
DOI: 10.2298/CSIS120601009W

Modeling and Verifying the Ariadne Protocol
Using Process Algebra

Xi Wu1, Huibiao Zhu1, Yongxin Zhao2, Zheng Wang3, and Si Liu4

1 Shanghai Key Laboratory of Trustworthy Computing
Software Engineering Institute, East China Normal University

3663 Zhongshan Road (North), Shanghai, China, 200062
{xiwu,hbzhu}@sei.ecnu.edu.cn

2 School of Computing, National University of Singapore, Singapore
zhaoyx@comp.nus.edu.sg

3 Beijing Institute of Control Engineering, China
wangzheng@sei.ecnu.edu.cn

4 Department of Computer Science, University of Illinois at Urbana-Champaign
siliu3@illinois.edu

Abstract. Mobile Ad Hoc Networks (MANETs) are formed dynamically
by mobile nodes without the support of prior stationary infrastructures. In
such networks, routing protocols, particularly secure ones are always the
essential parts. Ariadne, an efficient and well-known on-demand secure
protocol of MANETs, mainly concerns about how to prevent a malicious
node from compromising the route. In this paper, we apply the method
of process algebra Communicating Sequential Processes (CSP) to model
and reason about the Ariadne protocol, focusing on the process of its
route discovery. In our framework, we consider the communication enti-
ties as CSP processes, including the initiator, the intermediate nodes and
the target. Moreover, we also propose an intruder model allowing the in-
truder to learn and deduce much information from the protocol and the
environment. Note that the modeling approach is also applicable to other
protocols, which are based on the on-demand routing protocols and have
the route discovery process. Finally, we use PAT, a model checker for CSP,
to verify whether the model caters for the specification and the non-trivial
secure properties, e.g. nonexistence of fake path. Three case studies are
given and the verification results naturally demonstrate that the fake rout-
ing attacks may be present in the Ariadne protocol.

Keywords: Formal Verification, CSP, Mobile Ad Hoc Networks, Ariadne.

1. Introduction

Wireless communication technology [12] has become one of the most promis-
ing technologies. Mobile Ad Hoc Networks (MANETs) [22,39] consist of groups
of wireless mobile devices (laptops, PDAs, sensors, etc.), being completely self-
configuring and self-organizing, and are independent of any existing fixed in-
frastructure. In such networks, nodes can forward the data packets for each

Xi Wu et al.

Fig. 1. Communication Model Diagram of Multi-hop Mobile Ad Hoc Network

other through the mutual cooperation. Consequently, even if there is no direct
link between two nodes, they also can communicate with each other through the
intermediate node multi-hop routing technology, thus widening the range of the
data packet transmission. Moreover, nodes can move arbitrarily within, join in, or
leave the network dynamically, which makes the whole network quickly and eas-
ily set up as needed. Due to these novel features, MANETs have been widely
applied in many fields including military, ambient intelligence and emergency
contingencies. Figure 1 shows the communication model diagram of multi-hop
mobile ad hoc networks.

In such networks, routing protocols [9,10,32,43], particularly secure ones
are always the essential factors since they are the major concerns about how
to prevent a malicious node from compromising the route. Malicious nodes may
cause some typical security issues such as the attacks of denial-of-service and
tunneling which redirect the traffic of the networks, the attacks of spoofing that
the intruder node may masquerade as the other nodes, and the attack called
fabrication of false routing messages. Ariadne [10], as an extension to the dy-
namic source routing (DSR) protocol [11], proposed by Hu et al., is a new se-
cure on-demand ad hoc network routing protocol for preventing attackers and
security vulnerabilities.

Many research efforts have been addressed to analyze and improve the
Ariadne protocol. Hu et al. evaluated its performance based on simulation [10].
Sivakumar et al. proposed some modifications to improve its resiliency [33]. All
these works, however, do not investigate the protocol using formal methods and
may not take into account the security and correctness. In addition, Lin et al.
have already found some drawbacks of this protocol, describing them in natural
language [13] and Buttyán et al. applied a mathematical framework in analyzing
the protocol and finding out attacks on it [1,5]. They have done well in analyz-
ing the protocol, if only they had given some verifications. In formal literature,
as far as we know, only Pura et al. have already modeled the Ariadne protocol
using HLPSL and applied AVISPA to validate its security properties [28]. How-
ever, they focus more on the use of the tools than the analysis of the protocol
itself. Thus, the research for an approach to modeling and verifying the Ariadne

394 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

protocol is still challenging. In this paper, we use formal methods to model the
protocol and use the process algebra tool PAT to verify whether the achieved
model caters for the specification and the non-trivial secure properties.

Lowe et al. first applied the method of process algebra Communicating Se-
quential Processes (CSP) to model and analyze a security protocol, the TMN
protocol [19]. CSP is a well-known process algebra in modeling and verifying
the reliability, the sequential consistency and the sercurity in concurrent sys-
tems and widely used in [18,19,23,29]. Besides, many researchers, such as
Zhu and his students, have successfully used CSP to model and analyze the
protocols and the web service systems [7,41,42]. Moreover, a lot of automated
model checkers for analyzing and understanding systems described by CSP
have been produced, such as Process Analysis Toolkit (PAT) [34]. Inspired by
Lowe’s work, we use CSP to model the Ariadne secure routing protocol. This
protocol has two phases: the route discovery and the route maintain. Due to the
facts that the route maintain is based on the route discovery and the intrusion
tends to occur in the discovery phase, in this paper, we focus on the Ariadne
route discovery. We abstract the protocol, that the initiator, the intermediate
nodes and the target are described as processes and all of these communi-
cation entities share the global clock. It achieves the effect of asymmetric key
encryption through clock synchronization and time delay. Besides, we also pro-
pose an intruder model in which the intruder can eavesdrop, fake, intercept,
learn and deduce the message from the protocol and the environment. Fur-
thermore, by applying PAT [34], we verify the security properties of the Ariadne
protocol model and we find that the fake routing attacks may be present in the
protocol, which have been pointed out in [1,5]. Finally, we advocate that this
suggested framework is also applicable to other protocols, based on the on-
demand routing protocols, in which the route discovery process can be mod-
eled as general processes. The main contributions of this paper are listed as
follows:

• Modeling. A formal model for Ariadne Protocol is given using process alge-
bra CSP. The communication entities of the protocol, including the initiator,
the intermediate nodes and the target, are modeled as CSP processes,
and we propose an intruder model and produce a CSP description of the
specifications.

• Analysis. We analyze the whole process of the route discovery of the Ari-
adne protocol, adding a set of rules into the intruder model. We also give
the analysis of the fake path existence in the case studies.

• Verification. The formal model is implemented in the model checking tool
PAT. The security properties of Ariadne Protocol, i.e., Deadlock Freedom,
Message Consistency, Node List Security, Fake Path Nonexistence and
End-to-End Nodes Authentication, are verified by PAT. The verification re-
sults show that there is a defect in Ariadne Protocol, which may lead to fake
routing attacks.

The rest of this paper is organized as follows. We introduce preliminaries
about CSP and PAT in Section 2. An overview of the Ariadne secure routing

ComSIS Vol. 10, No. 1, January 2013 395

Xi Wu et al.

protocol is presented in Section 3. We formalize the protocol in Section 4 and
in Section 5, based on the analysis of traces, we use model checker PAT to
implement and verify the achieved model with five properties. In the Section 6,
we discuss that the modeling approach presented in this paper is also appli-
cable to other protocols, which are based on the on-demand routing protocols
and have the route discovery process. We conclude the paper and present the
future directions in Section 7.

2. Preliminaries

2.1. The CSP Method

Process algebra, as a representative of the formal methods, is to use algebraic
approaches to study the communications of the concurrent systems. There
are three typical calculus systems: Calculus of Communicating Systems (CCS)
[24], Communicating Sequential Processes (CSP) and Algebra of Communi-
cating Processes (ACP) [3]. In this subsection, we give a brief introduction to
CSP (Communicating Sequential Processes) [8], which was proposed by C.
A. R. Hoare in 1978. Nowadays, it has developed and already become one
of the more mature process algebra formal method. It specializes in describ-
ing the interaction between concurrency systems using mathematical theories.
Due to powerful expressive ability, CSP is widely applied in many fields. CSP
processes are composed of primitive processes and actions.

