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Abstract. During the development of control schemes for upper-limb pros-
theses, the selection of a classification method is the decisive factor on
predicting the correct hand movements. This contribution brings forward
an approach to validate and visualize the output of a chosen classifier by
simulative means. Using features extracted from a collection of recorded
myoelectric signals (MES), a training set for different classes of hand
movements is produced and validated with additional MES recordings.
Using the output of the classifier, the behavior of an actual prosthesis is
simulated by controlling the 3D model of a prosthetic hand. For system-
atic comparison of feature sets and classification methods, a toolbox for
MATLAB

TM
has been developed. Our classification results show, that ex-

isting classification schemes based on EMG data can be improved signif-
icantly by adding NIR sensor data. Employing only two combined EMG-
NIR sensors, five motion classes comprising full movements, including
pronation and supination, can be distinguished with 100% accuracy.

Keywords: Classification Algorithms, Decision Trees, Electromyography,
Modeling, Prosthetic Hand, Simulation, Support Vector Machines, Visual-
ization.

1. Introduction

Research on the employment of myoeletric signals for prostheses control has
been conducted since the 1940s [13]. Myoelectric signals (MES) can be mea-
sured by placing electrodes on the skin located over the observed muscles.
When a muscle is activated through a neurological impulse, transmitted from
the brain, small changes in electrical potential can be detected on the surface
of the skin. In order to actuate a prosthesis, these signals are processed. In
their work, Englehart, Hudgins, Parker and Stevenson provide a definition for
the signal-classification problem and preposition a multi-stage process [4]. In
this process, the complexity of recorded data is reduced by the introduction of
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features like root-mean-square (RMS) values, which denote the average signal
strength. After extraction, the selected features are fed into a classifier. Usu-
ally, a training-data set, with different classes for various hand movements or
hand-positions, is created. Any new electromyographic (EMG) data can then
be attributed to one of the given classes. Recently, research about a novel type
of sensor using near-infrared (NIR) light, to detect muscle activity, has been dis-
closed [7] [6]. Near-infrared light is partially absorbed by the hemoglobin in the
red blood cells. Due to this effect, different levels of absorption can be recorded
using a NIR light source and a photodetector. As a result, the level of muscular
activity in the area under the sensor can be observed and hand-positions as
well as -movements detected.

In this contribution, we present a model of the classification process for
upper-limb prostheses including subsequent simulation, validation and visual-
ization. From the recorded sensor signals, RMS and zero crossing (ZC) features
as well as a feature derived from the sensor’s NIR component are extracted for
five different hand movements. For training and classifier validation two differ-
ent classification methods are demonstrated and compared. Both, an easy to
implement decision tree algorithm as well as a more flexible multi-class support
vector machine (SVM) are presented. For the simulation of this process, a 3D
model of a hand prosthesis, as shown in Fig. 1, is employed for visualizing the
classification results. This modeling and simulation solution is an example of the
functionality offered by a custom-built MATLAB

TM
toolbox allowing the selection

of features and the structured comparison of various classification methods for
a faster evaluation of prosthesis control models. Furthermore, integrating ad-
ditional information from NIR sensors leads to improved classification results.
Over the years, an important factor in increasing classification accuracy for a
higher number of hand movements has been the utilization of additional sen-
sors [11]. However, achieving high accuracy for detecting four or more move-
ment classes with only two sensors placed on the forearm remains challenging.
Liu and Luo have built a classifier based on wavelet packet transformation and

Fig. 1. 3D Hand Prosthesis Model.
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Fig. 2. Modeling, validating and visualizing the classification process.

a neural network (NN) that attains a detection rate of 98% for four hand move-
ments [10]. Arvetti, Gini and Folgheraiter employ wavelet analysis and an NN to
reach almost 97% accuracy for five different motion classes [1]. León, Leija and
Muñoz identifiy seven different movements through a combination of discrete
Fourier transformation and a NN with a success rate of up to 95% [9]. Note,
that the last two methods only use either the first or the last part of the signal for
identifying a class and not the full, transient movement. Additionally, only León,
Leija and Muñoz include pronation and supination motion classes.

2. Method

This section describes our method of modeling, validation and visualization of
the prosthesis control scheme. First of all, only employing EMG data, classifica-
tion of five different hand movements is demonstrated for two different feature
combinations. The features extracted from our database of hand movement
recordings are used to train a SVM and a decision tree classifier, for which the
results are subsequentially validated. Combining EMG and NIR sensor signals
offers a significant improvement of the accuracy of a classifier. The final classifi-
cation results are then used to control the visualization model of the prosthesis
embedded in MATLAB

TM
, as shown in Fig. 2.

