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Abstract. With the advent of Big Code, code prediction has received widespread
attention. However, the state-of-the-art code prediction techniques are inadequate in
terms of accuracy, interpretability and efficiency. Therefore, in this paper, we pro-
pose a graph embedding model that integrates code semantic features. The model
extracts the structural paths between the nodes in source code file’s Abstract Syntax
Tree(AST). Then, we convert paths into training graph and extracted interdependent
semantic structural features from the context of AST. Semantic structure features
can filter predicted candidate values and effectively solve the problem of Out-of-
Word(OoV). The graph embedding model converts the structural features of nodes
into vectors which facilitates quantitative calculations. Finally, the vector similarity
of the nodes is used to complete the prediction tasks of TYPE and VALUE. Exper-
imental results show that compared with the existing state-of-the-art method, our
method has higher prediction accuracy and less time consumption.

Keywords: Big Code, Graph Embedding, Code Prediction.

1. Introduction

With the rapid increase of the code’s volume, the use of existing code data for prediction
has attracted more and more attention. It makes use of the existing code in the context to
suggest the next possible code token, such as method calls or object fields. However, the
source code files are written by different programmers and have no fixed structure. For
example, Python has a more casual programming style, and feature extraction process is
more difficult than Java. These reasons lead to the low accuracy of the prediction model,
and we may even get the opposite result. Thus, mining the information between nodes
can effectively extract the features in the source code file. Finally, the model can predict
the missing nodes through these features. Traditional code prediction methods are based
on code contexts and grammatical rules. Early research focused on probability models
in this field. The probability model integrates the node information around the predicted
node and calculates the probability value of each candidate value in the model. For ex-
ample, the N-gram[5] model uses the n − 1 tokens to predict the probability of the nth
token. The N-gram model has strong flexibility and high scalability. Yet, N-gram model
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only extracts code information in a small range, and cannot deal with the long-distance
dependent features of the code. So, the prediction performance of the N-gram model has
limitations. Deep learning can effectively extract the features of long-distance node infor-
mation. These methods have long been used in natural language processing tasks, such
as LSTM. Raychev[24] believes that programming languages are also natural languages,
such as recurrent neural network (RNN) models can also solve code problems. They uses
the RNN model to obtain the order distribution and semantics of the code from the AST
of the source code file. Neural language model combined with Attention Mechanism[4]
can complete the code prediction task. However, the time consumption of neural network
models is very long, and the interpretability of the model is weak. The neural network
model uses fixed candidate values, so it is difficult to solve the OoV problem.

Generally, the last component of the neural network model is the softmax classifier.
Each output dimension corresponds to a unique word in a predefined vocabulary. Due to
the large amount of calculation of the model, the usual approach is to use only theK most
frequent words in the corpus to build a vocabulary. The words that are not in the candi-
date value are defined as Out-of-Vocabulary(OoV) words. In reality, every programmer
will artificially define rare node names. The occurrence of these values is very small in
the source file, and the probability of appearing in the candidate value table is very low.
Therefore, OoV problems are common in code prediction, which also reduces the predic-
tion accuracy of the model. Abstract Syntax Tree(AST) is an abstract representation of the
grammatical structure of source code. It shows the grammatical structure of the program-
ming language in the form of a tree, each node on the AST represents a structure in the
source code. Each code source file has only one corresponding abstract syntax tree. We
extract the rich grammatical structure features in AST and bring them to the downstream
prediction model.
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3.'ListLoad'
4.'NameLoad'
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from lmi.scripts.common import get_logger
from lmi.scripts.common.errors import LmiFailed
...
_?_ = get_logger(__name__)
...
def create_luks(ns, device, passphrase):

 device = common.str2device(ns, device)
 ...
 LOG().info("Created LUKS on %s", device.Name)
 return outparams['Format']