The processes in this paper are defined using the following syntax. Here, P
and Q represent processes which have alphabets α(P) and α(Q) to denote the
set of actions that the processes can perform respectively. a and b stand for the
atomic actions and c is the name of channel.

Skip represents a process which does nothing but terminates
successfully.

Stop denotes that the process is in the state of deadlock and
does nothing.

P ;Q the process performs P and Q sequentially.
P ‖ Q describes the concurrent between P and Q.
P [[a← b]] indicates that a is replaced by b.
a→ P the process first engages in action a, then the subsequent

behavior is like P .
c?x → P the process gets a message through the channel c and

assigns it to a variable x, then behaves like P .
c!x→ P the process sends a message x using the channel c, then

the behavior is like P .
a → P�b → Q the process behaves like either P or Q and the selection

is determined by the environment.
P\S stands for that the process behaves like P except all the

actions in set S are concealed.

396 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

P [|X|]Q the process represents that P and Q perform the
concurrent events on the set X of channels.

P C bBQ means if the condition b is true, the behavior is like P ,
otherwise, like Q.

CHAOS(x) can perform any sequence of events from its alphabet x.

In the verification part, we also apply the trace model of CSP, which is com-
posed of a set of traces, in describing a process. Here, the trace means the
events that the process may perform. More details about CSP can be found in
[4,8,30,31].

2.2. Process Analysis Toolkit

In this subsection, we give an overview of the verification tool PAT which will be
applied in verifying our achieved model of the Ariadne protocol.

PAT (Process Analysis Toolkit) [14,15,16,35] is designed as an extensible
and modularized framework for automatic system analysis based on CSP. It
supports to specify and verify many different modeling languages and it has
been used to model and verify a lot of different systems such as concurrent
systems, real-time systems [37], probabilistic systems [38], web service mod-
els [36], sensor networks [44,45], and security protocols [20,40]. PAT can be ap-
plied in verifying varieties of properties such as deadlock-freeness, divergence-
freeness, reachability, LTL properties with fairness assumptions, refinement
checking and probabilistic model checking. We list some notations in PAT as
follows:

1. #define N 0 defines a global constant N which has the initial value 0.
2. var msglist[N] defines an array named msglist and the size of it is N .
3. Channel c 5 defines a communication channel and the capacity of it is 5.
4. P = {x = x + 1} → Skip defines an event that can be attached with

assignment using which we can update the value of a global variable x.
5. c!a.b→ P and c?x.y → P refer to sending message a.b and receiving mes-

sage from channel c respectively.

Besides, PAT can also describe the control flow structures, including if −
then−else and while, etc. More details about this tool can be found in [6,21,34].

3. Overview of the Ariadne Protocol

Ariadne, as an extension to the dynamic source routing (DSR) protocol, is com-
posed of routing discovery and routing maintain. One of its main security goals
is to prevent attackers or compromised nodes from tampering with uncompro-
mised routes consisting of uncompromised nodes, and also prevent many types
of Denial-of-Service attacks. And it also provides a property that no intermedi-
ate node can remove a previous node in the node list in the request or reply,
which means that it can prevent a compromised node from removing a node

ComSIS Vol. 10, No. 1, January 2013 397

Xi Wu et al.

from the node list arbitrarily [10].
To achieve the security goal as mentioned, the Ariadne protocol applies

three authentication mechanisms:

• TESLA protocol [26,27], which is used for route data authentication to cer-
tificate the integrity and authenticity of the routing message;

• End-to-End nodes authentication mechanism, which is used to verify the
authenticity and freshness of the request and reply using the shared key;

• Per-hop hashing authentication mechanism, which is used to prevent an
attacker from removing a node from the node list.

3.1. Notations and Assumptions

In this subsection, we give an overview of the notations and assumptions we will
use in our paper. First, we introduce the following notations before describing
the protocol:

• S stands for the initiator and D represents for the target;
• A and B are participants, such as the intermediate nodes;
• C denotes an internal node which is captured by the external intruders;
• * stands for all nodes in the whole network;
• KSD andKDS , used to certificate the identities of the communicating nodes,

represent the secret MAC keys shared between S and D. The value of KSD

is equal to the value of KDS ;
• MACKSD

(M) denotes the MAC value calculated by the key KSD and the
message M .

Besides, during our formalization of the protocol, we also use some assump-
tions. We naturally inherit all of the assumptions of the Ariadne protocol and the
TESLA protocol. In order to facilitate the modeling in the next section, we also
list the following assumptions:

1. There is no efficient routing path between S and D in the local table of S.
2. Network is bidirectional [10], i.e., if A can receive the message from B, then

B must be able to receive the message from A.
3. Each intermediate node has a TESLA one-way key chain and the keys in the

chain are computed through the function F (x). Each node firstly releases
one key to all nodes in its broadcast range so that the follow-up nodes can
use it to certificate the message. More details about TESLA protocol can be
found in [26,27].

4. C, captured by intruders, can get initial information of all the nodes partici-
pating the process of route discovery. It can intercept or eavesdrop or fake
messages passed between nodes and it can also be used as a normal node
to join in the routing process.

398 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

Fig. 2. An Example of the Route Discovery in Ariadne

Note that, security protocol attack models are divided into two types: active
attacks and passive attacks. Most of the passive attacks refer to the attacks
against the communication privacy, i.e., eavesdropping the data packets be-
tween the two communication entities, instead of the attacks against the routing
protocols or network functions. On the other hand, active attacks mean that
the intruders attack the routing protocols through tampering or faking routing
messages to achieve the attack purpose. The sources of the active attacks are
also divided into two types: the external intruders and internal intruders [17].
Although they may have the same intrusions, the security threats from the in-
ternal intruders are far greater than the ones posed by the external intruders,
because the former can get more initial information of the protocol than the lat-
ter. Thus, in our paper, we focus more on the security threats brought by the
internal intruders.

Using the notations and assumotions as mentioned, we next describe the
process of Ariadne routing discovery and its authentication mechanism.

3.2. Description of the Ariadne Routing Discovery and Authentication
Mechanism

When there is a packet needed to be sent to the destination, the initiator node
first checks its local table. If there is already some path to the target, the initiator
will send the packet along the existing path; Otherwise, it will start the route
discovery. The process of the Ariadne protocol route discovery is divided into
two parts: the initial node broadcasts a routing request to all of its neighbours
and the target node sends a routing reply back to the initial node after it gets
the request. In order to illustrate the process clearly, we give a simple topology
example in Figure 2, where the dotted line means broadcast and the solid line
stands for unicast.

Broadcasting the route request. According to Figure 2, S broadcasts a route
request to all of its neighbors in the whole network. In Ariadne, a route request
contains four fields such as 〈msgreq, hash, node list,MAC list〉. Here,msgreq stands
for the route request message and hash value is calculated by a per-hop hash
function H(x) except the first element which is computed as MACkSD

(msgreq).

ComSIS Vol. 10, No. 1, January 2013 399

Xi Wu et al.

Through the per-hop hash function H(x), Ariadne protocol ensures that a ma-
licious node cannot remove the intermediate node or modify the order of the
node list arbitrarily. node list and MAC list store the addresses and the MAC
values respectively, which are empty initially.msgreq also has five fields, 〈request,
initiator, target, id, time interval〉. Here we ignore the details of the msgreq for
simplicity. The process of the broadcasting is shown in Table 1.

Table 1. Broadcasting the Route Request
S : msgreq = (request, S,D, idSD, ti)

hS =MACKSD
(msgreq)

S → ∗ : 〈msgreq, hS , (), ()〉
A : hA = H[A, hS]

MA =MACKAti
(msgreq, hA, (A), ())

A→ ∗ : 〈msgreq, hA, (A), (MA)〉
B : hB = H[B, hA]

MB =MACKBti
(msgreq, hB , (A,B), (MA))

B → ∗ : 〈msgreq, hB , (A,B), (MA,MB)〉

When the intermediate nodes receive the route request, they will first verify
the authenticity of the route request message and the effectiveness of the key
that the previous node uses. If the TESLA key has already been released, the
node will discard this message and send an error message back to the initial
node. Otherwise, the current node adds its address, hash value and the MAC
value computed by its own TESLA key into the request message and rebroad-
casts it.

Unicasting the route reply. After D receives the route request message, it
checks the consistency of the node list and also tests whether any key the
nodes use has already been released within the specified time or not. Only in
the case that all the conditions we have mentioned above are satisfied will D
accept the route request and send a route reply back to S along the reverse
order of the nodes in the node list.