2.1. Data Acquisition and Feature Extraction

For our investigation, we recorded 100 datasets for five different hand move-
ments each comprising 20 data samples each. For every movement, the signals
from two combined EMG and NIR sensors [7] were captured from the forearm
of a proband. The sensors were placed over the extensor digitorum and the
carpi radialis muscles. The data were recorded with a custom sensor system,
integrating both, a single differential EMG sensor as well as a LED and a photo
receiver for capturing the amount of near infrared light not absorbed in the un-
derlying tissue.
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Fig. 3. The hardware used for acquiring EMG and NIR signals, including the DAQ and
the sensor system.

The MES were amplified by a factor of about 10 dB. To prevent tissue dam-
age from excessive heat, the NIR light emitted by the diode placed on the sen-
sor is pulse modulated with a pulse rate of 16 Hz and a duty cycle of 2.5%.
The rise and fall time of the pulses was 5%. For reducing interference between
sensors, an offset of 15% was introduced. The enable signals for the pulses
were generated by the MATLAB

TM
signal generator application displayed in Fig.

4 and output with a NI USB-6229 DAQ device from National Instruments. Fig. 3
shows the hardware setup necessary for acquiring the combined EMG and NIR
signals. The EMG/NIR sensor consists of a single differential EMG electrode
located between the NIR LED and the photo receiver. The sensors as well as a
reference electrode connect to the main signal amplifier. The amplified analog
signals are fed into the NI USB Device. Additionally, the enable signal output is
also recorded with the DAQ device for further reference. The recordings were
conducted with a frontend application created in MATLAB

TM
and Simulink

TM
us-

ing a sampling rate of 4096 Hz. Each five second data sample is enriched with
a time-synchronous video recording of the proband’s hand motion. The result-
ing data was saved in MATLAB

TM
binary files with the EMG and NIR recordings

captured in arrays.
The first step towards creating a training set for the classifiers is the feature

extraction from a myoelectric and a near-infrared signal. By this measure, the
amount of input data and the complexity is reduced prior to the classification
process [2]. Various features like the RMS, ZC or the waveform length can be
extracted from EMG signals [12]. In order to gauge the strength of the MES for
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Fig. 4. Generator application for controlling the NIR sensor LEDs.

a set of N samples, the RMS results from:
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The window size was set to 256 samples with an increment of 256. The RMS
feature was also used for preprocessing the MES recordings. Several seconds
of noise recorded before and after the actual hand movement were removed
by amplitude threshold provisory clipping. This was realized by measuring the
RMS values of noise recorded with the EMG signal. All recordings contained at
least one second of noise before the start of the movement. The first second of
each recording was split into four windows of 256 samples and the RMS value
of each window was calculated. The maximum out of these four results was
then compared to a sliding window of 1024 samples throughout the remaining
recording. A window with an RMS value higher than that of the maximum noise
RMS sample window was considered to contain the start of the movement.
Finally, a window with a resulting RMS equal to or lower than the RMS noise
threshold was assumed to mark the end of the movement. The recordings from
all sensors for a single recording were trimmed to preserve the integrity of the
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EMG signals. Fig. 5 shows the first second of the EMG signal containing noise.
Brackets shown beneath the signal denote the actual movement signal as well
as the last 1024 sample window discarded due to its RMS value below the noise
threshold. The signals from the EMG and NIR feature combination were treated
accordingly with the NIRS feature used for determining the beginning and end
of a movement as the NIR sensor signal yields a lower noise-to-signal-ratio.
Window sizes were adjusted for four values per second, i.e., a 256 window size
and increment for both the RMS and the NIRS.
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Fig. 5. A raw EMG signal recording with four 256-sample-windows used for determing
the noise RMS and 1024-sample-windows for comparing the significant and ineffectual
section.