...
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Fig. 1. Examples of Python programs and their corresponding AST
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In this paper, we propose a graph embedding prediction model with AST’s semantic
structure features. We extract semantic structural features from the code context and filter
out irrelevant candidate values. This process can narrow the range of candidate values,
thereby shortening the prediction time. And the candidate values change according to the
context of the prediction files. The dynamic change of candidate values can effectively
solve the OoV problem. Besides, we extract the AST’s node paths of the source file and
convert them into training graphs. Then, we use the Node2vec model to extract the struc-
tural features of the graph and embed the structure paths into vector with fixed dimensions.
The embedding model reduces the dimensionality of discrete node paths to continuous di-
mensional vectors, which is useful for quantitative calculations in downstream tasks. The
Node2vec model biasly converts the training graph into node sequences. Each node se-
quence merges different structural information between nodes through parameters (p, q).
The greater the overlap degree of node sequences, the higher the similarity of nodes.
Therefore, the probability of our predicted value is positively correlated with the similar-
ity of the node’s structure. Our model can keep the structural information of the source
code, so the model interpretability is higher. Besides, the model consumes less time than
the neural network models and has higher prediction accuracy.

As shown in Fig. 1, the source code file in Fig. 1(a) is got from GitHub. The Predic-
tion Node in the Fig. 1(a) is the node we want to predict. Fig. 1(b) is an abstract syntax
tree for source file conversion. We can use semantic features to filter candidate values.
The parameters defined in the source file or the imported package will be called in the
following, such as (1), (2). The source code file imported a Python package get logging
at position (1), and get logging is called at position (2). We extract similar semantic
structural features from AST. The defined structure is stored in the collection vPet, such
as package name or parameters. vSet collection stores the semantic structure of the pack-
age or parameter call. Then vSet − vPet is a new candidate value table, which contains
the missing nodes. In Fig. 1(c), the candidate value LOG is the OoV word. If the calcu-
lated candidate value table is empty, the most frequentK values related to the parent node
are selected as candidate values. Finally, the graph embedded model is used to calculate
the predicted value, as shown in Fig. 1(d).

The main contribtions of this paper are as follows.

– An effective graph structure is constructed. We extract the path of the terminal node
from the AST of the source code and filter out irrelevant paths. These training paths
will be converted into training graphs of related nodes. This process can reduce the
redundant nodes of the training graphs. The reduced training graphs can speed up the
node prediction task.

– The semantic structural features in AST is extracted. We extracted the semantic fea-
tures can reduce the range of candidate value tables. Since the candidate value is
not fixed, it dynamically changes with the prediction file. Thus, the OoV rate can be
effectively reduced.

– The efficiency of our model is demonstrated by comparing with the state-of-the-art
model. Our model prediction accuracy is improved and the time consumed is short-
ened. In this model, the graph embedding part can effectively extract the local in-
formation of the AST, and the semantic features include the information of global
dependence. The combination of these two parts improves the prediction accuracy
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of the model. The selection of candidate values by semantic features can shorten the
prediction time.

The rest of the paper is organized as follows. The Section 2 introduces related works,
and Section 3 explains the basic problem definition. We proposed method in Section 4.
Section 5 describes the experiment and the experimental results. Finally, we summarize
this paper and outline future work prospects in Section 6.

2. Related Works

Simple and effective probability models are widely used in the field of code prediction.
The research content is to improve the prediction accuracy of the N-gram language model.
Allamanis et al.[3] expanded the size of the corpus based on the research of Hindle et
al.[15]. The experiments show that with the increase of data, there is no performance bot-
tleneck in the N-gram model. Nguyen et al.[21] proposed SLAMC to solve the problem
that the N-gram model can only extract a limited range of rules, thereby improving the
experimental results. Tu et al.[25] found that the locality rules of the code are not used in
the N-gram model, and proved that the source code has local repetitiveness. The local rep-
etition rules can be captured by the local cache and applied to software engineering tasks.
Nguyen et al.[20] believed that the N-gram model could not extract structural information
from API calls, and proposed a language model GraLan for the API call sequence diagram
to predict the next API element. In addition to the N-gram model, machine learning meth-
ods can also be applied in this field. Bruch et al.[7] used the KNN algorithm to find the
most similar completed fragments in the existing code base and provided candidates for
method calls. It also points out that many machine learning algorithms can be introduced
into the research of code completion. These are similar to the methods recommended for
the code, and there are many in life[11][27]. However, these methods have poor ability to
deal with OoV problems, and some of them have not considered this issue.