In Ariadne, a route reply contains three fields, 〈msgrep, target MAC, key list〉.
Here, target MAC stands for the MAC value of the target node and key list is
empty initially. Besides,msgrep consists of six fields, 〈reply, target, initiator, time
interval, node list,MAC list〉. Table 2 illustrates the process of unicasting the
route reply.

Table 2. Unicasting the Route Reply
D : msgrep = (reply,D, S, ti, (A,B), (MA,MB))

MD =MACkDS
(msgrep)

D → B : 〈msgrep,MD, ()〉
B → A : 〈msgrep,MD, (KBti

)〉
A→ S : 〈msgrep,MD, (KBti

,KAti
)〉

400 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

When an intermediate node receives the route reply, it caches the message
until its TESLA key is released. Then the node adds its own key into the key list
and sends the message to the last node. When S receives the reply, it will check
the correctness of each key and each MAC value respectively. Besides, it will
also verify the MAC value of D. Only when there is no error in the process of the
validation would S accept the route reply and cache the path in its local table.
Otherwise, S will discard the reply.

4. Formalizing the Ariadne Protocol

In this section, we use CSP to model the route discovery of the Ariadne protocol.
Firstly, we define the sets and channels that we would use below.

• We assume the existence of the set Initiator of initiators, the set Target of
targets.

• The set Node stands for the intermediate nodes and Intruder represents
the internal nodes captured by the malicious nodes.

• The set SharedKey contains the keys shared between the initiator and the
target.

• The set Key involves the TESLA keys that the intermediate nodes use.

In addition, there is another set MSG, which stores all the messages pass-
ing in the whole route discovery process. We also define four types of the mes-
sages as follows:

MSG1 =df {msgreq.hs.S. ∗ |hs =MAC(KSD,msgreq),KSD ∈ SharedKey,
S ∈ Initiator, ∗ ∈ Node ∪ Target}

MSG2 =df {msgreq.hXi .(..Xj ..Xi).(..MXj ..MXi).Xi. ∗ |∗ ∈ Node ∪ Target,
MXi =MAC(KXiti

,msgreq, hXi , (..Xj ..Xi), (..MXj ..MXi−1)),

hXi = H(Xi, hXi−1),KXiti
∈ Key,Xj , Xi ∈ Node, i ∈ N}

MSG3 =df {msgrep.MD.D.Xi|MD =MAC(KDS ,msgrep),
KDS ∈ SharedKey, i ∈ N,Xi ∈ Node,D ∈ Target}

MSG4 =df {msgrep.MD.(..KXjti
..KXiti

).Xi.S|MD =MAC(KDS ,msgrep),

KXjti
,KXiti

∈ Key, i ∈ N,Xj , Xi ∈ Node, S ∈ Initiator}

MSG =df MSG1 ∪MSG2 ∪MSG3 ∪MSG4

Here, the specific meaning of each message set can be explained as fol-
lows:

1. MSG1 represents the set of broadcast messages which are sent by the
initiator to the intermediate nodes or the target. Here, hs stands for the
MAC value, which is computed by the key KSD, shared by the initiator and
the target, and the request message msgreq.

ComSIS Vol. 10, No. 1, January 2013 401

Xi Wu et al.

2. The set of MSG2 stores the messages that are broadcasted by the inter-
mediate nodes. Any intermediate node receives the request message, it
will compute its own hash value and MAC value, then the node will modify
the request message using these two values and rebroadcast the request
message to the next node.

3. The messages in the set of MSG3 stand for the reply messages which
are sent by the target to some intermediate node. After the target node
receives the request message, it will check the correctness of each value
in the message. If all the values are valid, the target node will unicast the
reply message according to the reverse order of the intermediate nodes in
the node list.

4. The set of MSG4 holds the reply messages that are sent back to the initial
node.

We use four channels to model the communication in the process of the
Ariadne protocol: Broadcast, ComXiXj , Intercept, Fake.

• Broadcast: it is used to broadcast and re-broadcast the message.
• ComXiXj : it denotes the standard communication between nodes Xi and
Xj . Here, nodes include the initiator, the intermediate nodes and the target.

• Intercept: the intruder uses it to intercept the information from normal com-
munications.

• Fake: it is used by the intruder to send messages which are modified to the
normal nodes.

In addition, we also define another two channels: Session and Fake session,
which represent a successful communication and a successful intrusion respec-
tively. The declaration of the channels are as follows:

Channel Broadcast, ComXjXi, Intercept, Fake: MSG
Channel Session, Fake session: Initiator.Target

Figure 3 illustrates the communications between nodes using channels.

Fig. 3. Communications between Nodes Using Channels

402 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

4.1. Clock

The clock is the shared communication entity among the initiator, intermedi-
ate nodes and the target. Through clock synchronization and the delaying of
releasing the key, the protocol which uses the TESLA broadcasting authentica-
tion mechanism achieves the desired effect of asymmetric key encryption.

Clock(i) =df (tick → Clock(i+ 1))�(time?request→ time!i→ Clock(i))
where i >= 0 ∧ i ∈ N.

Note that, if Clock receives a request from the channel time, it will return
the current time i.

4.2. Initiator

In the whole process of route discovery, initiator will broadcast the route request
and receive the route reply. Besides, it also has to check the validity of each key
in the key list and the correctness of the MAC value of the target. Without con-
sidering the intruders, we model the behaviors of the initiator node as follows:

Initiator1(S, T0, tint) =df time!request→ time?TS0 → StopC
(TS0 > (T0 + (T + 1) ∗ tint)|TS0 < T0)B Initiator2(S,D,KSD,KDS)

The time beginning to send route request is TS0 which must be within the
time period from T0 to TT+1. The time period is divided into T + 1 small time
intervals with a length of tint for each one.

Initiator2(S,D,KSD,KDS) =df

|||Xi∈Node∧i∈[1,n]∧n∈N (Broadcast!msgreq.MAC(KSD,msgreq).S.Xi →
ComXiS?msgrep.MAC(KDS ,msgrep).

−→
Kti .Xi.S → StopC

(MAC(KSD,msgrep)! =MAC(KDS ,msgrep))B CheckKeyV alid1(
−−→
NL,

−→
Kti)

→ Session.S.D)→ Initiator1(S, T0, tint)

−→
Kti and

−−→
NL stand for the key list and the node list respectively. When the

initiator receives the reply message, it will check the correctness of the MAC
value of the target firstly, through End-to-End nodes authentication mechanism.
Then, the process of CheckKeyV alid1 is used to check the validation of any
key in the key list by the initiator and we give its definition as follows:

CheckKeyV alid1(
−−→
NL,

−→
Kti) =df SkipC (len(

−→
Kti) == 0)B

(CheckKeyV alid1(tail(
−−→
NL), tail(reverse(

−→
Kti)))C

(keymap(head(
−−→
NL) == F i−j(head(reverse(

−→
Kti)))B Stop)))

Here, len shows the length of the list. head and tail return the first element
and the remainder of a list respectively. keymap is a function to get the authen-
ticated key at time tj according to the node id and through F ti−tj (Kti) one can
get the key Ktj at time tj . Then, we apply this equation to the received key

ComSIS Vol. 10, No. 1, January 2013 403

Xi Wu et al.

value to determine if the computed value matches a previous known authentic
key value at time tj on the key chain. Here, reverse is also a function to reverse
the elements in the key list

−→
Kti .

Indeed, we must allow the possibility of intruder actions, such as intercepting
the request messages and faking the reply messages. We model this situation
via the renaming of CSP:

Initiator(S, T0, tint) =df Initiator1(S, T0, tint)
[[Broadcast!msgreq.MAC(KSD,msgreq).S.Xi

← Broadcast!msgreq.MAC(KSD,msgreq).S.Xi,
Broadcast!msgreq.MAC(KSD,msgreq).S.Xi

← Intercept!msgreq.MAC(KSD,msgreq).S.Xi,

ComXiS?msgrep.MAC(KDS ,msgrep).
−→
Kti .Xi.S

← ComXiS?msgrep.MAC(KDS ,msgrep).
−→
Kti .Xi.S,

ComXiS?msgrep.MAC(KDS ,msgrep).
−→
Kti .Xi.S

← Fake?msgrep.MAC(KDS ,msgrep).
−→
Kti .Xi.S,

Session.S.D ← Session.S.D,
Session.S.D ← Fake session.S.D]]

4.3. Node

The intermediate nodes, in the whole process of the route discovery, have four
types of actions: receive the broadcasting request messages from the initiator
or the last intermediate node, rebroadcast the modified request messages to
the next node, get the unicasting reply messages and pass the reply messages
to the intermediate node or the initiator. Before modeling the actions for the in-
termediate nodes, the definition of the process Wait(t) will be listed below:

Wait(t) =df SkipC (t == 0)B (tick →Wait(t− 1)) where t >= 0

The process of Wait(t) is used to represent waiting for t time. If the interme-
diate node receives the reply message but its own TESLA key has not released,
it should cache the reply message and wait for a few time until its own key is
released. Wait(t) process synchronizes with the global timer and countdowns
the time t until it equals to 0. We will give the CSP model ignoring the intruder
firstly.

