
Computer Science and Information Systems 20(1):307–327 https://doi.org/10.2298/CSIS210908058P

Complete Formal Verification of the PSTM Transaction

Scheduler*

Miroslav Popovic
1
, Marko Popovic

1
, Branislav Kordic

1
, and Huibiao Zhu

2

1 University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovica 6,

21000 Novi Sad, Serbia

{miroslav.popovic, marko.popovic, branislav.kordic}@rt-rk.uns.ac.rs
2 East China Normal University, Shanghai Key

Laboratory of Trustworthy Computing,

Shanghai 200062, China

hbzhu@sei.ecnu.edu.cn

Abstract. State of the art formal verification is based on formal methods and its

goal is proving given correctness properties. For example, a PSTM scheduler was

modeled in CSP in order to prove deadlock-freeness and starvation-freeness.

However, as this paper shows, using solely formal methods is not sufficient.

Therefore, in this paper we propose a complete formal verification of trustworthy

software, which jointly uses formal verification and formal model testing. As an

example, we first test the previous CSP model of PSTM transaction scheduler by

comparing the model checker PAT results with the manually derived expected

results, for the given test workloads. Next, according to the results of this testing,

we correct and extend the CSP model. Finally, using PAT results for the new CSP

model, we analyze the performance of the PSTM online transaction scheduling

algorithms from the perspective of the relative speedup.

Keywords: Formal Verification, Process Algebra, Transaction Scheduling,

Python, Software Transactional Memory.

1. Introduction

As contemporary society is becoming increasingly dependent on software, which is

ubiquitously used in everyday life, software verification is gaining paramount

importance for our society and the environment. State of the art formal verification

based on model checking is performed in two steps: (i) constructing a formal model of a

given safety critical software, and (ii) proving that this formal model satisfies a given set

of correctness properties, which consists of safety and liveness properties. For example,

a PSTM (Python Software Transactional Memory) transaction scheduler was recently

modeled (see [1]) in process algebra Communicating Sequential Processes (CSP) [2], in

order to automatically prove the subject’s deadlock-freeness (a safety property) and

starvation-freeness (a liveness property) by the model checker PAT (Process Analysis

Toolkit) [3].

* A preliminary version of this paper appears in the Proceedings of the 7th Conference on the Engineering of

Computer Based Systems (ECBS), article no. 10, pages 1-10, Novi Sad, Serbia, May 2021 [25].

308 Miroslav Popovic et al.

However, as this paper shows, conducting traditional formal verification in two steps

(described above) as was, for example, done in [1], [4], [5], and [6] is not sufficient. As

will be elaborated in more detail in Section 1.1 (related work), the main problem with

the traditional two-steps formal verification is that the formal model constructed in the

first step is not directly tested. Therefore, possible formal model shortcomings may not

be discovered, and consequently, they may compromise the formal verification results.

As a solution to this problem, in this paper, we propose a method for a complete formal

verification of trustworthy software, which jointly uses formal verification and formal

model testing. Our method is based on the iterative procedure with the following steps

(the procedure inputs comprise the initial formal model and the manually derived

expected results):

1. Test the formal model by using the model checker and the expected results.

2. If the results are not as expected, correct the formal model and return to step 1.

3. Make the final report.

In the paper, we demonstrate our method using an example in which we applied the

complete formal verification on the PSTM transaction scheduler. Within the example,

we: (i) tested the previous CSP model of PSTM transaction scheduler by comparing the

model checker PAT results with the manually derived expected results, for the given test

workloads, (ii), according to the testing results, we corrected and extended the CSP

model in each iteration (see the last two paragraphs in Section 1.1 for the history of all

the corrections that were made in more iterations), and (iii) using PAT results for the

final CSP model (henceforth called “the new CSP model”), we analyzed the

performance of PSTM online transaction scheduling algorithms from the perspective of

the relative speedup.

The rest of the paper is organized as follows. Section 1.1 presents closely related

work, Section 2 presents the testing of the previous CSP model, Section 3 presents the

new CSP model, Section 4 presents the performance analysis of the four PSTM online

transaction scheduling algorithms, and Section 5 presents the paper conclusions.

1.1. Related Work

A brief overview of the most closely related research presented in this section covers

formal verification and its testing, PSTM, and PSTM transaction scheduler formal

verification chronology.

The formal verification process used in this paper is based on model checking.

“Model checking is a technique for automatic verification of software and reactive

system, and it consists of verifying some properties of the model of the system”, see [7].

We selected three recent papers in order to illustrate formal verification state of the art

[4], [5], and [6].

The paper [4] was motivated by the importance of the discovery and control service

of an IoT system based on the Chord protocol, and the obvious fact that errors in

concurrent systems are difficult to reproduce and find using solely program testing. The

authors manually proved the correctness of the Chord protocol using the logic of time

and knowledge with the respect to the set of possible executions (that maintain ring

topology while the nodes can freely join or leave). The given proof was not

 Complete Formal Verification… 309

automatically verified in one of the formal proof assistants (e.g., Coq, Isabelle/HOL),

and the authors only mention this as a possible challenge for their future work.

The paper [5] addresses the issues of safety-critical software verification and testing

that are key requirements for achieving DO-178C and DO-331 regulatory compliance

for airborne systems. The verification is performed by the symbolic model checker

MCMAS+ that uses OBDDs. To validate their model, the engineers need to perform

review and tracing activities. Review means fixing syntax errors, whereas tracing means

checking model behaviour along all the possible traces within the complete model’s

state space. Both activities are conducted manually, so they are time-consuming and

error-prone. Moreover, it seems that validation is not based on theoretically expected

results, so the engineers are left to handle it according to their experience and intuition.

The paper [6] presents an approach for specifying, verifying, and deploying time-

constrained business processes (BPs) in a mono-cloud, multi-edge context. At design-

time, four stages take place: (i) specification in Business Process Model and Notation

(BPMN), (ii) placement of tasks and data on cloud or edge, (iii) transformation from

BPMN model to Timed Petri-Nets (TPN) model, and (iv) verification whether TPN

model has any time violations (this is done automatically using a model checker like

TINA). The main disadvantage of this approach is that the initial BPMN model is not

checked. Additionally, the engineers: (i) do not derive some kind of theoretically

expected results of the placement, and (ii) they do the placement manually as a series of

trial-and-error attempts.

Testing as defined in the Cambridge Dictionary is “the process of using or trying

something to see if it works, is suitable, obeys the rules, etc.” [8]. In this paper, we test

the formal model, or more precisely we test the formal verification process itself, in

order to cross-check whether it produces the expected theoretical results. To the best of

our knowledge, this is the first paper that advocates and demonstrates such an approach

to the complete formal verification. So, the testing performed in this paper should not be

confused with software testing, which is considered to be woefully inadequate for

detecting errors in highly concurrent designs [7].