The prediction method based on the representation method of the neural network
model mainly uses the improved RNN model, LSTM[18] and gated network[17]. Jian
Li[16] proposed parent pointer hybrid network to predict the OoV words in code comple-
tion. Adnan Ul et al.[26] used Bi-LSTM model training to split source code identifiers.
The model reduces the number of identifier core libraries, thereby improving the accuracy
of code prediction. Bhoopchand et al.[6] proposed a new neural network model (sparse
pointer network) to capture long-distance dependencies. Context-aware[13] methods have
also been used in the Internet of Things. The real-time coding suggestions provided by
programmers are closely related to the stability of the network[12][10].

Graph models are widely used in graph structure node quantization processing. Bryan
Perozzi et al.[22] proposed that the DeepWalk model uses a random walk algorithm
to process static graphs. However, the extraction of DeepWalk path sequences is ran-
dom, and no attention is paid to the path between Depth-First-Search(DFS) and Breadth
First Search(BFS) between fused nodes. Therefore, Aditya Grover et al. [14] proposed
Node2vec, which proposed a biased random walk algorithm based on the edge weight
of graph nodes. The Node2vec algorithm can fuse the structural information of the node
DFS and BFS. Node2vec can effectively integrate the information around the node, so the
extracted features are more effective. The powerful method of GNN[9][8] in modeling
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the dependency relationship between graph nodes has made the research field related to
graph analysis achieve good results. Allamanis et al.[2] proposed to use graphs to rep-
resent the structure and semantic information of source code, pointing out that graph
neural networks have better performance in variable completion and variable misuse than
convolutional neural networks, and can complete multiple variables. The latest empirical
research by Rahman et al.[23] pointed out that the graph has a higher level of repetitive
patterns than the N-gram model. It is recommended to further study the statistical code
graph model to accurately capture more complex coding models.

3. Problem Definition

In order to facilitate the extraction of the characteristic data in the source code, we con-
verted the source files with different number of lines and volumes into AST. The fixed
structure path information of the terminal node is extracted through AST, which is con-
venient to carry into the downstream model for calculation. All programming languages
have clear context-free grammars that can be used to parse source code into AST. Then
we extract the path and convert it into a related graph structure (Train-Graph G). Finally,
the training graph is brought into the model, and the predicted node combination (Node
Combination (T, V )) is calculated.

Definition 1:(Train-Graph G). Train-Graph G = (F,A, Path) is a graph converted
from the AST’s node path of the source file data. F presents a set of n sounce code
files, F = {f1, f2, f3, ...fn}. A presents a set of Abstract Syntax Tree (AST) which is
transformed by context-free grammer A = {a1, a2, a3, ...an}. These AST files contain
a majority of node structural feature information. Each Path contains AST’s terminal
node Up path and Down path. Finally, all node’s paths are converted into a training graph
G = (F,A, Path).

Definition 2:(Node Combination (T, V )). (T, V ) is calculated by the similarity be-
tween the parent node of the prediction node and the candidate value in Train-GraphG. Tc
represents s candidate values in TYPE task, Tc = {Tc1, T c2, T c3, ...T cs}. V c represents
k candidate values in VALUE task, V c = {V c1, V c2, V c3, ...V ck}. T is the maximum
value calculated by predicting the similarity between the parent node p node and Tc,
T = S(G,Tc, p node). V is the maximum value calculated by predicting the similarity
between the parent node T and V , V = S(G,V c, T ).

For example, as shown in Fig. 1, we predict the missing node=(T, V ) in the last line of
code. In the corresponding AST, it can be obtained that the p node isAssign in Fig. 1(b).
After embedding the graph node, the model will calculate the vector similarity between
the candidate value and the parent node(Assign) of the predicted node. If the candidate
node structure is more similar to the parent node, the more likely the two are connected.
So the TYPE prediction task is to calculate T = S(G,Tc,Assign). Determine the type
of the prediction node, then we use the type as the new parent node and calculate V =
S(G,V c, T ) to predict the VALUE task. This prediction process is transformed into the
prediction of the node, as shown in the following Equation (1), (2).