Because the intermediate node uses the TESLA broadcasting authentica-
tion protocol for route data authentication, after it receives the request message,
it checks whether the key the last node used has already been released or not.
If the key has already been released, the node will discard the request, other-
wise, it will compute its own hash value and MAC value, and rebroadcast the
modified request message to the next nodes. In the model below, Xl stands for
the last node, Xi for the current node and Xn for the next node.

404 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

Node1(S,Xl, Xi,KXiti
, δ, TS0 , tint) =df (|||Xn∈Node∧n∈N∧Xn!=Xi(

Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.Xi → time!request→

time?TS1 → CheckkeyV alid2(TS0 , TS1 , S,Xl, Xi, δ, tint)→
Broadcast!msgreq.

−−→
hXi .
−−−→
NLXi .

−−−−−→
MACXi .Xi.Xn →

ComXnXi?msgrep.MAC(KDS ,msgrep).
−−−−→
KXnti

.Xn.Xi →
time!request→ time?TS2 →WaitKeyReleased(TS0 , TS2 , S,Xi, δ, tint)→
ComXiXl!msgrep.MAC(KDS ,msgrep).

−−−→
KXiti

.Xi.Xl)→
Node1(Xl, Xi,KXiti

, δ, TS0 , tint))

−−→
hXi

stands for the hash chain constructed using the per-hop hash func-
tion H(x), and

−−−−−→
MACXi

stands for the current MAC list. CheckKeyV alid2 is a
process to check the TESLA key the last node used is released or not, and
WaitKeyReleased is another process used for node Xi itself to wait until its
TESLA key is released at some time. Here, δ represents the number of the time
intervals from starting using the key to releasing it. The definitions of the pro-
cesses CheckKeyV alid2 and WaitKeyReleased are given below:

CheckKeyV alid2(TS0 , TS1 , S,Xl, Xi, δ, tint) =df

StopC
((TS1 +GetT imeDif(Xl, Xi)) >= (TS0 +GetT imeDif(S,Xl) + δ ∗ tint))
BSkip

Here, GetT imeDif is a function to get the time differences between two
nodes. According to the TESLA broadcasting authentication protocol, the key
the node uses will be released after δ ∗ tint time from the time it begins to be
used.

WaitKeyReleased(TS0 , TS2 , S,Xi, δ, tint) =df

Wait(TS0 +GetT imeDif(S,Xi) + δ ∗ tint − TS2)C
(TS2 < (TS0 +GetT imeDif(S,Xi) + δ ∗ tint))B Skip

The intermediate node uses the process above to decide whether its key
released or not, and it should cache the reply data packet until its own TESLA
key is released. Here, we can also use renaming to model the behaviors of the
node so as to consider the actions of the intruder as process of Node. The in-
truder may fake or intercept the request and the reply messages, thus we list
the detailed model as follows:

Node(S,Xl, Xi,KXiti
, δ, TS0 , tint) =df Node1(S,Xl, Xi,KXiti

, δ, TS0 , tint)

[[Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.Xi

← Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.Xi,

Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.Xi

← Fake?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.Xi,

Broadcast!msgreq.
−−→
hXi .
−−−→
NLXi .

−−−−−→
MACXi .Xi.Xn

← Broadcast!msgreq.
−−→
hXi .
−−−→
NLXi .

−−−−−→
MACXi .Xi.Xn,

ComSIS Vol. 10, No. 1, January 2013 405

Xi Wu et al.

Broadcast!msgreq.
−−→
hXi .
−−−→
NLXi .

−−−−−→
MACXi .Xi.Xn

← Intercept!msgreq.
−−→
hXi .
−−−→
NLXi .

−−−−−→
MACXi .Xi.Xn,

ComXnXi?msgrep.MAC(KDS ,msgrep).
−−−−→
KXnti

.Xn.Xi

← ComXnXi?msgrep.MAC(KDS ,msgrep).
−−−−→
KXnti

.Xn.Xi,

ComXnXi?msgrep.MAC(KDS ,msgrep).
−−−−→
KXnti

.Xn.Xi

← Fake?msgrep.MAC(KDS ,msgrep).
−−−−→
KXnti

.Xn.Xi,

ComXiXl!msgrep.MAC(KDS ,msgrep).
−−−→
KXiti

.Xi.Xl)

← ComXiXl!msgrep.MAC(KDS ,msgrep).
−−−→
KXiti

.Xi.Xl),

ComXiXl!msgrep.MAC(KDS ,msgrep).
−−−→
KXiti

.Xi.Xl)

← Intercept!msgrep.MAC(KDS ,msgrep).
−−−→
KXiti

.Xi.Xl)]]

4.4. Target

After the target receives the route request, it checks whether there is any key
the nodes use has been released or not through the process CheckKeyV alid3
and it also checks the MAC value of the route request using KDS . If there is no
error, it will unicast a route reply according to the reverse order of the nodes in
the node list. Here, the key list

−→
Kti is an empty list and

−→
∆t is a list which holds

the time difference between every two nodes.

Target0(Xl, D,KDS , δ, tint, TS0 ,
−→
∆t) =df

Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.D →

time!request→ time?TS4 →
CheckKeyV alid3(

−−−→
NLXl , δ, tint, TS0 ,

−→
∆t)→

ComDXl!msgrep.MAC(KDS ,msgrep).
−→
Kti .D.Xl →

Session.S.D → Target0(Xl, D,KDS , δ, tint, TS0 ,
−→
∆t)

In addition, with respect to the intruder, it can intercept the reply message
or fake the request message. We model the target via renaming as follows:

Target(Xl, D,KDS , δ, tint, TS0 ,
−→
∆t) =df

Target0(Xl, D,KDS , δ, tint, TS0 ,
−→
∆t)

[[Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.D

← Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.D,

Broadcast?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.D

← Fake?msgreq.
−−→
hXl .
−−−→
NLXl .

−−−−−→
MACXl .Xl.D,

ComDXl!msgrep.MAC(KDS ,msgrep).
−→
Kti .D.Xl

← ComDXl!msgrep.MAC(KDS ,msgrep).
−→
Kti .D.Xl,

ComDXl!msgrep.MAC(KDS ,msgrep).
−→
Kti .D.Xl

← Intercept!msgrep.MAC(KDS ,msgrep).
−→
Kti .D.Xl,

Session.S.D ← Session.S.D,

406 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

Session.S.D ← Fake session.S.D]]

4.5. Intruder

In this paper, we also propose an intruder model. Here, the intruder is regarded
as a process which can intercept, eavesdrop and fake the message. Through
learning, the intruder can get much information about the route discovery. We
define a set Fact explaining all the facts it learns.

Fact =df Initiator ∪Node ∪ Target ∪Key ∪ SharedKey ∪MSG

∪{F (K)|K ∈ Key}

∪{MAC(K,msg)|K ∈ SharedKey,msg ∈MSG}

∪{H(node,H
′
)|node ∈ Node}

∪{MACi(K,msg,Hi, (..nodej ..nodei), (..MACj ..MACi−1))|

K ∈ Key,msg ∈MSG,nodej , nodei ∈ Node}

The intruder can learn facts from all the sets above. Besides, the intruder
node can also deduce some facts from what it has known. We denote I 7→ f to
represent that the intruder deduces new fact f from the known set I.