Transactional memory (TM) was conceived as an extension of a cache-coherence

protocol that supports transactions executed on multicores, which operate on shared

variables (called t-variables, or t-vars) [9], [10]. Software TM (STM) appeared as a TM

implemented in software [11]. Python STM (PSTM) [12] is a general purpose STM for

Python, which is applicable in a wide range of application-specific domains, from

computational chemistry simulations [13], to data science, to IoT-based systems such as

smart homes, vehicles, and cities.

PSTM was formally verified in three complementary papers. The authors of the first

paper [14] constructed a formal model as a network of timed automata [15]

representing: linear and cyclic transactions, the queue used by the remote procure call

mechanism, and the transactional memory itself. Using the model checker UPPAAL

[16], they automatically proved the following three properties: safety (atomicity),

liveness (in a set of concurrent transactions, one must get committed), and termination

(the cyclic transactions must eventually get committed).

The authors of the second paper [17] constructed a formal model as a group of CSP

processes representing: a transaction, PSTM API, PSTM server, and PSTM dictionary.

Using the model checker PAT, they automatically proved the following three properties:

310 Miroslav Popovic et al.

deadlock freeness, ACI (atomicity, consistency, and isolation), and optimism (essentially

the same as the liveness in [14]).

The authors of the third paper [18] constructed a formal PSTM push/pull semantic

model as the mapping of operations within the PSTM’s generic transactional algorithm

to the four relevant push/pull rules: PULL, APPLY, PUSH, and CMT (the general

push/pull semantic model is defined in [19]). They manually proved that the model

satisfies correctness criteria for the relevant push/pull rules, and that therefore PSTM

satisfies serializability (i.e. sequential consistency).

Generally, STM transactions are easy to program (as a simple sequential code that is

executed atomically), they cannot deadlock (since one of the concurrent transactions

gets committed), and they provide great performance for low concurrency workloads

(since they are executed speculatively, i.e. without the overhead incurred by locks).

However, in case of high concurrency workloads, the system performance may be

degraded, because many transactions may get aborted and re-executed, or even worse,

some of the transactions may be starved. Therefore, various transaction schedulers (or

contention managers) were introduced in order to sustain good performance even for

high concurrency workloads, e.g. [20], [21], [22].

PSTM transaction scheduler architecture and the four online scheduling algorithms,

named Round Robin (RR), Execution Time Load Balancing (ETLB), Avoid Conflicts

(AC), and Advanced Avoid Conflicts (AAC), were developed with the main goal to

minimize the makespan (the total execution time) and consequently to maximize the

throughput (the number of transactions per second) for an arbitrary workload [23], [24].

These algorithms were developed hierarchically, from the simplest RR to the most

advanced AAC, and they were compared from the perspectives of time complexity,

quality of theoretical initial schedules, and the experimentally measured speedup over

RR and the number of aborts.

The theoretical schedules in [24] were manually derived for three test workloads:

CFW (Conflict Free Workload), RDW (Read Dominated Workload), and WDW (Write

Dominated Workload), which were previously used for the experimental evaluation in

[23]. The experimental results and the theoretical results are well aligned, and this fact

validates both the theoretical analysis in [24] and the algorithms’ implementations in

Python and their experimental evaluation in [23].

The authors of the paper [1] constructed the formal model of the PSTM scheduler

architecture and the first three online transaction scheduling algorithms (RR, ETLB, and

AC) from [23] as a group of CSP processes representing: an application, the scheduler

input queue, the scheduler, the worker input queues, the workers, and the processes

formalizing RR, ETLB, and AC algorithms. Using the model checker PAT, they

automatically proved deadlock and starvation freeness properties and analyzed

algorithms performance from the perspective of makespan, relative speedup, number of

aborts, and throughput. However, instead of using test workloads from [23] and [24],

they introduced three simplified test workloads: CFW, CW-1 (Conflict Workload 1),

and CW-2 (Conflict Workload 2), so a direct comparison of their results with the results

of [23] and [24] was not possible. Moreover, the formal verification in [1] was made

with some shortcomings, which we discovered and remedied in [25].

In [25], we tested the CSP# model of the PSTM transaction scheduler introduced in

[1] by comparing the model checker PAT results with the manually derived expected

results, for the test workloads defined in [1], and we discovered six shortcomings. Next,

 Complete Formal Verification… 311

we extended the CSP# model in order to eliminate the discovered shortcomings. Finally,

using PAT, we automatically analyzed the performance of the PSTM transaction

scheduling algorithms from the perspective of makespan and throughput.

In this paper, we conduct a complete formal verification of the PSTM transaction

scheduler for the three test workloads similar to those used in [23] and [24], in order to

be able to compare the PAT’s results with the results in [23] and [24]. More precisely,

we first derived complete theoretical schedules for these workloads and tested the CSP#

model from [25] with them. We discovered two additional shortcomings of the CSP#

model from [25], and we extended the model accordingly. Next, using PAT, we

analyzed the performance of the PSTM transaction scheduling algorithms from the

perspective of the relative speedup. Finally, we compared the PATs results with the

previous experimental results in [23].

2. Testing

This section presents the testing of the formal models developed in [1] and [25]. The

main goal of the testing was to check whether the formal verification results are aligned

with the theoretical results. The next three subsections present the testing method,

theoretical schedules for the given test workloads, and the testing findings.

2.1. Testing Method

The testing method is based on the analysis of theoretical schedules, which are expected

to be produced by the subject online transaction scheduling algorithms for the given test

workloads. The method comprises the following steps:

 derive theoretical schedules;

 calculate the makespan and the number of aborts;

 compare the results of the previous step with the model checker PAT’s results.

In addition to the test workloads used in [1] and [25], in this paper, we introduce the

new test workload, named: CF (Conflict Free), RD (Read Dominated), and WD (Write

Dominated) workloads, which are similar to the three test workloads (CFW, RDW, and

WDW) used in [24]. The main difference between the former and the latter is that the

former have 6 transactions, whereas the latter have 12 transactions. The second

difference is that each transaction in the CF workload writes to a single t-variable,

whereas each transaction in the CFW in [24] is a money transfer (MT) transaction i.e. it

reads and writes two t-variables.

The new test workloads (CF, RD, and WD) are modeled in CSP# as arrays of six

transactions [T0, …, T5]. There are three kinds of transactions: M, R, and W

transactions. M transaction writes to a single t-variable from the set of t-variables {A, B,

C, D, E, F}, R transaction sequentially reads all the t-variables, and W transaction

sequentially writes to all the t-variables. The duration of the M transaction is 10 time

units, whereas the durations of the R and W transactions are 40 time units each (these

durations are the same as in [24]). The CF workload is a series of M transactions

312 Miroslav Popovic et al.

operating of different t-variables, the RD workload is the interleaving of R transactions

and M transactions, and the WD workload is the interleaving of W and M transactions.