In addition to the RMS, the ZC feature was also extracted from the EMG
signal using:

xzc =
N−1
∑

n=0

I{sgn(n+ 1) · sgn(n) < 0} . (2)

As the LED is switched on periodically, a NIRS feature taking into account the
pulse rate and duty cycle can be derived [6]. For the vectors n = {n1, ..., nk},
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consisting of the measured NIR signal in the observed time frame, and e =
{e1, ..., ek}, with Ena(ei) denoting the state of the enable signal (either 0 or 1
depending on an upper and lower threshold) at each point of time in the signal
window, the NIRS feature can be calculated as follows:

NIRS = Signal(n, e)− Offset(n, e) . (3)

with

Signal(n, e) =
∑k

i=1
ni ·Ena(ei)

∑k

i=1
Ena(ei)

. (4)

Offset(n, e) =

∑k

i=1
ni · (1− Ena(ei))

∑k

i=1
(1− Ena(ei))

. (5)

To produce window sizes of equal length, for which the EMG and the NIRS
features can be combined, the NIRS window size and its increment was set to
256 samples as well. For the combined features, the NIRS feature was chosen
as the source for the amplitude threshold provisory clipping. This is advanta-
geous because the NIRS feature clearly indicates the beginning of a muscle
contraction, revealing the motion of a hand with more precision than RMS alone.
Fig. 6 shows the DC corrected EMG signal and the derived RMS and ZC fea-
tures as well as the NIRS feature from a sensor placed over the extensor digi-
torum during wrist extension. The RMS, ZC and NIRS features were calculated
for a window size and increment of 256 samples.

Besides using a combination of individual features from the different signal
types, the combined EMG and NIR sensor also offers the possibility of using a
single feature integrating both the EMG as well as the NIR signal. One exam-
ple is the NIRSRMS feature resulting from combining both the aforementioned
NIRS as well as the RMS feature with the myoelectric signal m = {m1, ...,mk}:

NIRSRMS = RMS(m) · NIRS(n, e) . (6)

Apart from the NIRSRMS combination, other features like the DC corrected
NIRS signal – useful for realtime control – can be calculated from the NIR sen-
sor data [6].

2.2. Training Set Creation

Out of the 20 data samples for each hand movement, 13 are drawn for train-
ing the classifier while the remaining 7 are deployed for the validation of the
classification method. In the examplary classification process, we distinguish
five different hand motions: fist, supination, pronation, wrist extension and wrist
flexion.

As a first classification method, we have chosen the decision tree algorithm
from the MATLAB

TM
statistics toolbox. For each node t of the tree, a subset Xt
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(b) RMS Feature derived from EMG
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(c) ZC Feature derived from EMG
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Fig. 6. The EMG, EMG-calculated RMS, ZC and NIRS signal values for the extensor
digitorum muscle during wrist extension.
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is associated with it [14]. The subset is then split into two subsets for the de-
scendant node, containing the ’Yes’-answers XtY and the ’No’-answers XtN for
the question associated with the current node. The subsets satisfy:

XtY ∩XtN = ∅ . (7)

XtY ∪XtN = Xt . (8)

The default splitting criterion used in MATLAB
TM

is the diversity index intro-
duced by Gini for a node τ [8]:

i(τ) =
∑

k

p(k | τ)2 . (9)

Altering the splitting criterion to other choices, offered by MATLAB
TM

, did not
yield a substantial increase in classification accuracy. Decision tree algorithms
can quickly be implemented as the parameters are not critical. We have also
investigated Support Vector Machines (SVM), which offer more flexibility. SVMs
are linear classifiers which separate classes by means of hyperplanes. For a
binary SVM, the hyperplane for a set of feature vectors xi, with i = 1, 2, ..., n,
which belong to the two classes ω1 and ω2, is denoted by [14]:

g(x) = ωT · x+ ω0 = 0 . (10)

Multi-class SVMs can be constructed from binary SVMs by breaking up the
original multi-class problem into several binary class problems [14]. The LIB-
SVM package employs the one-vs-one approach [3]. Depending on the type
of training data, kernel choice and regularization constant can have an impact
on the classification results of a SVM. Instead of a linear kernel, the authors of
LIBSVM recommend the implemented RBF kernel, with:

K(xi, xj) = e−γ‖xi−xj‖
2

. (11)

A five-fold cross-validation was used for finding a suitable value for the regu-
larization and γ parameters. To demonstrate the effects of feature selection and
the choice of the classifier, the previously described classification algorithms
were applied to different feature sets. Starting with a combination of the RMS
values, extracted from the MES recording of the extensor digitorum muscle and
the ZC feature derived from the sensor placed over the flexor carpi radialis,
the feature values were first subjected to DC correction and noise reduction.
All data points below a threshold of 0.15 for the normalized RMS and 0.68 for
the normalized ZC feature set were removed before creating the classifier train-
ing sets. With these sets, models were generated for the training phase of the
SVM and the decision tree classifier. Fig. 8 and Fig. 7 depict the partitioning
of the source data into five classes. However, using the RMS-ZC combination,
the classifiers cannot unambiguously distinguish between the five movements.
While this feature combination is sufficiently distant for most of the classes,
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Fig. 7. Decision tree training set with 13 data samples for each class and combination of
RMS and ZC features.
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Fig. 8. SVM training set with 13 data samples for each class and a combination of RMS
and ZC features.
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closing a fist is not as clearly separated from neighboring classes such as wrist
flexion or wrist extension.

