = 12) in total. All the 360 assertions (6 x 12 x 5 = 360) that we 

checked were found to be valid (i.e. satisfied). 

The third assertion for the case with 4 workers, WD workload, and ETLB algorithm 

was the most time-consuming to validate. The verification statistics reported by PAT for 

this case are the following: 14386432 visited states, 46722717 passed transitions, 526 s 
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of used time, and 6950446 KB of used memory (on a PC with 16GB DDR4 memory and 

CPU i7-8750H 2.2 GHz with turbo bust to 4.1 GHz). 

We also manually checked the values for na and ms reported by the last two 

assertions, and they matched the expected results. The expected results for the 

workloads defined in this paper are given in Table 1, whereas the expected results for 

the workloads defined in [25] are given in Table 1 and Table 3 in [25]. 

4.2. Performance Analysis 

In this section, we: (i) introduce the necessary definitions, (ii) analyze the performance 

of the PSTM online transaction scheduling algorithms from the perspective of the 

relative speedup using the theoretical results (confirmed by PAT) from [25] and this 

paper, and (iii) we validate the theoretical results from this paper with the experimental 

results from [23]. 

First, we define the number of independent transactions within a workload, L, which 

we use to quantitatively characterize the level of parallelism for a given L. 

Definition 1. The number of independent transactions, nit, is the max number of 

transactions in L that could be scheduled online (i.e. without changing the transactions 

arrival order), in parallel, on an infinite number of processors, without a conflict.  

For example, the values of nit for WD, RD, and CF workloads, are 1, 3, and 6, 

respectively. So, WD has the lowest level of parallelism, and CF has the highest. 

Next, we define the relative speedup of an algorithm A over the algorithm RR. 

Definition 2. The relative speedup, s, of an algorithm A over the algorithm RR is 

defined as the ratio msRR/msA, where msRR and msA are the makespans for the algorithms 

RR and A, respectively. 

 

Fig. 4. The average relative speedup for the theoretical results from [25] 
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Fig. 5. The average relative speedup for the theoretical results in this paper 

 

Fig. 6. The average relative speedup for the experimental results from [23] 

Using data from [25], we calculated the average relative speedup for each algorithm 

(RR, ETLB, AC, and AAC) and each workload (CW-2, CW-1, and CFW), which are 

characterized by their nit values (1, 3, and 5); the average is calculated over the values 

of relative speedup for Index = 2, 3, and 4 (i.e. 2, 3, and 4 workers). 

The values of the average s for RR, ETLB, AC, and AAC algorithms are illustrated in 

Fig. 4 with the curves denoted as s-rr, s-etlb, s-ac, and s-aac, respectively. 

Similarly, using data from this paper, we calculated the average relative speedup for 

each algorithm (RR, ETLB, AC, and AAC) and each workload (WD, RD, and CF 

workloads), which are characterized by their nit values (1, 3, and 6); the average is again 

calculated over the values of relative speedup for Index = 2, 3, and 4. The values of the 

average s for RR, ETLB, AC, and AAC algorithms are illustrated in Fig. 5 with the 

curves again denoted as s-rr, s-etlb, s-ac, and s-aac, respectively. 

After analyzing the data and the shape of the curves in Fig. 4 and Fig. 5, we may 

conclude that according to their performance, in terms of the average relative speedup, 

the PSTM online transaction scheduling algorithms can generally be ranked as follows: 

(i) AAC is the best, (ii) AC is worse than AAC, (iii) ETLB is worse than AC, and (iv) 

RR is the worst. There is a single exception to the general conclusion: in the case of the 

WD workload, ETLB is worse than RR, see Fig. 5. This exception is not unexpected, 
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because, for some workloads (like the WD workload), the simple RR algorithm may 

outperform the ETLB algorithm that sometimes may be too greedy. 

Next, we compare the theoretical results in this paper (illustrated in Fig. 5) with the 

experimental results from [23]. It is important to realize that these results are not 

quantitatively comparable, because of the following reasons: (i) the workloads from [23] 

have 200 transactions each (whereas the workloads in this paper have 6 transactions 

each), (ii) the duration of transactions in the workloads from [23] are: M transaction 

takes 0.65 ms whereas R and W transactions take 45 ms each (whereas the duration of 

transactions in this paper are: M takes 10 time units whereas R and W take 40 time 

units), (iii) the experiments in [23] were made only for the two cases: with 2 and 3 

workers, and (iv) the experiments in [23] were made on a PC with 4 cores, consequently 

some schedules for the case with 3 workers were compromised by the local OS, since 4 

cores were not sufficient to host 3 workers and the OS processes. 

On the other hand, we had an intuition that these theoretical and experimental results 

should be qualitatively comparable, because of the following reasons: (i) the workloads 

from [23] and from this paper have the same rather simple patterns, which when 

scheduled on a small number of workers (like in [23]) should yield schedules having 

rather small periods, and (ii) if we take the time unit to be one ms, at least the durations 

of R and W transactions would be the same. 

Therefore, using the data from [23], we calculated the average relative speedup for 

each algorithm and each workload (namely WDW, RDW, and CFW, which are 

characterized by their nit values: 1, 100, and 200, respectively); the average is calculated 

over the values of relative speedup for Index = 2 and 3 (2 and 3 workers). The values of 

the average s for RR, ETLB, AC, and AAC algorithms are illustrated in Fig. 6 with the 

curves again denoted as s-rr, s-etlb, s-ac, and s-aac, respectively. 

After analyzing the shapes of the curves in Fig. 5 and in Fig. 6, we may conclude that 

the theoretical results in this paper are qualitatively well aligned with the experimental 

results from [23]. 

5. Conclusions 

Modern society is becoming strongly dependent on the pervasive use of software in 

everyday life, and therefore software verification is becoming extremely important. 

Traditionally, formal methods have been seen as a key for the successful design of safety 

critical systems. However, in this research, we learned that using solely formal methods, 

like CSP, is not sufficient. As a solution, we proposed the method for the complete 

formal verification of trustworthy software, which jointly uses formal verification and 

formal model testing. 

In the paper, we applied this method and conducted the complete verification of the 

PSTM online transaction scheduler and the accompanying scheduling algorithms, 

through the iterative procedure of testing and correcting/extending the initial CSP 

model. The final result of this iterative procedure is called the new CSP model. Using 

this new CSP model, we analyzed the performance of the PSTM online transaction 

scheduling algorithms from the perspective of the relative speedup, and got the results 

that were as expected and well aligned with the previous research [23], [24], and [25]. 
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The main difficulty that we faced in this research was to make a realistic model that is 

simple enough to be checkable on an off-the-shelf PC that was at our disposal. This 

difficulty caused the main limitations of the presented example: (i) the limited number of 

workers (up to 4), (ii) the limited number of test workloads (6 altogether), (iii) the 

limited number of transactions in a workload (up to 6), (iv) fixed transactions’ durations, 

and (v) the transactions either operate on a single t-variable or on all the t-variables 

(using the star convention). In our future work we plan: (i) to address these limitations, 

and (ii) to apply the complete formal verification on other software architectures. 
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