2.2. Theoretical Schedules

As cores in a multicore processor use the same clock, a multicore processor is a

synchronous system and therefore transactions assigned to separate workers’ cores

execute synchronously in parallel. The experiments conducted in [23] confirm this fact,

and it was accepted as a postulate when formalizing PSTM transaction scheduler

architecture and deriving the theoretical schedules for the given number of workers and

given test workloads.

We derived the theoretical schedules for the workloads introduced in [1] in the

preliminary version of this paper [25] (see them there). Here we consider the new test

workloads (CF, RD, and WD). In order to save space, we derive the theoretical

schedules for the PSTM scheduler architecture only with two workers, because these

simple schedules are easy to comprehend and interpret even by readers not too familiar

with this topic. The theoretical schedules for three test workloads CF, RD, and WD are

shown in Fig. 1, Fig. 2, and Fig. 3, respectively.

In each figure, the queue with input transactions is shown at its top, where each

transaction is labeled with its index (i.e. its ID in the CSP# model) and its type (M, R, or

W). The expected schedules for individual online transaction scheduling algorithms are

shown below the input queue, where the two workers’ queues are labeled W0 and W1,

respectively.

0
M

2
M

4
M

1
M

3
M

Input queue of transactions

W0

W1

RR, ETLB, AC, and AAC schedule

0
M

1
M

2
M

3
M

4
M

5
M

5
M

Fig. 1. The theoretical schedules for CF workload

Fig. 1 shows the expected schedule for the CF workload, which is conflict free,

because all the transactions operate on different t-variables. Since there are two workers,

the RR algorithm works by modulo two, so it assigns even transactions to W0 and odd

ones to W1 in its first scheduling iteration. This schedule is executed without aborts

(because there are no conflicts) and therefore this schedule happens to be the complete

schedule with the makespan equal to 30 (3 x 10) and the number of aborts equal to 0.

Because all the transactions have the same duration, the ETLB algorithm behaves as

the RR algorithm, and because there are no potential conflicts among transactions (since

they operate on different t-variables), the AC and the AAC algorithms behave as the

 Complete Formal Verification… 313

ETLB algorithms, i.e. the RR algorithm. So, all the algorithms produce the same

schedule shown in Fig. 1.

Figure 2 shows the expected schedule for the RD workload, which has 9 potential

conflicts – these are the conflicts between each R transaction (T0, T2, and T4) and each M

transaction (T1, T3, and T5) because R transactions sequentially read all the t-variables

and M transactions (T1, T3, and T5) write to a single t-variable (B, D, and F, resp.). Since

there are two workers, the RR algorithm works by modulo two, so it assigns even

transactions to W0 and odd to W1 in its first scheduling iteration. In this initial schedule,

T0 (assigned to W0) is in conflict with all the M transactions (assigned to W1). Because

all the M transactions end before T0, they all get committed, whereas T0 gets aborted,

rescheduled and successfully re-executed in the second iteration. So the complete

schedule has the makespan equal to 160 (4 x 40), and the number of aborts is equal to 1.

0
R

2
R

4
R

1
M

3
M

Input queue of transactions

RR schedule

W0

W1

ETLB schedule

W0

W1

AC and AAC schedule

W0

W1

5
M

0
R

2
R

4
R

0
R

1
M

3
M

5
M

0
R

1
M

2
R

3
M

4
R

5
M

0
R

1
M

2
R

3
M

4
R

5
M

0
R

2
R

4
R

Fig. 2. The theoretical schedules for RD workload

The ETLB algorithm performs load balancing by making the following sequence of

assignments in its first iteration (see Fig. 2, ETLB schedule): T0 to W0, T1 to W1, T2 to

W1, T3 to W0, T4 to W0, and T5 to W1. However, this initial schedule is worse than the one

produced by the RR algorithm, because it is executed with the following 3 conflicts

causing 3 aborts: (i) T0 and T1 are in conflict, and T1 is faster, so T0 gets aborted, (ii) T2

and T3 and in conflict, and they end simultaneously, so in the worst case T2 gets aborted

(this is the worst case because T2’s duration is greater than T3’s) and (iii) T4 and T5 are in

conflict, and T5 is faster, so T4 gets aborted. In the second iteration, the ETLB makes the

following series of assignments (see Fig. 2): T0 to W0, T2 to W1, and T4 to W0. This

schedule is executed without aborts because it is conflict free. So the complete schedule

has the makespan equal to 170 (4 x 40 + 10), and the number of aborts is equal to 3.

314 Miroslav Popovic et al.

The AC and the AAC algorithms do better than the ETLB algorithm because they are

aware of the potential conflicts. Actually, for this particular workload, the AC algorithm

produces the same result as the optimal AAC algorithm using a simple heuristic

(schedule the next transaction to the least loaded worker if that does not cause a

conflict). Both algorithms make the following sequence of assignments (see Fig. 2, AC

and AAC schedule): T0 to W0, T1 to W0 (because of the potential conflict between T0 and

T1), T2 to W1, T3 to W1 (because there is no conflict between T2 and T3), T4 to W0, and T5

to W0 (because of the potential conflict between T4 and T5). This initial schedule is

conflict free, and therefore constitutes the complete schedule with the makespan equal to

100 (2 x 40 + 2 x 10), and the number of aborts equal to 0.

0
W

2
W

4
W

1
M

3
M

Input queue of transactions

RR schedule

W0

W1

ETLB schedule

W0

W1

AC and AAC schedule

W0

W1

5
M

0
W

2
W

4
W

0
W

1
M

3
M

5
M

0
W

1
M

2
W

3
M

4
W

5
M

0
W

2
W

4
W

0
W

0
W

2
W

4
W

1
M

3
M

5
M

Fig. 3. The theoretical schedules for WD workload

Figure 3 shows the expected schedule for the WD workload, which has potential

conflicts among all the transactions. The RR algorithm works by modulo two, so it

assigns even transactions to W0 and odd to W1 in its first scheduling iteration. In this

initial schedule, T0 (assigned to W0) is in conflict with all the M transactions (assigned to

W1). Because all the M transactions end before T0, they all get committed, whereas T0

gets aborted, rescheduled and successfully re-executed in the second iteration. So the

complete schedule has the makespan equal to 160 (4 x 40), and the number of aborts is

equal to 1. This result is practically the same as that for the RD workload (see Fig. 2).