In order to achieve better results, it is necessary to employ a different com-
bination of features. Applying the same parameters for classifier training, Fig. 9
and Fig. 10 illustrate the results for the five classes with the RMS feature ex-
tracted from the data-sets for both the extensor digitorum and the flexor carpi
radialis muscles. As evident from the location of the data points, this combina-
tion of features yields a clearer separation of the five hand movements. In this
case - apart from the DC correction - additional noise reduction did not offer
any further improvement of classification results.

Finally, for achieving even better distance between the data points of the mo-
tion classes, the RMS-RMS feature set was enriched with the NIRS feature data
from both sensors, yielding a four dimensional feature space. Before training,
both NIRS and RMS features were DC corrected. Then, the SVM and decision
tree classifiers were trained again with this extended feature combination. The
training models can now serve as reference for further classification. A valida-
tion as well as a visualization of the recording data is presented in the following
section.

2.3. Validation and Visualization

In order to validate the classifier and its reference model, seven recordings of
each hand movement were fed into the feature extraction process using the
EMG and NIRS data. The derived features were then classified using the previ-
ously generated decision tree and the SVM models. Based on reference signals
of known movements, classifier results were compared and validated. Table 1
contains the percentages of correctly identified hand movements for each class
and the overall classification accuracy for the SVM and decision tree training
models utilizing a RMS-ZC feature combination. Comparing the result of the
RMS-ZC feature combination with the RMS-RMS combination in Table 2, the
impact of feature selection prior to classifier training is confirmed. The validation
results show an improvement between the RMS-ZC and RMS-RMS. Further-
more, the choice of the classification algorithm can have a substantial effect
on accuracy as shown in Tables 1 and 2. Depending on the feature set, the
simple decision tree algorithm may produce a variety of results, while the SVM
classifier is more consistent. For this, parameters must be determined by cross
validation in the training phase and initially set. Apart from classifier selection,
our validation data demonstrates the value of the newly developed EMG-NIR
sensor. In case of the selected five hand movement classes, 100% classifica-
tion accuracy can be achieved by combining the recorded EMG and NIR data
as presented in Table 3.

Finally, the simulation of a 3D-hand-model of a prosthesis was controlled
with the classifier output. The visualization of a prosthesis is based on a model
originally created in Autodesk

TM
3ds Max [5]. The virtual hand, shown in Fig. 12,

consists of components including shaft, wrist and joints for individual fingers as
found in typical prostheses. For reduced complexity and better performance
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Fig. 9. Decision tree training set with 13 data samples for each class with two RMS
features.
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Fig. 10. SVM training set with 13 data samples for each class with two RMS features.
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Table 1. Percentages of correct hand movements for the RMS-ZC feature set.

Hand Movement SVM Model Decision Tree Model

Wrist Flexion 85.7% 71.4%

Wrist Extension 100.0% 100.0%

Fist 57.1% 14.3%

Supination 100.0% 28.6%

Pronation 100.0% 100.0%

False Positives 2.9% 11.4%

False Negatives 8.6% 25.7%

Overall Accuracy 88.6% 62.9%

Table 2. Percentages of correct hand movements for the RMS-RMS feature set.

Hand Movement SVM Model Decision Tree Model

Wrist Flexion 100.0% 85.7%

Wrist Extension 57.1% 100.0%

Fist 100.0% 71.4%

Supination 100.0% 85.7%

Pronation 100.0% 100.0%

False Positives 8.6% 8.6%

False Negatives 0.0% 2.9%

Overall Accuracy 91.4% 88.6%

Table 3. Percentages of correct hand movements for the RMS-RMS-NIRS-NIRS feature
set.