∃i ∈ {1, 2, 3, ...s} : T = S(G,Tc, p node) ≥ S(G,Tci, p node) (1)

∃j ∈ {1, 2, 3, ...k} : V = S(G,V c, p node) ≥ S(G,V cj , p node) (2)
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Therefore, the solution is to calculate the similarity between each candidate value
and the parent node vector of the predicted node. Finally, we obtain the prediction token
(T, V ).

4. The Proposed Approach

This Section contains four parts: The Framework, Data Processing, Semantic Feature
Extraction and Graph Embedding Mode.

4.1. The Framework

Fig. 2 shows the main architecture of our proposed model. The overall framework of this
paper is mainly divided into three parts: Data Processing, Semantic Feature Extraction,
and Graph Embedding Model.

Candidate
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File
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Prediction
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Fig. 2. The model framework

The data processing part uses context-free grammar to transform the source file into
an abstract syntax tree. We extract the path of the AST terminal node and convert it into
a training graph. Semantic structure feature can extract global information of remote de-
pendencies, and the extracted semantic structure can filter out new candidate values. The
graph embedding model uses the Node2vec algorithm to reduce the dimensionality of the
node graph. It biasly extracts the relevant node sequences and converts them into vector
of fixed dimensions, and the vector will bring into the downstream prediction task for
calculation.

4.2. Data Processing

After converting the source code to AST, we extract the path of the terminal node. As
shown in Fig. 3(a), take the terminal node logging as an example. We obtain its upward
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path UpPath and downward pathDownPath, and merge the two path to get the logging
node’s path NodePath. UpPath contains the node hierarchy information of AST, which
can reflect the hierarchical characteristics of nodes in AST. DownPath mainly extracts
local information of terminal nodes and can directly reflect the correlation of neighboring
nodes. Each node path contains rich and steric information.
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[  ,      NameLoad   ,   ]

[  ,      NameLoad   ,   ]

Node Graph(i)AST node Path 
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(a)AST Node Path

(b)Node Path Transform to Graph

UpPath

Fig. 3. Data processing

For each prediction path, we make full use of the existing structural information. The
parent node of the terminal node can provide information intuitively, so we use the parent
node to filter the training data set. In particular, each prediction data will have a corre-
sponding data set and generate a corresponding graph structure. As shown in Fig. 3(b),
the known parent node NameLoad of the predicted path is used to filter out the data set
Set(i) and convert it into the corresponding graph G(i). For edges extracted from the
source data, the model will count the number of occurrences and use this as the weight of
the graph G(i).

After data processing, we can remove a lot of redundant information in the source
code files. This process not only reduces the node size of the graph, but also retains useful
information.

4.3. Semantic Feature Extraction

Programming language is a natural language with obvious repetitive characteristics[1].
We can extract the semantic features of the programming language from the contextual
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relevance to help us complete specific tasks. In this paper, we analyze the structure of the
AST of the source file and combine the code semantics to find out the rules between the
structures. In traditional prediction tasks, the Top−K values with the most occurrences
in the training data are established as candidate values (Section 4.1). But there are two
conflicting issues in this process:

– The range of the candidate value table is small. Since the number of candidate values
is small, there is a high probability that the predicted node value is not in the candidate
value table. This situation will not only cause OoV problems, but also reduce the
prediction accuracy.

– The candidate value table has a larger range. Since there are too many candidate
values, the prediction accuracy will be improved. However, each prediction process
must calculate a large number of irrelevant candidate nodes. This leads to a significant
increase in the prediction time of the model.

...   
import yaml  
from bcbio import utils  
   
def _transfer_s3(out_fname, keyname, bucket):  

 if not os.path.exists(out_fname):  
 utils.safe_makedir(os.path.dirname(out_fname))  
 ...  

... 

01.
02.
03.
04.
05.
06.
07.
08.
09.

import alias yaml

Call

Module

importfrom alias utils

utils

attr safe_makedir
AtteributeLoad

NameLoad

call structure...

...

...
from jinja2 import contextfunction, contextfilter, Markup
...
def modules_header_block(context):

 ...
 if 'response_format' in context:
     response_format = context['response_format']
 return Markup(render_to_string(...))