The ETLB algorithm performs load balancing by making the following sequence of

assignments in its first iteration (see Fig. 3, ETLB schedule): T0 to W0, T1 to W1, T2 to

W1, T3 to W0, T4 to W0, and T5 to W1. This initial schedule is practically the same as for

the RD workload (see Fig. 2), and for the same reasons T0, T2, and T4 get aborted (in the

worst case) and rescheduled in the second iteration. However, unlike the case for the RD

 Complete Formal Verification… 315

workload, T0 and T2 are now in conflict, so one of them (say T0) gets aborted and re-

executed in the third iteration. So, the complete schedule has the makespan equal to 210

(5 x 40 + 1 x 10) and the number of aborts equal to 4.

The AC and AAC algorithms serialize all the transactions (because of the conflicts

among them) by assigning them all to W0, whereas W1 stays idle (see Fig. 3, AC and

AAC schedule). So, this initial conflict-free schedule constitutes the complete schedule

with the makespan equal to 150 (3 x 40 + 3 x 10) and the number of aborts equal to 0.

Table 1 summarizes the expected theoretical results for the makespan (ms) and the

number of aborts (na) for the number of workers (Index) equal to 2 (derived above), as

well as for the Index equal to 3, and 4 (which are derived analogously).

Table 1. The expected theoretical results for CF, RD, and WD workloads

Load & Alg. Index = 2 Index = 3 Index = 4

Load Alg. ms na ms na ms na

CF

RR 30 0 20 0 20 0

ETLB 30 0 20 0 20 0

AC 30 0 20 0 20 0

AAC 30 0 20 0 20 0

RD

RR 160 1 90 3 120 2

ETLB 170 3 100 3 90 3

AC 100 0 60 0 70 0

AAC 100 0 50 0 50 0

WD

RR 160 1 180 7 160 3

ETLB 210 4 180 6 170 6

AC 150 0 150 0 150 0

AAC 150 0 150 0 150 0

2.3. Testing Findings

Formal model testing was organized in two phases. The object of the first phase was the

initial CSP# model from [1], whereas the object of the second phase was the extended

CSP# model from [25]. The first phase was conducted in [25] using the three test

workloads defined in [1], (CFW, CW-1, and CW-2), whereas the second phase was

conducted in this paper using the three test workloads very similar to those used in [23]

and [24], namely CF, RD, and WD workloads.

Table 2 summarizes the testing findings. In the first testing phase, we discovered

items 1, 5, and 6 in Table 2, as well as the initial shortcomings in items 2-4. Next, in the

second testing phase, we discovered items 7 and 8, as well as additional shortcomings in

items 2-4.

By comparing the expected values of makespan and the values in [1], we found that,

by an oversight, the time used (TU) for the model checking by the model checker PAT

was interpreted as equal to the makespan. Next, the fact that the expected values for the

number of aborts and the values in [1] were different, indicated that the real schedules

from [1] are different from the expected schedules derived in [25]. A rather tedious

reconstruction of the real schedules from the model checker PAT’s log files confirmed

this indication.

316 Miroslav Popovic et al.

Table 2. The summary of testing findings

No. Finding

1 PAT’s time used (TU) reported as the makespan

2 The macro isConflict shortcomings

3 Pessimistic concurrency control

4 Asynchronous transactions’ execution

5 The number of workers fixed to Index = 2

6 AAC algorithm not supported

7 Read operations and the star convention not supported

8 The macros findmin and findmax shortcomings

The three main root causes of the discrepancies between the real and the expected

schedules (the findings 2-4 in Table 2) are the following: (i) the macro isConflict, which

checks whether there are conflicts between the next transaction to be scheduled x and

any already scheduled transaction i, included the case i = x, (ii) the CSP# model from

[1] uses the pessimistic concurrency control, whereas the real PSTM uses the optimistic

concurrency control (see Sec. 2-1 in [10]), and (iii) the workers in the CSP# model from

[1] execute transactions asynchronously, and therefore this model violates the postulate

of the synchronous transaction execution introduced in Section 2.2.

By a quick inspection of the model from [1], we saw that the number of workers is

fixed to Index = 2 and that the AAC algorithm is not supported (items 5-6 in Table 2). In

the second testing phase, we needed to model RD and WD workloads, and at that time

we discovered that the model in [25] does not support read operations and the star

convention by which * means all the t-variables (item 7 in Table 2). While fixing item 7,

we found additional shortcomings related to items 2-4 and we discovered that in the case

when the array load has equal elements, both macro findmin and macro findmax return

the index of the last of them, whereas in the theoretical schedules we took the index of

the first such element (item 8).

3. The New Model

This section presents the new CSP# model, which evolved from the previous model

presented in [25]. The next subsections present the three most important parts of the

model related to (i) conflict detection, (ii) optimistic concurrency control, and (iii)

synchronous transactions’ execution. This organization was made according to the

findings 2-4 and 7 in Section 2.3 (other extensions are skipped because of the space

limits).

3.1. Conflict Detection

The macro isConflict sets the variable IsConflict to 0 if the new transaction x starting at

t1 and ending at t2 is not in conflict with the already scheduled transactions; otherwise it

sets IsConflict to 1, see Algorithm 1. Initially, it sets the variables i and IsConflict to 0

(lines 4-5; i is the index of the i-th transaction). Next, it repeats the loop while i is less

than TNum (the number of transactions) and there is no conflict (lines 6-18).

 Complete Formal Verification… 317

Within the loop, it performs a series of nested if statements, which is equivalent to a

single if statement with a conjunction of all the conditions, in order to check whether the

transaction i is scheduled (line 7), and the transactions i and x overlap in time (lines 8-

9), and i is not x, and the transactions i and x operate on the same t-variable or one of

them operates all the t-variables as indicated by the constant Star (line 10), and the

transactions i or x write to the t-variable(s) (line 11), and if yes it sets isConflict to 1.

Algorithm 1. The macro isConflict

01: var IsConflict = 0;

02: #define isConflict(x, t1, t2)

03: {

04: var i = 0;

05: IsConflict = 0;

06: while(i<TNum && IsConflict!=1) {

07: if(T_isScheduled[i]==1) {

08: if((T_StartTime[i]<t2 && t2<=T_EndTime[i])||

09: (t1<T_EndTime[i] && T_EndTime[i]<=t2)) {

10: if((i!=x)&&(T_Var[i]==T_Var[x]||T_Var[i]==Star||T_Var[x]==Star)) {

11: if(T_VarOp[i]==Wtvar || T_VarOp[x]==Wtvar) {

12: IsConflict = 1;

13: }

14: }

15: }

16: }

17: i++;

18: }

19: };

3.2. Optimistic Concurrency Control

The PSTM’s optimistic concurrency control model is shown in Algorithm 2. This model

is much simpler than the complete PSTM models developed in [14] and [17], and it was

made as such, in order to keep the model state space exploration fast and feasible.