1. {F (KXi)} 7→ KXi−1 ,KXi−2 , ..,KX0

2. {MAC(K,msg)} 7→MAC(K,msg)
3. {MACi(K,msg,Hi, (..nodej ..nodei), (..MACj ..MACi−1))} 7→

MACi(K,msg,Hi, (..nodej ..nodei), (..MACj ..MACi−1))

4. {H(node,H
′
)} 7→ H(node,H

′
)

5. I 7→ f ∧ I ⊆ I⇒ I 7→ f

Here, the first deducing rule means that in the TESLA one-way key chain
authentication protocol, the intruder can deduce all the previous key values
through the one-way key function and any one key. The following three rules
stand for the intruder can reason the MAC values and the hash values from the
known sets. The last one represents that if the intruder can deduce one new
fact f from the known set I, it also can deduce the fact f from the set I, which
is bigger than I. As stated in [10], we also assume that the intruder knows the
identity of each node so that it can get some information from the fact without
deducing. Through the function info, the intruder can get various parts of the
message. For example:

info(msgreq.hS .S.∗) = {msgreq, hS , S, ∗}

info(msgreq.hXi .(..Xj ..Xi).(..MACXj ..MACXi).Xi.∗) =
{msgreq, hXi , .., Xj , .., Xi, ..MACXj , ..,MACXi , Xi, ∗}

info(msgrep.MACD.D.Xi) = {msgrep,MACD, D,Xi}

ComSIS Vol. 10, No. 1, January 2013 407

Xi Wu et al.

info(msgrep.MACD.(..KXjti
..KXiti

).Xi.S) =

{msgrep,MACD, ..,KXjti
, ..,KXiti

, Xi, S}

where msgreq,msgrep ∈MSG, S ∈ Initiator, ∗ ∈ Node ∪ Target,

Xj , Xi ∈ Node, D ∈ Target, KXjti
,KXiti

∈ Key

In order to model the behaviors of the intruder, we define another channel
deduce, through which the intruder can deduce some new facts from the set of
the facts it knew. The declaration of channel deduce is:

Channel deduce : Fact.P{Fact}.

Here, P stands for the power set of the Fact. The model of the intruder is
as follows:

Intruder0(I) =df

�m∈MSGBroadcast.m→ Intruder0(I ∪ info(m))
�
�m∈MSGComXiXj .m→ Intruder0(I ∪ info(m))
�
�m∈MSGIntercept.m→ Intruder0(I ∪ info(m))
�
�m∈MSGFake.m→ Intruder0(I)
�
�f∈Fact,f /∈I,I 7→fdeduce.f.I → Intruder0(I ∪ {f})

We hide the deduce channel because of the internal actions, then we get the
model of the intruder:

Intruder(I) =df Intruder0(I) \ [|{deduce}|]

4.6. System and Specification

The whole system can be modeled as the parallel composition of the initiator,
the intermediate nodes and the target. All these communication entities share
the same clock. First we consider the system without intruder.

INITIATOR =df Clock(0)[|{time}|]Initiator(S, T0, tint)

NODE =df Clock(0)[|{time}|]Node(S,Xl, Xi,KXiti
, δ, TS0 , tint)

TARGET =df Clock(0)[|{time}|]Target(Xl, D,KDS , δ, tint, TS0 ,
−→
∆t)

SY STEM0 =df INITIATOR[|{Broadcast, ComXiS, Session}|]NODE
[|{Broadcast, ComDXi, Session}|]TARGET

Then, we add the intruder into the whole system.

SY STEM =df SY STEM0[|INTRUDER ALPH|]INTRUDER(S,D,C,KCti
)

408 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

INTRUDER ALPH =df {|Broadcast, ComXiXj ,
Intercept, Fake, Session, Fake session|}.

Ariadne aims to preventing a malicious node from compromising the route.
The initiator or the target cannot accept any message modified by the intruder.
Here, we define the specification for the security property of the Ariadne proto-
col as:

SPEC =df CHAOS(
∑
−{|Fake session.S.D|}).

Note that
∑

stands for the set of all the events. As we mentioned in Section
4, the channel Fake session represents a successful intrusion between the ini-
tiator and the target. In Section 2, CHAOS(x) is explained that the process can
perform any sequence of events from its alphabet x. Thus, the whole specifica-
tion means that the process can perform all the events except the ones on the
set of channel Fake session. Some specific security properties will be listed in
the next section.

5. Verification in PAT

In this section, we use PAT to implement our CSP model of the Ariadne protocol.
We have already given a brief introduction to PAT in Section 2.

5.1. The Ariadne Protocol in PAT

Here, we implement three cases of our model using PAT. Case I is a basic in-
stance, ignoring the intruder, with a simple topology to show the basic process
of route discovery of the Ariadne protocol. Case II and Case III are more com-
plex with two different types of intruders: Case II with the Active-1-1 intruder
and Case III with the Active-1-2 intruder. Fake routing attacks may be present
in these two cases. Before we implement these three cases in PAT, we first
define four other functions in a new C] library as follows:

• MACV alue is used only for the initiator and the target to compute their
MAC values using the shared key and the message.

• HashV alue is used to compute the hash values for the intermediate nodes
through function H(x).

• mediaMACV alue is used for the intermediate nodes to compute the MAC
values using their corresponding TESLA keys.

• KeyV alue is a function to compute the node’s TESLA key at some time on
the TESLA chain.

We also need some significant channels and variables, e.g. broadcast stands
for the broadcasting channel, N represents the number of the intermediate
nodes in our case, msgreq stands for the request message, idlist[N+2] is a list

ComSIS Vol. 10, No. 1, January 2013 409

Xi Wu et al.

that stores the identity for each node, msgreply[N + 1][2] is a two-dimensional
array that stores the reply messages, distancelist is also a list recording the
distance between each two nodes. We give the declarations of them as follows:

#define N 4;
channel broadcast (N+1)*N;
#define msgreq 10;
var msglist[N+1][4];
var idlist[N+2] = [0,1,2,3];
var msgreply[N+1][2];
var distancelist[N+2][N+2]=

[0,1,2,3,-1,0,1,2,-1,-1,0,1,-1,-1,-1,0];

Case I: We implement the basic process of route discovery without intruder. We
assume that there are only four nodes such as S, A, B and D which have the
same topology as Figure 2, which we have already mentioned in Section 3.

Here, we give the relevant codes in PAT to show how the initiator node sends
and receives messages. The initiator S broadcasts the request message to all
of its neighbors and it also receives the reply message and does some ap-
propriate checks such as checking the time validation which is interpreted by
the process CheckInitT ime(clock). We give the PAT code of the processes
SendInits, SendInit and SendInit2 as follows:

SendInits(sender, content) = ||| receiver:{1..N+1} @
(SendInit(sender, content, receiver));

SendInit(sender, content, receiver) =
ifa ((sender == receiver)||
(idlist[sender]>idlist[receiver])||
distancelist[sender][receiver]!=1){ Skip }
else
{ time!true -> time?x -> {clock = x} ->
CheckInitTime(clock);
SendInit2(sender, content, receiver)

};
SendInit2(sender, content, receiver) =

{MACInit = call(MACValue,KeySD,msgreq)}->
broadcast!sender.receiver.content.MACInit->
{msglist[sender][0] = sender;
msglist[sender][1] = content;
msglist[sender][2]=MACInit;
msglist[sender][3]=0

} ->Skip;

In the above codes, some parameters from the model are defined as the
global variables which we have already mentioned before. Here, the process of
the whole system is represented:

System() = Clock(0) |||(Initiator(1)|||Nodes() ||| Target(3));

410 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

Fig. 4. Case II with Active-1-1 Intruder

Case II: Considering the Active-1-1 intruder, the intruder owns only one com-
promised node. We add the process of the intruder into the system and the
topology is shown in Figure 4, in which we use a circle to identify the in-
truder node. In the code, the id corresponding to the node (S,A,B,E,C,D)
is (0, 1, 2, 3, 4, 5).