...

01.
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03.
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05.
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07.
08.
09.
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alias Markup

NameLoad MarkupReturn
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...
from orchestra.tests.helpers import OrchestraTestCase
...
class MachineStepSchedulerTestCase(OrchestraTestCase):

 def setUp(self):
     super().setUp()
 def test_machine_step_schedule(self):

 ...

01.
02.
03.
04.
05.
06.
07.
08.
09. bases

Module ...

...

Importfrom alias OrchestraTestCase

NameLoad MarkupClassDef

call structure

Semantic structure 1

Semantic structure 2

Semantic structure 3

Fig. 4. The semantic structure of calling python packages

Therefore, the core problem of the prediction model is to determine a valid candi-
date value table. In neural network models, researchers often choose tens of thousands of
fixed candidate values. Compared with the traditional model, although the accuracy of the
neural network model has been improved, it consumes longer time. In order to solve the
problem, this paper dynamically selects candidate value tables by extracting contextual
semantic features.
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This method is mainly to solve the VALUE prediction task of the missing node. Be-
cause there are only about 100 candidate values in the prediction task of TYPE, these
words are determined by the programming language. However, most node values are de-
fined by programmers. The randomness of these values is large, which leads to a wide
range of candidate values. As shown in the Fig. 4, take the name of the missing package
in python as an example:

In the programming language, the packages to be called need to be defined in advance
(AST structure: alias→ value). We found that the code called and imported has a fixed
semantic structure in AST. The called package has six structures, but the most important
are the three semantic structures shown in Fig. 4. We record the known package name in
the vPet collection, and record the called package in the vSet collection. vSet − vPet
is a candidate value for the called but missing defined package name. Conversely, if the
missing node is the code that calls the package, vPet − vSet will be the new candidate
value table. When vSet − vPet is empty or the predicted value is not called below, we
select the K most frequently occurring values related to the parent node as candidate
values. This process can remove the candidate words that are completely impossible to
predict. Similarly, we can use the parent node semantics of the prediction node to extract
other semantic structural features, such asNameLoad→ value,NameStore→ value,
etc. By extracting the context semantic structure of the terminal node, we can reduce
thousands of candidate values to tens or even a few. Since the obtained candidate value
changes with the prediction file, it can effectively reduce the OoV rate.

The pseudo code for semantic feature extraction algorithm is as shown in:

Algorithm 1: Semantic Feature Extraction Algorithm
Input: Prediction File PF , number n;

Prediction Data TeD = (DownPath, UpPath);
Candidate value Candidate V alue ;

Output: New Candidate Value: New Candidate V alue ;
1 p node← Each TeD′s parent node
2 for i = 1 : n do
3 for j = 1 : len(PFi) do
4 if Parent node ==′ alias′ then
5 vSet.append(Structure(AtteributeLoad→ NameLoad→ V alue));
6 vSet.append(Structure(Call→ NameLoad→ V alue));
7 vSet.append(Structure(bases→ NameLoad→ V alue));
8 vPet.append(Structure(alias→ V alue));
9 end

10 PFi New Candidate V alue = vSet− vPet;
11 Similarly, filter other semantic features by different p node.
12 end
13 if PFi New Candidate V alue == None then
14 PFi New Candidate V alue = Candidate V alue;
15 end
16 end
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4.4. Graph Embedding Model

The sequence of graph nodes in the DeepWalk algorithm is randomly extracted, while
the sequence extraction of Node2vec combines DFS and BFS of nodes. Node2vec is
a graph embedding method that comprehensively considers the DFS neighborhood and
BFS neighborhood information of the graph. It is regarded as an extension algorithm of
DeepWalk.

Random Walk : Node2vec obtains the neighbor sequence of vertices in the graph by
biased random walk, which is different from DeepWalk. Given the current vertex v, the
probability of visiting the next vertex x is:

P (ci = x|ci−1 = v) =

{
πvx

Z if(v, x) ∈ E
0 otherwise

(3)

where πvx is the unnormalized transition probability between nodes v and x, and Z is
the normalizing constant.