The array T_VarVer (line 1) models the PSTM dictionary, and its elements store the

versions of the respective t-variables (TvarNum is the number of t-variables). Since the

number of transactions in a workload is equal to TNum, we bounded the number of

versions for each t-variable by TNum, in order to reduce the state space to be explored

(if TNum transactions update a single t-variable, its final version would be TNum-1).

The number of a t-variable versions is effectively bounded by counting them with

modulo TNum (line 13 for single t-variable updates and line 18 for the updates using the

star convention).

In order to support updates using the star convention (i.e. updates of all the t-

variables), we define the star version (i.e. the version of all the t-variables) as the sum of

the versions of all the t-variables. The macro calciver (called in line 6) stores its result in

the variable iver (line 2), and the result is either the star version if the argument key is

equal to Star, or the version T_VarVer[key] if key is not equal to Star.

The process Pstm models the PSTM itself (lines 3-29). The worker processes send

their messages to Pstm over the channel worker2pstm, whereas Pstm sends its replies to

the worker process Wi via the channel pstm2worker[i].

318 Miroslav Popovic et al.

Algorithm 2. The PSTM’s optimistic concurrency control model

01: var T_VarVer[TvarNum]:{0..TNum-1} = [0(TvarNum)];

02: var iver:{0..TvarNum*TNum} = 0;

03: Pstm() =

04: worker2pstm?i.req.op.key.ver->

05: atomic {

06: {call(calciver, key)}->

07: if(req == GetVars) {

08: pstm2worker[i]!iver->Pstm()

09: } else { // commitVars

10: if(ver == iver) { // T_VarVer[key] replaced with iver

11: if(op == Wtvar) {

12: if(key != Star) {

13: {T_VarVer[key] = (T_VarVer[key]+1)%TNum}->

14: pstm2worker[i]!1->Pstm()

15: } else {

16: {

17: var ii = 0;

18: while(ii<TvarNum){T_VarVer[ii]=(T_VarVer[ii]+1)%TNum;ii++}

19: }->

20: pstm2worker[i]!1->Pstm()

21: }

22: } else {

23: pstm2worker[i]!1->Pstm()

24: }

25: } else {

26: pstm2worker[i]!0->Pstm()

27: }

28: }

29: };

The compound messages sent by Wi to Pstm, over the channel worker2pstm, have the

format i.req.op.key.ver, where i is the worker’s index, req is the type of request (the

existing types of requests are: GetVars and CommitVars, which correspond to the PSTM

API functions getVars and commitVars, respectively), op is the type of operation (the

existing types of operations are: Wtvar and Rtvar, which correspond to the write and

read operations, respectively), key is the index of the t-variable or Star, and ver is the

version of the t-variable or the star version.

The replies sent from Pstm to Wi, over the channel pstm2worker[i], have a single

element whose semantics depend on the type of the request: for GetVars request, the

reply is the t-variable’ version, whereas for CommitVars request, the reply is either 0 or

1 whether the transaction gets aborted or successfully committed, respectively.

After receiving the message i.req.op.key.ver (line 4) the process Pstm atomically (line

5) serves the request as follows. It calls the macro calciver (line 6) to set the iver for the

given key (which may be an index of a t-variable or Star). Then it checks the type of the

request (line 7). In the case of the GetVars request (line 8), it returns iver (which may be

the version of a t-variable or the star version). Alternatively, in the case of the

CommitVars request, Pstm checks whether the version ver from the input message is

equal to iver (line 10). If they are equal, Pstm checks the type of op (line 11).

 Complete Formal Verification… 319

If op is equal to Wtvar (line 11), Pstm compares key with Star (line 12). If key is not

equal to Star, Pstm increments the current version of the t-variable key (line 13),

whereas if key is equal to Star, Pstm increments current versions of all the t-variables

(line 18), and in both cases Pstm sends the reply 1 signaling successful commit (line 20).

If op is not equal to Wtvar (i.e. op is the read operation), Pstm sends the reply 1

signaling successful commit (line 23). If ver is not equal to iver, Pstm sends the reply 0

signaling abort (line 26).

As defined above, Pstm provides optimistic concurrency control by servicing two

types of requests made by synchronous concurrent workers executing transactions. Each

transaction starts with the GetVars request (to get local copies of specified t-variables),

proceeds with some data processing (on local copies), and ends with the CommitVars

request (to update the specified shared t-variables).

3.3. Synchronous Transactions’ Execution

The worker’s behavior model is shown in Algorithm 3 (excluding unimportant parts).

The worker Wi initially behaves as the process Worker(i) (line 1). After receiving the

signal READY from the scheduler, it behaves as the process Worker_1(i) (line 2).

The process Worker_1(i) is an iterative process (line 3). In each iteration, it checks

the input queue Queue[i] (line 4). If there are no transactions in the input queue,

Worker_1(i) executes the process Worker_2(i), sends the signal done to the scheduler,

and continues behaving as the process Worker(i) (line 5). Alternatively, if there is a

transaction in the input queue (line 6), Worker_1(i) dequeues the transaction, estimates

the duration of the transaction, sets the variables related to the transaction (these steps

are not shown in Algorithm 3), and executes the process Working(i, currentT[i]), where

currentT[i] is the index of the current transaction executed by Wi (line 7).

By the definition of the parallel composition operator ||, all the parallel processes

must simultaneously engage in their common events (i.e. the events in the intersection of

their alphabets) [2]. In Algorithm 3, all the workers synchronize using the so-called

lock-step synchronization, i.e. they engage in their common event tick simultaneously.

Therefore, all the workers must engage in the same number of ticks, nt, in each

scheduling iteration. In order to calculate nt, let nti be the total load plus the number of

transactions allocated to Wi (the number of transactions is added because starting each

transaction requires one tick). Then, nt is the maximal nti, ntm (nti for the worker i = m),

for i = 0, …, Index – 1:

nti = loadi + count(Queuei) . (1)

nt = ntm = maxi nti . (2)

Next, let iti be the number of idle ticks that must be executed by Wi after it processed

all the transactions from its input queue, Queuei:

iti = nt - nti . (3)

The processes Working(i, txn) and Working_1(i, txn) model the behavior of Wi

processing its current transaction txn. The former models the start of the transaction,

whereas the latter models the rest of the transaction.