When the intruder C receives the message from A, it will wait until the mes-
sage from E arrives. Then C will change the message especially the node list.
After C gets the reply from D, it will cache the reply message until its own
TESLA key and the TESLA key of node B have been released, then it will send
the reply to A directly. In fact, there is a fake path that S does not recognize.
This attack has been mentioned in [5], here we implement it using PAT and we
will discuss the details in the subsection Result Analysis. We give the relevant
codes about the actions of the intruder in this case, shown below:

Intruder(i) = broadcast?sender.i.msg.mac ->
save.i{intruderlist[j][0]=sender;
intruderlist[j][1]=i;intruderlist[j][2]=msg;
intruderlist[j][3]=mac;j=j+1;
cnt_intruder = cnt_intruder + 1}-> Change(i,j);
ifa (cnt_intruder >= 2) {Skip}
else {Intruder(i)};

Change(i,k) = ifa(k==2)
{change.i{msglist[i-1][0]=i;
msglist[i-1][2]=

call(HashValue,i,msglist[i-2][2]);
msglist[i-1][3]=

call(mediaMACValue,KeyTi[i-1],
msglist[i-1][1],msglist[i-1][2],i,
msglist[i-2][3])}->

Sendmedias(i,msglist[i-1][1],msglist[i-1][2]);
ReceiveReply(i)}

else {Skip};

ComSIS Vol. 10, No. 1, January 2013 411

Xi Wu et al.

Fig. 5. Case III with Active-1-2 Intruder

Case III: Here, we consider the Active-1-2 intruder, which means that the in-
truder controls two corrupted nodes but they use the same compromised iden-
tifier. The topology is shown in Figure 5 and we use a circle to identify the
intruder nodes. The id corresponding to the node (S,A,B,C,D) is (0, 1, 2, 3, 4).
When the intruder C receives the request from A, it saves the message into his
private list, which the other corrupted node can also access. Then, the intruder
whose identifier is also C will receive the message from B, it will change the
node list, sending it to D. After C receives the reply message from D, it will also
put it into its own list, then the other node whose identity is also named C will
send the message back to A ignoring the intermediate node B. Relevant codes
are represented below:

Intruder(i) = broadcast?sender.i.msg.mac ->
save.i{intruderlist[j+1][0]=sender;
intruderlist[j+1][1]=i;intruderlist[j+1][2]=msg;
intruderlist[j+1][3]=mac} ->Change(i);

Change(i) = change.i{msglist[i-1][0]=i;
msglist[i-1][2]=

call(HashValue,i,msglist[i-1][1]);
msglist[i-1][3]=

call(mediaMACValue,KeyTi[i-1],
msglist[i-1][1],msglist[i-1][2],
i,intruderlist[0][3])}->

Sendmedias(i,msglist[i-1][1],msglist[i-1][2]);
ReceiveReply(i);

5.2. Verification

Based on the trace analysis, in our paper, we mainly list five properties as fol-
lows:

Property 1: Deadlock Freedom

Deadlock Freedom means that there is no state with no further move except

412 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

waiting for some sources occupied by other states. The property of Deadlock
freedom can be formalized as follows:

∀i ∈ (Initiator ∪Node ∪ Target) •
(clock <= T imeMax ∧ i.send == true) =⇒
(i.receive == true ∧ num(send) == num(receive))

Within the specific time, if there is some node sending message through
the channel, there must be some node waiting to receive the message and the
number of the sent message is equal to the number of the received message.

Property 2: Message Consistency

Message Consistency stands for no changes happened on the messages
in the whole process of the protocol. Here, this property is explained below:

∃m,n ∈ N •
(((request == msglist[m][1]) =⇒ (∀j request == msglist[j][1]))∧
((reply == replylist[n][0]) =⇒ (∀k reply == reply[k][0])))

All the request messages, especially the message received by the target
node, must be consistent with the request sent by the initiator node. And the re-
ply message received by all the nodes, including the initiator node, is the same
with the message sent by the target node.

Property 3: Node List Security

Node List Security represents the security of the node list, that is the node
list cannot be changed arbitrarily. We use the first order logic language to de-
scribe this property:

∀i, j ∈ NID •
(nodelist[i] == requestlist[i][0]) ∧ (replylist[j + 1][2] == nodelist[j])

where NID =df 0..N

The Ariadne protocol aims to prevent a malicious node from compromising
the route. It wants to ensure the security of the node list that no intruder can
change the order of the nodes, or add, remove any node from the node list. So
the initiator receives the node list, which must be the same with that the target
node receives.

Property 4: Fake Path Nonexistence

Fake Path Nonexistence is one of the most important properties we dis-
cussed in our paper. It means that there exists no fake path in the whole pro-
cess of the route protocol. This property can be formalized as follows:

∀k ∈ NID • (nodelist[k] == msglist[k][0]) ∧
(distance[msglist[k][0]][msglist[k + 1][0] == 1)

ComSIS Vol. 10, No. 1, January 2013 413

Xi Wu et al.

where NID =df 0..(N − 1)

If the initiator receives the node list, it will check the distance of each node
in the node list. The distance between neighbor nodes being not equal to one
means that there may exist a fake path in the node list.

Property 5: End-to-End Nodes Authentication

End-to-End Nodes Authentication means that the end nodes also have some
functions to certificate the correctness of the key value and the MAC value.
Here, we mainly consider about the authentication of the initiator. This property
is explained below:

∀k ∈ NID • (KeyV alue(msgreply[k][1]) == Keytj [k]) ∧
(MACV alue(KeySD,msgreply[k][0]) ==MACTar)

where NID =df 0..(N − 1)

In Ariadne protocol, when the initiator receives the reply form the last node,
it will check the MAC value of the target and each key in the key list according
to the TESLA protocol.

The assertions of these properties can be found in Table 3. According to
the order of the properties as mentioned above, the following assertions de-
scribe Deadlock Freedom, Message Consistency, Node List Security, Fake Path
Nonexistence and End-to-End Nodes Authentication respectively.

Table 3. Assertions of Properties

#define goal1 (!((clock ≤ TimeMax)&&(countsend !=0))||
((countreceive !=0)&&(countsend==countreceive)));

#assert System() reaches goal1;

#define goal2 ((msgreq==msgReced)&& (msgrep==msgRepReced));
#assert System() reaches goal2;

#define goal3 ((msglist[1][0]==1)&&(msglist[2][0]==2)&& (msglist[3][0]==4));
#assert System() reaches goal3;

#define goal4 (((msglist[1][0]==1)&&(msglist[2][0])==2&&(msglist[3][0]==4))&&
((distancelist[msglist[1][0]][0]==1)&&
(distancelist[msglist[2][0]][msglist[1][0]]==1)&&
(distancelist[msglist[3][0]][msglist[2][0]]==1)));

#assert System() reaches goal4;

#define goal5 ((call(KeyValue,msgreply[1][1]))==KeyTj[1]&&
(call(KeyValue,msgreply[0][1]))==KeyTj[0]&&
(call(MACValue,KeySD,msgreply[1][0]))==MACTar);

#assert System() reaches goal5;

414 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

Fig. 6. The Result of Case II Fig. 7. The Result of Case III

Table 4. The Results of the Verification
Property 1 Property 2 Property 3 Property 4 Property 5

Case Study 1 P P P P P
Case Study 2 P P P F P
Case Study 3 P P P F P

5.3. Results Analysis

The results of the verification are shown in Table 4. Here, P is the abbreviation of
Pass which means the case study reaches the goal and passes the verification
of the property. And F, shorted for Fail, means the case does not reach the goal.
Through the table, we see that Case I reaches all of the five goals because of
no fake path existing in Case I. Conversely, both Case II and Case III fail the
verification of property 4 indicating there are fake pathes in these two case
studies. Here, we discuss the details about these two results.

In the Case II, when the intruder C receives the message 〈msgreq, hA, (A),
(MA)〉 fromA, it will wait until the message 〈msgreq, hE , (A,B,E), (MA,MB ,ME)〉
from E arrives. Then C will change the message especially the node list as
(A,B,C) toD. The modified message is 〈msgreq, hC , (A,B,C), (MA,MB ,MC)〉,
where hC = H(C,H(B, hA)) and MB can be deduced from the known informa-
tion. After C gets the reply from D, it will cache the reply message until its
own TESLA key and the TESLA key of node B have been released, then it will
send the reply to A directly. In fact, (S,A,B,C) is a fake path that S does not

ComSIS Vol. 10, No. 1, January 2013 415

Xi Wu et al.

recognize. Meanwhile, we consider the Active-1-2 intruder in Case III. When
the intruder C receives the request 〈msgreq, hA, (A), (MA)〉 from A, it saves the
message into his private list, which the other corrupted node can also access.
Then, the intruder whose identifier is also C will receive the message from B, it
will change the node list as (A,C) and send it to D. After C receives the reply
message from D, it will also put the reply message into its own list, then the
other node whose identity is also named C will send the message back to A ig-
noring the intermediate node B. We also give the User Interface Figure, Figure
6 and Figure 7, which show the result of the verification of Case II and Case III
in PAT.