Search Bias α : The simplest method of biased random walk is to sample the next
node according to the weight of the edge. However, this method does not allow us to
adjust the search process to explore different types of network neighbors. Therefore, the
biased random walk should be a fusion of DFS and BFS, rather than mutually exclusive.
The model should combine the structural features and content features between the nodes.

The two parameters p and q which guide the random walk. As shown in Fig. 5, we
suppose that the current random walk through the edge (t, v) reaches the vertex v, edge
labels indicate search biases α. The walk path now needs to decide on the next step.
The method will evaluate the transition probabilities πvx on edges (v, x) leading from v.
Node2vec set the transition probability to πvx = αpq(t, x) ∗ wvx, where

αpq(t, x) =


1
p if dtx = 0

1 if dtx = 1
1
q if dtx = 2

(4)

and wvx is the edge weight between nodes.

Fig. 5. The next step out of node v

Return parameter, p:
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– If p > max(q, 1) The probability of sampling to the original node is very small. As
shown in Fig. 5, the probability of the next node returning to node t is low.

– If p < max(q, 1) The probability of node sampling returning to the previous node is
high. This causes some node paths to move around the starting point.

In-out papameter, q:

– If q > 1 The node sequence will move among the nodes near the starting point, which
can reflect the BFS characteristics of the node.

– If q < 1 The node sequence will become farther from the starting node, and the return
probability is small. This reflects the characteristics of DFS.

When p = 1 and q = 1, the walk mode is equivalent to the random walk in DeepWalk.
Similarity Calculation : The bias random walk algorithm can extract the node struc-

ture path in train graph. Then, the model use Word2vec’s SkipGram algorithm to convert
the node sequence into a vector of fixed dimensions. The Word2vec model can reduce the
dimensionality of discrete text data into quantifiable vectors. We use the cosine function
to calculate the structural coincidence between nodes. The candidate node with the largest
cosine value also contains the most of the same node structure feature.

The calculation function of the similarity between nodes is shown in Equation 5:

cos(θ) =
V1 · V2
‖V1‖ ‖V2‖

=

∑n
i=1 V1i × V2i√∑n

i=1 (V1i)
2 ×

√∑n
i=1 (V2i)

2
(5)

The pseudo code for our entire model: Algorithm 2

Algorithm 2: Graph Embedding Code Prediction
Input: Train Data TD=(DownPath, UpPath),number n;

Prediction Data TeD = (DownPath, UpPath);
New Canditite Value New Canditite V alue and number s ;

Output: Predicted Value pred value ;
1 p node← Each TeD′s parent node
2 for i = 1 : n do
3 Set← p node in TDi

4 end
5 G(i)← Produce graph by Set’s node
6 G′(i)← Increase the G(i) weight of edges related to Ted
7 Embed model← Node2vec(G′(i), p, q), adjusting parameters p, q
8 for j = 1 : s do
9 V 1 = Embed model(p node)

10 V 2 = Embed model(Cand V aluej)
11 SimScore← Cos(V 1, V 2)

12 end
13 pred value←Max(SimScore)
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5. Experiment Set Up

The experiment is mainly divided into four parts. First of all, we introduce the data set.
Then, we discuss the prediction tasks of TYPE and VALUE. In the last part, the paper
discusses the experimental results. The experimental hardware environment is Intel(R)
Xeon(R) CPU E5-2660 v4 @ 2.00GHz; RAM 32.00GB.

5.1. Data Set

In the experiment, we collect Python data set from the Github4 repository. The data set
contains 10,000 training data files and 500 prediction data files. These Python source files
have high star mark in github and are public available.

As shown in Table 1, In the TYPE prediction task, there are only 132 types. Such
as NameLoad, alias, NameParam, etc. These types are determined by the Python
programming language and cannot be set by the programmer, which results in fewer can-
didate values. In the VALUE prediction task, the source file has 51,000 different node
values. There are arbitrary possibilities for encoding the program text. The value can be
any program identifier (such as None, format), literals (such as 0.035, 1075), program
operators (such as /, −, ∗), etc. It is impossible to use all of them for calculation, espe-
cially some of these values only appear once, so we need to filter the vocabulary.