320 Miroslav Popovic et al.

Algorithm 3. The worker’s behavior

01: Worker(i) =

02: comSW[i]?READY->Worker_1(i);

03: Worker_1(i) =

04: if(Queue[i].Count() == 0) {

05: Worker_2(i); output!done -> Worker(i)

06: } else {

 …

07: Working(i, currentT[i]);

 …

08: Worker_2(i) =

09: if(idleTicks[i] > 0) {

10: tick -> tau{idleTicks[i]--} -> Worker_2(i)

11: } else {Skip};

12: Working(i, txn) =

13: tick ->

14: worker2pstm!i.GetVars.0.currentT_Var[i].0 ->

15: pstm2worker[i]?tvarver ->

16: {currentT_VarVer[i] = tvarver; workertime[i]++} ->

17: Working_1(i, txn);

18: Working_1(i, txn) =

19: tick ->

20: if(workertime[i] < currentT_Time[i]) {

21: working{workertime[i]++} ->

22: Working_1(i, txn)

23: } else {

24: worker2pstm!i.CommitVars.T_VarOp[txn].currentT_Var[i].currentT_VarVer[i] ->

25: pstm2worker[i]?resp ->

26: {currentT_Cmt[i] = resp; workertime[i] = 0} ->

27: Skip

28: };

The process Working(i, txn) (lines 12-17): (i) sends the GetVars request to the

process Pstm (line 14) and receives the value of tvarver (which is either the version of

the t-variable key if key is not Star or the star version if key is equal to Star) in the reply

from Pstm (line 15), and (ii) stores tvarver into currentT_VarVer[i] and increments its

working time by updating workertime[i] (line 16).

The process Working_1(i, txn) (lines 18-28) checks whether it has to do more

processing (line 20), and if yes, it increments its working time (line 21). At the end of

the transaction (line 23), it: (i) sends the CommitVars request to the process Pstm (line

24) and receives the Pstm’s reply resp, which is 1 if the transaction got successfully

committed, otherwise it is 0 (line 25), and (ii) stores resp into currentT_Cmt[i] and

resets the working time (for the next scheduling iteration) by clearing workertime[i] (line

26).

After the process Working_1(i, txn) terminates, the process Worker_1(i) resumes at

line 5, where it executes the process Worker_2(i) (lines 8-11). The latter checks whether

 Complete Formal Verification… 321

the number of its idle ticks idleTicks[i] is greater than zero (line 9), and if yes,

decrements idleTicks[i] (line 10); otherwise it terminates (line 11).

4. Formal Verification

This section presents the formal verification for the new CSP# model. The next two

sections present the verification results and the performance analysis.

4.1. Verification Results

First, we define the following three system conditions, which are used in the assertions:

 the condition Done requires that snum is equal to TNum (where snum is the number

of the successfully executed transactions), which means that all the transactions have

been successfully executed;

 the condition MaxNA requires that na is nonnegative and that Done is satisfied;

 the condition MaxMS requires that ms is nonnegative and that Done is satisfied.

Next, we introduce the five assertions that were checked for each workload defined in

the previous paper [25] (CFW, CW-1, and CW-2) and in this paper (CF, RD, and WD

workloads) and each version of the system, where the version of the system is defined by

the given number of workers (Index) and the given online transaction scheduling

algorithm (RR, ETLB, AC, and AAC). The first assertion corresponds to a safety

property, and the other assertions correspond to liveness properties.

These five assertions are defined as follows:

 the system is deadlock-free;

 the system reaches a state satisfying the condition Done;

 all the system’s evolution paths satisfy the CSP# LTL formula []<>comSA.complete,

which means that always eventually ([]<>) the signal complete is sent from the

scheduler to the application, over the channel comSA;

 the system reaches a state satisfying the condition MaxNA over a path that maximizes

na (this is achieved by using the clause “with max(na)”, which instructs PAT to

search and report the maximal value of na);

 the system reaches a state satisfying the condition MaxMS over a path that maximizes

the expression (ms+na) (this is achieved by using the clause “with max(ms+na)”).

Using PAT, we checked these five assertions for each of the six workloads (CFW,

CW-1, CW-2, CF, RD, and WD workloads) and for each of the system versions. There

are system versions with 2, 3, and 4 workers (i.e. Index = 2, 3, 4), and for each of the 4

online transaction scheduling algorithms (RR, ETLB, AC, and AAC), i.e. there are 12

system versions (3 x 4 = 12) in total. All the 360 assertions (6 x 12 x 5 = 360) that we

checked were found to be valid (i.e. satisfied).

The third assertion for the case with 4 workers, WD workload, and ETLB algorithm

was the most time-consuming to validate. The verification statistics reported by PAT for

this case are the following: 14386432 visited states, 46722717 passed transitions, 526 s

322 Miroslav Popovic et al.

of used time, and 6950446 KB of used memory (on a PC with 16GB DDR4 memory and

CPU i7-8750H 2.2 GHz with turbo bust to 4.1 GHz).

We also manually checked the values for na and ms reported by the last two

assertions, and they matched the expected results. The expected results for the

workloads defined in this paper are given in Table 1, whereas the expected results for

the workloads defined in [25] are given in Table 1 and Table 3 in [25].

4.2. Performance Analysis

In this section, we: (i) introduce the necessary definitions, (ii) analyze the performance

of the PSTM online transaction scheduling algorithms from the perspective of the

relative speedup using the theoretical results (confirmed by PAT) from [25] and this

paper, and (iii) we validate the theoretical results from this paper with the experimental

results from [23].

First, we define the number of independent transactions within a workload, L, which

we use to quantitatively characterize the level of parallelism for a given L.

Definition 1. The number of independent transactions, nit, is the max number of

transactions in L that could be scheduled online (i.e. without changing the transactions

arrival order), in parallel, on an infinite number of processors, without a conflict.

For example, the values of nit for WD, RD, and CF workloads, are 1, 3, and 6,

respectively. So, WD has the lowest level of parallelism, and CF has the highest.

Next, we define the relative speedup of an algorithm A over the algorithm RR.

Definition 2. The relative speedup, s, of an algorithm A over the algorithm RR is

defined as the ratio msRR/msA, where msRR and msA are the makespans for the algorithms

RR and A, respectively.

Fig. 4. The average relative speedup for the theoretical results from [25]

 Complete Formal Verification… 323

Fig. 5. The average relative speedup for the theoretical results in this paper

Fig. 6. The average relative speedup for the experimental results from [23]

Using data from [25], we calculated the average relative speedup for each algorithm

(RR, ETLB, AC, and AAC) and each workload (CW-2, CW-1, and CFW), which are

characterized by their nit values (1, 3, and 5); the average is calculated over the values

of relative speedup for Index = 2, 3, and 4 (i.e. 2, 3, and 4 workers).