Hand movement SVM Model Decision Tree Model

Wrist Flexion 100.0% 0.0%

Wrist Extension 100.0% 100.0%

Fist 100.0% 100.0%

Supination 100.0% 100.0%

Pronation 100.0% 100.0%

False Positives 0.0% 20.0%

False Negatives 0.0% 0.0%

Overall Accuracy 100.0% 80.0%
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Fig. 11. 3D display of five hand movements (clockwise from bottom left to bottom right)
starting and ending in the relaxed hand position (bottom center): pronation, wrist flexion,
fist, wrist extension, supination.

during simulation, each finger consists of only two joints connected to a plate
mounted on a rotary joint. Extending and flexing the 3D hand is realized with a
pivoted joint at the base of the hand.

Fig. 12. The individual components of the 3D prosthesis hand model.
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Listing 1.1. Setting hand positions for the 3D prosthesis and working with po-
sition files.

1 vp = VirtualProsthesis(’prosthesis.WRL’)
2
3 vp = vp.SetJointPosition(’middle01’, 90)
4 vp = vp.SetJointPosition(’middle02’, 90)
5 vp = vp.SetJointPosition(’ring01’, 90)
6 vp = vp.SetJointPosition(’ring02’, 90)
7 vp = vp.SetJointPosition(’small01’, 90)
8 vp = vp.SetJointPosition(’small02’, 90)
9 vp = vp.SetJointPosition(’index01’, 90)

10 vp = vp.SetJointPosition(’index02’, 90)
11 vp = vp.SetJointPosition(’thumb01’, 90)
12 vp = vp.SetJointPosition(’thumb02’, 90)
13
14 pose_fist = vp.GetHandPosition(’fist’)
15 vp = vp.SaveHandPosition(pose_fist)
16 vp = vp.WriteHandPositionsToFile(’positions.mat’)
17
18 vp = vp.ReadHandPositionsFromFile(’positions.mat’)
19 vp.GetSavedPositionNames()
20 vp = vp.LoadHandPosition(’fist’)

After conversion to the Virtual Reality Modeling Language (VRML) file for-
mat, the resulting file was integrated into the MATLAB

TM
environment. Several

functions are now available for accessing the individual joints of the virtual pro-
totype, allowing for the control of individual fingers. Because of this flexibility,
the prosthesis can be used to simulate all hand movements recognized by the
classification method. Fig. 11 provides screenshots of the virtual prosthesis dis-
playing the five different hand motions. After instantiating the virtual prosthesis
in MATLAB

TM
, the position of the individual phalanges can be changed by enter-

ing the name and specifying the angle of the joint. Through combining simulta-
neous movements of several fingers, different hand-positions can be adopted.
Listing 1.1 presents the code to set the position of the individual phalanges to
assume a fist position. After setting the various joint angles necessary for sim-
ulating the desired hand-position, it is possible to assign a label to the position
and save it. Several positions can be stored in a file for later reference. This
way, the behavior of various prostheses can be captured and sets for various
hand positions stored for quick retrieval. Lines 18 to 20 in Listing 1.1 show the
process of accessing individual hand positions stored in a file.

Fig. 2 shows the 3D visualization of the five hand movements used for train-
ing the decision tree and SVM classifiers described in this contribution. The out-
put of the classifier serves as control input to assign the desired hand-position
to the virtual prosthesis model after a movement change from the initial resting
hand position is detected.
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2.4. MATLAB
TM

Movement Classification Toolbox

In order to support and accelerate the decision process for the selection of
feature-extraction- and classification-methods, a toolbox for MATLAB has been
developed. The aforementioned recordings of hand movements can automat-
ically be subjected to feature extraction, classifier training and classifier vali-
dation. Both EMG as well as NIR sensor signals are supported with their cor-
responding features. Various parameters can be set for the individual steps in
the classification process. Fig. 13 shows the main toolbox window containing
three tabs. The selected first tab has options and dropdown boxes to choose
and calculate the desired features from sensor signals. In the selection process,
an arbitrary number of sensors as well as feature combinations can be chosen.
Furthermore, it is possible to set the window size for the EMG and NIR features.

Fig. 13. Main window of the MATLAB toolbox for feature extraction, classifier training and
validation.

The program equally offers a high number of parameters for selecting and
training the implemented classifiers. The training- and the validation-mode al-
low to set a threshold to remove noise before feeding the data into a classifier.
Furthermore, it is possible to plot selections of training data as well as clas-
sification maps. After validation, a detailed report about classification results
for individual hand movements can be viewed and saved within MATLAB

TM
. It

is also possible to store the parameters used for feature calculation and train-
ing model generation. With this combined functionality, feature sets as well as
different classifiers can quickly be compared, helping to choose methods and
parameters for prosthesis control schemes. The program code has been mod-
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ularized as far as possible to offer easy integration of new features as well as
classifiers. If novel sensor systems become available, the toolbox can be ex-
tended to accommodate for new signal source types.