Table 1. Dataset statistics

Category Size

1 Type Vocabulary 132

2 Value Vocabulary 5.1*105

3 Training files 10000

4 Test files 500

Table 2. TYPE Nodes type

Types Size

1 NameLoad 1.2*106

2 attr 1.1*106

3 AttributeLoad 8.4*105

4 Str 5.1*105

... ... ...

132 CompareLtELtELtE 1

Table 3. VALUE Nodes type

Types Size

1 self 2.8*105

2 None 4.0*104

3 0 3.8*104

4 1 3.4*104

... ... ...

5.1*105 Sysbench-read cleanup on %s 1

4 https://github.com
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We extract all the node types in the source code files, a total of 132 different types. As
shown in Table 2, we can find that there is a significant difference between the maximum
and minimum number of occurrences of node’s type. For example,CompareLtELtELtE
appears only once in the source data, and it has little effect on other tens of thousands of
candidate values during the experiment. Therefore, we choose the type value that appears
more than 100 times as the candidate value in the prediction TYPE task.

As shown in Table 3, the number of node values in the training code source file is
5.1 ∗ 105, and most of them are random strings defined by programmers. The number of
unique node values in dataset is too large to directly apply neural networks models and the
first type self is 2.8*105 times different from the last value Sysbench − read cleanup
on %s, thus we choose K = 1000 most frequent values in all training set to build the
global vocabulary of type.

However, using the Top−K values in the training data as fixed candidate values, this
method cannot avoid OoV problems. Therefore, we need to dynamically select candidate
values with semantic structural features.

5.2. TYPE Prediction

In the TYPE prediction task, the number of candidate values is small, and none are ran-
domly defined by the programmer. Therefore, the model mainly learns the structural fea-
tures of the nodes in the training graph and completes the prediction of the node types.
Secondly, the candidate values of type are fixed and will not change with different predic-
tion data. This is the biggest difference from the prediction task of VALUE.

The selection of the candidate value of TYPE is mainly filtered by the parent node of
the terminal node through two methods:

– Semantic Extraction: For a fixed code structure, we extract the specific AST path
structure. For example, when importing a package, Import→ alias is a fixed struc-
ture, and Import does not appear at other AST node locations.

– Traverse the Dataset: Traverse the parent node of each terminal node of all train-
ing data, this method is suitable for TYPE prediction tasks. Because the number of
TYPEs is limited, the short traversal time can accurately filter out candidate values.

The graph embedding model mainly extracts related node sequences between graph
nodes, and uses Word2vec[19] to convert these sequences into fixed-dimensional vectors.
Then, we calculate the vector similarity between the candidate value and the parent node
of the prediction node. The higher the similarity between nodes, the greater the degree
of coincidence of the path structure extracted by the graph model. Therefore, the proba-
bility of connection between nodes is higher. In the extraction of graph node sequence,
it is mainly affected by the parameters p and q. The parameters p and q affect the search
method of the node sequence, so the information contained in the node sequence is dif-
ferent. In order to distinguish different prediction paths with the same parent node, we
increase the weight of known nodes in the prediction path. This method can effectively
distinguish the paths with the same parent node but different prediction values. After ob-
taining the training graph related to the predicted data, we train the model to determine the
parameter (p, q). By changing the range of the parameters (p, q) with the model accuracy,
the approximate range is determined. For example p > 1, q < 1, then we fine-tune the
model to determine the exact values of the parameters.
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Table 4. Candidates for TYPE

Father Node Candidate values (p,q) value

ImportFrom alias (p=1.8, q=0.9)

Import alias (p=2, q=0.8)

args NameParam, TupleStore (p=2, q=0.3)

alias identifier (p=1.8, q=0.8)

bases NameLoad, AttributeLoad, Call (p=2, q=0.8)

AttributeLoad NameLoad, attr, Str, Num (p=1.7, q=0.8)

keyword NameLoad, attr, Str, Num (p=0.8, q=1.5)

Assign NameStore, Call, ListLoad, NameLoad, Str, IfExp, Generator-

Exp, BinOpMod, SubscriptLoad, AttributeLoad, BoolOpOr, ...