The values of the average s for RR, ETLB, AC, and AAC algorithms are illustrated in

Fig. 4 with the curves denoted as s-rr, s-etlb, s-ac, and s-aac, respectively.

Similarly, using data from this paper, we calculated the average relative speedup for

each algorithm (RR, ETLB, AC, and AAC) and each workload (WD, RD, and CF

workloads), which are characterized by their nit values (1, 3, and 6); the average is again

calculated over the values of relative speedup for Index = 2, 3, and 4. The values of the

average s for RR, ETLB, AC, and AAC algorithms are illustrated in Fig. 5 with the

curves again denoted as s-rr, s-etlb, s-ac, and s-aac, respectively.

After analyzing the data and the shape of the curves in Fig. 4 and Fig. 5, we may

conclude that according to their performance, in terms of the average relative speedup,

the PSTM online transaction scheduling algorithms can generally be ranked as follows:

(i) AAC is the best, (ii) AC is worse than AAC, (iii) ETLB is worse than AC, and (iv)

RR is the worst. There is a single exception to the general conclusion: in the case of the

WD workload, ETLB is worse than RR, see Fig. 5. This exception is not unexpected,

324 Miroslav Popovic et al.

because, for some workloads (like the WD workload), the simple RR algorithm may

outperform the ETLB algorithm that sometimes may be too greedy.

Next, we compare the theoretical results in this paper (illustrated in Fig. 5) with the

experimental results from [23]. It is important to realize that these results are not

quantitatively comparable, because of the following reasons: (i) the workloads from [23]

have 200 transactions each (whereas the workloads in this paper have 6 transactions

each), (ii) the duration of transactions in the workloads from [23] are: M transaction

takes 0.65 ms whereas R and W transactions take 45 ms each (whereas the duration of

transactions in this paper are: M takes 10 time units whereas R and W take 40 time

units), (iii) the experiments in [23] were made only for the two cases: with 2 and 3

workers, and (iv) the experiments in [23] were made on a PC with 4 cores, consequently

some schedules for the case with 3 workers were compromised by the local OS, since 4

cores were not sufficient to host 3 workers and the OS processes.

On the other hand, we had an intuition that these theoretical and experimental results

should be qualitatively comparable, because of the following reasons: (i) the workloads

from [23] and from this paper have the same rather simple patterns, which when

scheduled on a small number of workers (like in [23]) should yield schedules having

rather small periods, and (ii) if we take the time unit to be one ms, at least the durations

of R and W transactions would be the same.

Therefore, using the data from [23], we calculated the average relative speedup for

each algorithm and each workload (namely WDW, RDW, and CFW, which are

characterized by their nit values: 1, 100, and 200, respectively); the average is calculated

over the values of relative speedup for Index = 2 and 3 (2 and 3 workers). The values of

the average s for RR, ETLB, AC, and AAC algorithms are illustrated in Fig. 6 with the

curves again denoted as s-rr, s-etlb, s-ac, and s-aac, respectively.

After analyzing the shapes of the curves in Fig. 5 and in Fig. 6, we may conclude that

the theoretical results in this paper are qualitatively well aligned with the experimental

results from [23].

5. Conclusions

Modern society is becoming strongly dependent on the pervasive use of software in

everyday life, and therefore software verification is becoming extremely important.

Traditionally, formal methods have been seen as a key for the successful design of safety

critical systems. However, in this research, we learned that using solely formal methods,

like CSP, is not sufficient. As a solution, we proposed the method for the complete

formal verification of trustworthy software, which jointly uses formal verification and

formal model testing.

In the paper, we applied this method and conducted the complete verification of the

PSTM online transaction scheduler and the accompanying scheduling algorithms,

through the iterative procedure of testing and correcting/extending the initial CSP

model. The final result of this iterative procedure is called the new CSP model. Using

this new CSP model, we analyzed the performance of the PSTM online transaction

scheduling algorithms from the perspective of the relative speedup, and got the results

that were as expected and well aligned with the previous research [23], [24], and [25].

 Complete Formal Verification… 325

The main difficulty that we faced in this research was to make a realistic model that is

simple enough to be checkable on an off-the-shelf PC that was at our disposal. This

difficulty caused the main limitations of the presented example: (i) the limited number of

workers (up to 4), (ii) the limited number of test workloads (6 altogether), (iii) the

limited number of transactions in a workload (up to 6), (iv) fixed transactions’ durations,

and (v) the transactions either operate on a single t-variable or on all the t-variables

(using the star convention). In our future work we plan: (i) to address these limitations,

and (ii) to apply the complete formal verification on other software architectures.

Acknowledgement. This work was partially supported by: (i) the Ministry of Education, Science

and Technology Development of Republic of Serbia under Grant 451-03-68/2020-14/200156,

and (ii) the “Digital Silk Road” Shanghai International Joint Lab of Trustworthy Intelligent

Software (Grant No. 22510750100).

References

1. Xu, C., Wu, X., Zhu, H., Popovic, M.: Modeling and Verifying Transaction Scheduling for

Software Transactional Memory using CSP. In Proceedings of the 13th Theoretical Aspects

of Software Engineering Symposium. IEEE, Guilin, China, 240-247. (2019)

2. Hoare, C.A.R.: Communicating Sequential Processes. Prentice/Hall International, New

Jersey, USA. (1985)

3. Si, Y., Sun, J., Liu, Y., Dong J. S., Pang, J., Zhang, S. J., Yang, X.: Model checking with

fairness assumptions using PAT. Frontiers of Computer Science, Vol. 8, No. 1, 1-16. (2014)

4. Marinković, B., Ognjanović, Z., Glavan, P., Kos, A., Umek, A.: Correctness of the Chord

Protocol. Computer Science and Information Systems, Vol. 17, No. 1, 141-160. (2020)

5. Elqortobi, M., El-Khouly, W., Rahj, Amine R., Bentahar, J., Dssouli, R.: Verification and

Testing of Safety-Critical Airborne Systems: a Model-based Methodology. Computer

Science and Information Systems, Vol. 17, No. 1, 271-292. (2020)

6. Cheikhrouhou, S., Kallel, S., Guidara, I., Maamar, Z.: Business Process Specification,

Verification, and Deployment in a Mono-Cloud, Multi-Edge Context. Computer Science and

Information Systems, Vol. 17, No. 1, 293-313. (2020)

7. Berard, B., Bidoit, J. M., Finkel, A., Laroussinie, F., Petit, A., Petrucci, L., Schnoebelen,

Ph., McKenzie, P.: Systems and Software Verification. Springer, Berlin, Germany. (1999)

8. Testing. Cambridge online dictionary. [Online]. Available:

https://dictionary.cambridge.org/dictionary/english/testing (current September 2021)

9. Herlihy, M., Moss, J. E. B.: Transactional memory: Architectural support for lock-free data

structures. In Proceedings of the 20th Annual International Symposium on Computer

Architecture. ACM, San Diego, CA, USA, 289-300. (1993)

10. Harris, T., Larus, J. R., Rajwar, R.: Transactional Memory, 2nd edition. Morgan and

Claypool, San Rafael, CA, USA. (2010)

11. Shavit, N., Touitou, D.: Software transactional memory. In Proceedings of the 14th Annual

ACM Symposium on Principles of Distributed Computing. ACM, Ottawa, Ontario, Canada,

204-213. (1995)

12. Popovic, M., Kordic, B.: PSTM: Python software transactional memory. In Proceedings of

the 22nd Telecommunications Forum (TELFOR). IEEE, Belgrade, Serbia, 1106-1109.