6. Discussion

In Mobile Ad Hoc Networks, typical routing protocols are divided into three
types, such as the proactive routing protocols, the on-demand (or reactive)
routing protocols and the mixed routing protocols. In our paper, we focus on
the on-demand routing ones, i.e. AODV [2,25], DSR [11], Ariadne, etc., in which
the initial node will begin the process of route discovery to the destination only
when it has a data packet needed to be sent to the destination. Through the
comprehensive comparison and analysis, we find that all the on-demand rout-
ing protocols have the phase of the route discovery and we think that the model-
ing approach presented in our paper is also applicable to other protocols, which
are based on the on-demand routing protocols and have the route discovery
process.

The route discovery includes two processes: broadcasting the request mes-
sage and unicasting the reply message. We can abstract the process of the
route discovery of all the on-demand routing protocols as shown in Figure 8
below:

Fig. 8. The Abstract Model Diagram of the Route Discovery Process

We can define sets, i.e., Initiator, Node, Target, MSG, and channels such
as Broadcast, ComII and ComTI, as mentioned in the previous sections. Some

416 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

more sets and channels can be added as needed. We give a general formal-
ization here:

Initiator(parameter) =df |||Xi∈Node∧i∈[1,n]∧n∈N (

Broadcast!msgreq....Initiator.Xi →
/*More processes can be added here*/

ComII?msgrep....Xi.Initiator)→ Initiator(parameter)

In the whole discovery process, the initiator will broadcast the request mes-
sage to all of the nodes only one hop away from it, and receive the reply mes-
sage from some intermediate node or the target. The actions of the intermedi-
ate nodes are more complex, that are receiving the request and the reply mes-
sages, broadcasting the request message and unicasting the reply message.
Here, we do not discuss the details between different intermediate nodes, con-
sidering all the intermediate nodes as a whole part, shown below:

Node(parameter) =df (|||Xn∈Node∧n∈N (

Broadcast?msgreq....Initiator.Xn →
/*More processes can be added here*/

Broadcast!msgreq....Xn.Target→
/*More processes can be added here*/

ComTI?msgrep....Target.Xn →
/*More processes can be added here*/

ComII!msgrep....Xn.Initiator)→ Node(parameter)

The target node will receive the request message and unicast the reply mes-
sage to the intermediate nodes. It can be formalized as follows:

Target(parameter) =df

Broadcast?msgreq....Xn.Target→
/*More processes can be added here*/

ComTI!msgrep....Target.Xn → Target(parameter)

As mentioned above, we give a general framework to formalize the commu-
nication entities as CSP processes of route discovery of the on-demand routing
protocols. Some other models, such as intruder model, clock model, etc., can
be modeled as needed and the corresponding processes can also be added
into our general framework. For instance, in our paper, we focus on the Ari-
adne protocol, which is an efficient and well-known on-demand secure protocol
of MANETs. It mainly concerns about how to prevent a malicious node from
compromising the route using three authentication mechanisms. Therefore, we
add the security authentication mechanisms into our model and we also define
some other processes to describe the security mechanisms.

ComSIS Vol. 10, No. 1, January 2013 417

Xi Wu et al.

7. Conclusion and Future Work

In this paper, we proposed a CSP model of the Ariadne secure route proto-
col. All the communication entities of the protocol, involving the initiator node,
the intermediate nodes, and the target, have been abstracted as processes re-
spectively. They share the same clock to realize the effect of asymmetric key
encryption through clock synchronization and detention. Besides, we also pro-
posed an intruder model in which the intruder can perform the attacks. We
also discuss that our modeling approach is applicable to other on-demand rout-
ing protocols, which have the route discovery process. Furthermore, we use
PAT, a model checker to implement and validate our formal model automatically.
Three case studies are given and we verify five properties: Deadlock Freedom,
Message Consistency, Node List Security, Fake Path Nonexistence and End-to-
End Nodes Authentication. The verification result demonstrates that some fake
paths indeed exist in the Ariadne protocol.

In the future, we would work on the formalizing of the other phase of the
Ariadne protocol, including the process of the route maintain. Besides, based
on the whole achieved model of the Ariadne protocol, further verification by us-
ing PAT is also an interesting topic to be explored. We also want to propose a
research methodology to study the discovery process of the on-demand routing
protocols for ad hoc networks.

Acknowledgments. The authors gratefully acknowledge support from the Danish Na-
tional Research Foundation and the National Natural Science Foundation of China (Grant
No. 61061130541) for the Danish-Chinese Center for Cyber Physical Systems. This work
was also supported by National Basic Research Program of China (No. 2011CB302904),
National High Technology Research and Development Program of China (No. 2011AA01
0101 and No. 2012AA011205), National Natural Science Foundation of China (No. 61021
004), and Shanghai Leading Academic Discipline Project (No. B412).

References

1. Ács, G., Buttyán, L., Vajda, I.: Provably Secure On-Demand Source Routing in Mo-
bile Ad Hoc Networks. IEEE Trans. Mob. Comput. 5(11), 1533–1546 (2006)

2. Belding-Royer, E.M., Perkins, C.E.: Multicast Operation of the Ad-Hoc On-Demand
Distance Vector Routing Protocol. In: MOBICOM. pp. 207–218 (1999)

3. Bergstra, J.A., Klop, J.W.: Algebra of Communicating Processes with Abstraction.
Theor. Comput. Sci. 37, 77–121 (1985)

4. Brookes, S.D., Hoare, C.A.R., Roscoe, A.W.: A Theory of Communicating Sequen-
tial Processes. J. ACM 31(3), 560–599 (1984)

5. Buttyán, L., Vajda, I.: Towards provable security for ad hoc routing protocols. In:
Proc. 2nd ACM workshop on Security of ad hoc and sensor networks. pp. 94–105.
SASN ’04, ACM, New York, NY, USA (2004)

6. Chen, C., Dong, J.S., Sun, J., Martin, A.: A verification system for interval-based
specification languages. ACM Trans. Softw. Eng. Methodol. 19(4) (2010)

418 ComSIS Vol. 10, No. 1, January 2013

Modeling and Verifying the Ariadne Protocol Using Process Algebra

7. Ding, J., Zhu, H., Li, Q.: Formal Specification of Automatic DMARF Based on CSP.
In: Engineering of Autonomic and Autonomous Systems (EASe), 2011 8th IEEE
International Conference and Workshops on. pp. 32 –39 (4 2011)

8. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall (1985)
9. Hu, Y.C., Johnson, D.B., Perrig, A.: SEAD: secure efficient distance vector routing

for mobile wireless ad hoc networks. Ad Hoc Networks 1(1), 175–192 (2003)
10. Hu, Y.C., Perrig, A., Johnson, D.B.: Ariadne: A Secure On-Demand Routing Protocol

for Ad Hoc Networks. Wireless Networks 11(1-2), 21–38 (2005)
11. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Networks.

Mobile Computing pp. 153–181 (1996)
12. Jordan, R., Abdallah, C.: Wireless communications and networking: an overview.

Antennas and Propagation Magazine, IEEE 44(1), 185 –193 (2 2002)
13. Lin, C.H., Lai, W.S., Huang, Y.L., Chou, M.C.: Secure Routing Protocol with Mali-

cious Nodes Detection for Ad Hoc Networks. Advanced Information Networking and
Applications Workshops, International Conference on 0, 1272–1277 (2008)

14. Liu, Y., Sun, J., Dong, J.S.: An Analyzer for Extended Compositional Process Alge-
bras. In: ICSE Companion. pp. 919–920. ACM (2008)

15. Liu, Y., Sun, J., Dong, J.S.: Analyzing Hierarchical Complex Real-time Systems. In:
FSE 2010. pp. 365–366 (2010)

16. Liu, Y., Sun, J., Dong, J.S.: PAT 3: An Extensible Architecture for Building Multi-
domain Model Checkers. In: ISSRE. pp. 190–199 (2011)

17. Liu, Z.: The Security Analysis of Routing Protocol for Ad Hoc Networks. Journal of
Huangshi Institute of Technology 23(4), 29–33 (8 2007)

18. Lowe, G., Davies, J.: Using CSP to Verify Sequential Consistency. Distributed Com-
puting 12(2-3), 91–103 (1999)

19. Lowe, G., Roscoe, A.W.: Using CSP to Detect Errors in the TMN Protocol. IEEE
Trans. Software Eng. 23(10), 659–669 (1997)