3. Results

This contribution discloses the modeling, validation and visualization of classi-
fication-based prosthesis control schemes. As an example for the individual
steps necessary during the classification process, five different hand move-
ments were distinguished using decision tree and SVM classifiers. After feature
extraction and training set creation, the trained classifier was validated using
existing MES and NIR recordings. The impact of feature and classifier selec-
tion is shown with four SVM and decision tree classifiers based on two different
feature sets. The classification results were further improved by adding the NIR
data from combined EMG-NIR sensors. In addition to the classification process,
the behavior of a hand prosthesis is demonstrated through the control of a 3D
visualization in MATLAB

TM
version 7.12.0. As a result, the entire process from

training to functional validation and visualization can be seamlessly modeled
in one application. Due to the considerable amount of feature extraction as well
as classification methods, significant differences in classification accuracy man-
date further research focusing on a systematic comparison of feature extraction
and classification methods. Research efforts at our department so far resulted
in the development of a toolbox for MATLAB

TM
which enables researchers to

select, compare and adapt feature-extraction and classification methods. The
current version of the toolbox supports several classification methods including
decision trees and support vector machines as well as the extraction of various
features from both EMG and NIR signals. Future editions will comprise addi-
tional feature calculation and classification algorithms. At the moment, only a
limited amount of feature algorithms is available for NIR sensor data. Future
research will focus on devising new NIR feature calculation methods. Further-
more, initial digital filtering of raw sensor data to remove noise and artifacts be-
fore feature extraction is introduced to increase classification results. Besides
improvement of sensor signal processing, current and future research targets
the extension of sensor capabilities. For example, the NIR sensor allows chang-
ing the area of observation by adjusting the distance between the LED and the
photo resistor.

Acknowledgments. The authors thank Dr. Stefan Herrmann and Andrej Gehl for the
design and the development of the 3D prosthesis for MATLAB

TM
. Furthermore, we are

grateful to Manuel Rosenau for creating a first collection of EMG recordings for testing
the classifiers. Finally, we thank Marcus Eckert for his effort towards developing the
MATLAB

TM
movement classification toolbox.

ComSIS Vol. 10, No. 1, January 2013 365



Andreas Attenberger and Klaus Buchenrieder

References

1. Arvetti, M., Gini, G., Folgheraiter, M.: Classification of EMG signals through wavelet
analysis and neural networks for controlling an active hand prosthesis. In: Proc.
IEEE 10th International Conference on Rehabilitation Robotics (ICORR 2007). pp.
531–536 (Jun 2007)

2. Buchenrieder, K.: Dimensionality Reduction for the Control of Powered Upper Limb
Prostheses. In: Proc. 14th Annual IEEE International Conference and Workshops on
the Engineering of Computer-Based Systems (ECBS’07). pp. 327–333 (Mar 2007)

3. Chang, C.C., Lin, C.J.: LIBSVM: A library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), software avail-
able at http://www.csie.ntu.edu.tw/%7Ecjlin/libsvm

4. Englehart, K., Hudgins, B., Parker, P., Stevenson, M.: Classification of the myo-
electric signal using time-frequency based representations. Medical Engineering &
Physics 21(6-7), 431–438 (1999)

5. Gehl, A.: Modellierung einer Prothesenhand mit Matlab. Bachelor Thesis, Univer-
sität der Bundeswehr München, Neubiberg, Germany (Dec 2010)

6. Herrmann, S., Attenberger, A., Buchenrieder, K.: Prostheses Control with Combined
Near-Infrared and Myoelectric Signals. In: EUROCAST 2011, Part II. LNCS, vol.
6928, pp. 602–609 (2011)

7. Herrmann, S., Buchenrieder, K.: Fusion of Myoelectric and Near-Infrared Signals for
Prostheses Control. In: Proc. 4th International Convention on Rehabilitation Engi-
neering & Assistive Technology iCREATe’10. pp. 54:1–54:4. Singapore Therapeutic,
Assistive & Rehabilitative Technologies (START) Centre, Kaki Bukit TechPark II, Sin-
gapore (2010)

8. Izenman, A.J.: Modern Multivariate Statistical Techniques. Springer (2008)
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