(2014)

13. Kordic, B., Popovic, M., Popovic, M., Goldstein, M., Amitay, M., Dayan, D.: An

Evolutionary Computational System Architecture Based on a Software Transactional

326 Miroslav Popovic et al.

Memory. Revue Roumaine des Sciences Techniques. Ser. Electrotechnique et Energetique,

Vol. 61, No. 1, 47-52. (2021)

14. Kordic, B., Popovic, Ghilezan, M., S.: Formal Verification of Python Software Transactional

Memory Based on Timed Automata. Acta Polytechnica Hungarica, Journal of Applied

Sciences, Vol. 16, No. 7, 197-216. (2019)

15. Alur, R., Dill, D. L.: A theory of timed automata. Theoretical Computer Science, Vol. 126,

No. 2, 183-235. (1994)

16. Behrmann, G., David, A., Larsen, K. G.: A Tutorial on Uppaal. In: Bernardo, M., Corradini,

F. (eds.): Formal Methods for the Design of Real-Time Systems. Lecture Notes in Computer

Science, Vol. 3185. Springer-Verlag, Berlin Heidelberg New York, 200-236. (2004)

17. Liu, A., Zhu, H., Popovic, M., Xiang, S., Zhang, L.: Formal Analysis and Verification of the

PSTM Architecture Using CSP. Journal of Systems and Software, Vol. 165, 1–14. (2020)

18. Popovic, M., Popovic, M., Ghilezan, S., Kordic, B.: Formal Verification of Local and

Distributed Python Software Transactional Memories. Revue Roumaine des Sciences

Techniques. Ser. Electrotechnique et Energetique, Vol. 64, No. 4, pp. 423–428. (2019)

19. Koskinen, E., Parkinson, M.: The Push/Pull Model of Transactions. In Proceedings of the

36th ACM SIGPLAN Conference on Programming Language Design and Implementation.

Morgan Kaufmann, Portland, Oregon, USA, 186-195. (2015)

20. Yoo R.M., Lee, H.-H.S.: Adaptive transaction scheduling for transactional memory systems.

In Proceedings of the 20th annual symposium on Parallelism in algorithms and architectures.

ACM, Munich, Germany, 169–178. (2008)

21. Ansari, M., Luján, M., Kotselidis, C., Jarvis, K., Kirkham, C., Watson, I.: Steal-on-Abort:

Improving Transactional Memory Performance through Dynamic Transaction Reordering.

In: Seznec, A., Emer, J., O’Boyle, M., Martonosi, M., Ungerer, T. (eds.): High Performance

Embedded Architectures and Compilers. HiPEAC 2009. Lecture Notes in Computer

Science, Vol. 5409. Springer, Berlin, Heidelberg, 4-18. (2009)

22. Dolev, S., Hendler, D., Suissa, A.: CAR-STM: scheduling based collision avoidance and

resolution for software transactional memory. In Proceedings of the twenty-seventh ACM

symposium on Principles of distributed computing. ACM, Toronto, Ontario, Canada, 125-

134. (2008)

23. Popovic, M., Kordic, B., Popovic, M., Basicevic, I.: Advanced Algorithm for Scheduling

TM Transactions with Conflict Avoidance. In Proceedings of the 25th Telecommunications

Forum (TELFOR). IEEE, Belgrade, Serbia, 844-847. (2017)

24. Popovic, M., Kordic, B., Popovic, M., Basicevic, I.: Online Algorithms for Scheduling

Transactions on Python Software Transactional Memory. Serbian Journal of Electrical

Engineering, Vol. 16, No. 1, 85-104. (2019)

25. Popovic, M., Popovic, M., Kordic, B., Zhu, H.: PSTM Transaction Scheduler Verification

Based on CSP and Testing. In Proceedings of the 7th Conference on the Engineering of

Computer Based Systems. ACM, Novi Sad, Serbia, Article No. 10, 1-10. (2021)

Miroslav Popovic received his Dipl. Eng., M.Sc., and Ph.D. degrees from the Faculty

of Technical Sciences, University of Novi Sad, Serbia, in 1984, 1988 and 1990,

respectively. He is a Full Professor at the University of Novi Sad from 2002. Currently

he is giving courses on parallel programming, real-time systems programming, and inter-

computer communications and computer networks. In the past, he has supervised many

real-world projects for the industry, mostly in real-time and embedded systems. His

research interests are engineering of computer-based systems, intelligent distributed

systems, and security. He has authored or co-authored about 30 peer-reviewed journal

papers, more than 120 conference papers, and the book Communication protocol

engineering, Second Edition (CRC Press, Taylor & Francis Group, 2018).

 Complete Formal Verification… 327

Marko Popovic received his B.Sc., M.Sc., and PhD degrees from the Faculty of

Technical Sciences, University of Novi Sad, Serbia, in 2015, 2017, and 2020,

respectively. Currently he is Scientific Researcher affiliated with the RT-RK Institute of

Computer Based Systems, Novi Sad, Serbia. His research interests are in the areas of

engineering of computer-based systems and intelligent distributed systems. He has

authored or co-authored more than 15 scientific papers.

Branislav Kordic received B.Sc, M.Sc, and PhD degrees from the Faculty of Technical

Sciences, University of Novi Sad, Serbia, in 2012, 2013, and 2020, respectively. He was

a teaching assistant at the Faculty of Technical Sciences, University of Novi Sad.

Currently he works as a professional software engineer. His domains of interest are real-

time systems and systems for parallel and distributed computing.

Huibiao Zhu is currently a professor in East China Normal University, Shanghai. He

earned his Ph.D. degree in formal methods from London South Bank University,

London, in 2005. During these years, he has studied various semantics and their linking

theories for Verilog, SystemC, web services and probability system. He was the Chinese

PI of the Sino-Danish Basic Research Center IDEA4CPS.

Received: September 08, 2021; Accepted: May 11, 2022.