20. Luu, A.T., Sun, J., Liu, Y., Dong, J.S., Li, X., Tho, Q.T.: SeVe: automatic tool for
verification of security protocols. Frontiers of Computer Science in China 6(1), 57–
75 (2012)

21. Luu, A.T., Sun, J., Liu, Y., Dong, J.S., Li, X., Tho, Q.T.: SeVe: automatic tool for
verification of security protocols. Frontiers of Computer Science in China 6(1), 57–
75 (2012)

22. Mauve, M., Widmer, A., Hartenstein, H.: A survey on position-based routing in mo-
bile ad hoc networks. Network, IEEE 15(6), 30 –39 (Nov/Dec 2001)

23. Mazur, T., Lowe, G.: Counter Abstraction in the CSP/FDR setting. Electr. Notes
Theor. Comput. Sci. 250(1), 171–186 (2009)

24. Milner, R.: A Calculus of Communicating Systems, Lecture Notes in Computer Sci-
ence, vol. 92. Springer (1980)

25. Perkins, C.E., Belding-Royer, E.M.: Ad-hoc On-Demand Distance Vector Routing.
In: WMCSA. pp. 90–100 (1999)

26. Perrig, A., Canetti, R., Song, D.X., Tygar, J.D.: Efficient and Secure Source Au-
thentication for Multicast. In: Proc. the Network and Distributed System Security
Symposium. The Internet Society (2001)

27. Perrig, A., Canetti, R., Tygar, J.D., Song, D.X.: Efficient Authentication and Signing
of Multicast Streams over Lossy Channels. In: IEEE Symposium on Security and
Privacy. pp. 56–73 (2000)

28. Pura, M.L., Bica, I., Patriciu, V.V.: On modeling and formally verifying secure ex-
plicit on-demand ad hoc routing protocols. In: Proc. 2nd International Conference
on Software Technology and Engineering. vol. 2, pp. 215–220 (10 2010)

ComSIS Vol. 10, No. 1, January 2013 419

Xi Wu et al.

29. Rohrmair, G.T., Lowe, G.: Using CSP to Detect Insertion and Evasion Possibilities
within the Intrusion Detection Area. In: Proc. 1st International Conference on Formal
Aspects of Security. pp. 205–220. Springer (2002)

30. Roscoe, A.W.: The theory and practice of concurrency. Prentice Hall (1998), http:
//www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

31. Roscoe, A.: Understanding Concurrent Systems. Springer (2010), http://www.
comlab.ox.ac.uk/ucs

32. Sanzgiri, K., Dahill, B., Levine, B.N., Shields, C., Belding-Royer, E.M.: A Secure
Routing Protocol for Ad Hoc Networks. In: Proc. 10th IEEE International Conference
on Network Protocols. pp. 78–89. IEEE Computer Society (2002)

33. Sivakumar, K.A., Ramkumar, M.: Improving the resiliency of Ariadne. In: Proc. 9th
IEEE International Symposium on a World of Wireless, Mobile and Multimedia Net-
works. pp. 1–6. IEEE (June 2008)

34. Sun, J., Liu, Y., Dong, J.S.: Model Checking CSP Revisited: Introducing a Process
Analysis Toolkit. In: Proc. 3rd International Symposium on Leveraging Applications
of Formal Methods, Verification and Validation. pp. 307–322. Springer (2008)

35. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards Flexible Verification under Fair-
ness. Lecture Notes in Computer Science, vol. 5643, pp. 709–714. Springer (2009)

36. Sun, J., Liu, Y., Dong, J.S., Pu, G., Tan, T.H.: Model-based Methods for Linking Web
Service Choreography and Orchestration. In: APSEC 2010. pp. 166 – 175 (2010)

37. Sun, J., Liu, Y., Song, S., Dong, J.S., Li, X.: PRTS: An Approach for Model Check-
ing Probabilistic Real-Time Hierarchical Systems. In: Qin, S., Qiu, Z. (eds.) Formal
Methods and Software Engineering. Lecture Notes in Computer Science, vol. 6991,
pp. 147–162. Springer Berlin / Heidelberg (2011)

38. Sun, J., Song, S., Liu, Y.: Model Checking Hierarchical Probabilistic Systems. In:
Dong, J.S., Zhu, H. (eds.) Formal Methods and Software Engineering - 12th In-
ternational Conference on Formal Engineering Methods, ICFEM 2010, Shanghai,
China, November 17-19, 2010. Proceedings. Lecture Notes in Computer Science,
vol. 6447, pp. 388–403. Springer (2010)

39. Suresh, S., Mike, W., S., R.C.: Power-aware routing in mobile ad hoc networks.
In: Proc. 4th annual ACM/IEEE international conference on Mobile computing and
networking. pp. 181–190. MobiCom ’98, ACM, New York, NY, USA (1998)

40. Tuan, L.A.: Modeling and Verifying Security Protocols Using PAT Approach. Secure
Software Integration and Reliability Improvement Companion, IEEE International
Conference on 0, 157–164 (2010)

41. Wang, M., Zhu, H., Zhao, Y., Liu, S.: Modeling and Analyzing the (mu)TESLA Pro-
tocol Using CSP. In: TASE. pp. 247–250 (2011)

42. Wu, X., Liu, S., Zhu, H., Zhao, Y., Chen, L.: Modeling and Verifying the Ariadne
Protocol Using CSP. In: ECBS. pp. 24–32 (2012)

43. Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: Proc. 2002 ACM
Workshop on Wireless Security. pp. 1–10. ACM (2002)

44. Zheng, M., Sun, J., Liu, Y., Dong, J.S., Gu, Y.: Towards a Model Checker for NesC
and Wireless Sensor Networks. In: Qin, S., Qiu, Z. (eds.) Formal Methods and Soft-
ware Engineering. Lecture Notes in Computer Science, vol. 6991, pp. 372–387.
Springer Berlin / Heidelberg (2011)

45. Zheng, M., Sun, J., Sanán, D., Liu, Y., Dong, J.S., Gu, Y.: Towards bug-free imple-
mentation for wireless sensor networks. In: SenSys. pp. 407–408 (2011)

420 ComSIS Vol. 10, No. 1, January 2013

http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.comlab.ox.ac.uk/ucs
http://www.comlab.ox.ac.uk/ucs

Modeling and Verifying the Ariadne Protocol Using Process Algebra

Xi Wu received her BSc in Software Engineering from Software Engineering In-
stitute, East China Normal University in 2011. She is currently a master student
in Formal Methods with the same institute. Her research interests include pro-
cess algebra and its applications, program analysis and verification, and web
services.

Huibiao Zhu is Professor of Computer Science at Software Engineering Insti-
tute, East China Normal University. He received his BSc in Mathematics and
MSc in Computer Science in 1989 and 1992 respectively, all from East China
Normal University. He earned his PhD in Formal Methods from London South
Bank University in 2005. His research interests include the following areas: (1)
semantics theory, including process algebra and its applications; (2) unifying
theories of programming; (3) formal design, specification and verification in hy-
brid systems.

Yongxin Zhao held a PhD degree in Formal Methods from Software Engineer-
ing Institute, East China Normal University in 2012. He is currently a research
fellow at School of Computing of National University of Singapore. His research
interests include program analysis and verification, semantics theory, web ser-
vices. He owns more than 15 referred publications.

Zheng Wang received his BSc and PhD from Software Engineering Institute,
East China Normal University in 2007 and 2012 respectively. Now he is a soft-
ware requirement engineer in the Software Development Department at Beijing
Institute of Control Engineering, China Academy of Space Technology. His main
research topic focuses on the automatization and formalization of requirement
analysis for embedded control software.

Si Liu received his BSc and MSc from Software Engineering Institute, East
China Normal University in 2009 and 2012 respectively. He is currently a PhD
student with the Formal Methods and Declarative Languages Laboratory, the
Department of Computer Science, University of Illinois at Urbana-Champaign.
His research interests are in the areas of formal methods and programming
languages.

Received: June 1, 2012; Accepted: August 30, 2012.

ComSIS Vol. 10, No. 1, January 2013 421

	Modeling and Verifying the Ariadne Protocol Using Process Algebra
	Xi Wu cl@@auth, Huibiao Zhu cl@@auth, Yongxin Zhao cl@@auth, Zheng Wang cl@@auth, Si Liu