(p=1.6, q=0.5)

Call NameLoad, AttributeLoad, TupleLoad, keyword, ListLoad,

BinOpMod, Str, Dict, Num, ListComp, BinOpMult, ...

(p=1.5, q=0.5)

TupleLoad NameLoad, AttributeLoad, Str, SubscriptLoad, BinOpAdd,

Num, ListLoad, Call, BinOpSub, Dict...

(p=1.5, q=0.9)

ListLoad NameLoad, Str, Num, Call, AttributeLoad, BinOpAdd, Tu-

pleLoad, ListLoad, Dict, BinOpMod,...

(p=2, q=0.8)

... ... ...

In Table 4, there are only a few candidate values for Import, importForm, and
Assign has a maximum of 50 candidate values. So we can see that the range of candidate
values has been significantly reduced, and the candidate values of TYPE are fixed after
screening. This process can not only increase the accuracy of prediction, but also shorten
the prediction time. In model prediction, the model mainly extracts node sequences based
on depth-first search(p > 1, q < 1). However, the node sequence of breadth-first search
is also included, such as keywords, parameters (p = 0.8, q = 1.5).

5.3. Value Prediction

The prediction task of VALUE is much more difficult than the prediction task of TYPE.
First of all, the candidate value of can reach tens of thousands in VALUE prediction task.
Secondly, for the artificially defined word names of programmers, it is difficult to obtain
effective structural feature information in training data. Especially for nodes of type Str,
the range of candidate values is very large and random. But during the experiment, we
can extract the candidate values of the semantic structure of the prediction file. We extract
the semantic features of the AST according to the parent node of the prediction node and
filter out new candidate values. Such dynamic candidate values can effectively solve the
OoV problem.

Similar to the TYPE prediction task, we mainly use the graph embedding model to
extract related node sequences between graph nodes, and Word2vec algorithm converts
these sequences into fixed-dimensional vector.
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For the parent nodes with obvious structural semantics, such as NameLoad, alias,
NameParam andNameStore, we use the semantic structure features to filter them. As
shown in Table 5, the node sequence extraction of the model is based on DFS.

Table 5. Semantic structure for VALUE

Father Node Related Semantic Structure (p,q) Value

alias identifier/NameStore/alias... → value, Call/bases/

AttributeLoad...→ NameLoad→ value

(p=2, q=0.8)

NameLoad alias/NameParam/FunctionDef... → value, bases/

Raise...→ NameLoad→ value

(p=2, q=0.8)

NameStore identifier/NameParam/alias... → value, Call/

AttributeLoad...→ NameLoad→ value

(p=1.6, q=0.5)

NameParam NameStore/NameParam/alias... → value, Call/

AttributeLoad...→ NameLoad→ value

(p=2, q=0.3)

... ... ...

But for nodes that are randomly defined by the programmer and will not be called
below. We traverse all training data sets and select the Top −K words that appear most
frequently as related parent nodes as candidate values. Compared with the traditional
method of directly extracting the most frequent values. The advantage of this method is
that the parent node can select candidate values to remove redundant words. For example,
if the parent node is Num, We will extract the numbers in the training data as candidate
values. And the most frequently occurring self will not be considered as a candidate. But
in the traditional prediction model, self will be brought into the model for calculation.

5.4. Experimental Results

First of all, we introduce prediction accuracy to evaluate the performance of our proposed
model, which can be described as Eq.(6):

Accuracy =
The number of correct prediction nodes

The total number of prediction nodes
(6)

The experimental results compared to the state-of-the-art[16] model in the same data
set are shown in the table below:

As can be seen from Table 6, compared with the state-of-the-art model experimen-
tal results, our model has better results. Especially in the prediction task of TYPE, its
accuracy has improved significantly. The main reason are: 1. We screened the candidate
values of TYPE, narrowing the candidate range from hundreds to dozens or even a few.
2. The main prediction of TYPE is the structure of the code, and the path and training
map we extract are highly relevant to the code structure. 3. There are few node types in
the TYPE task, so the network scope of the composed node graph is small, resulting in
improved prediction accuracy. In other words, the model effectively extracts the structural
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Table 6. Comparison of final results

TYPE VALUE

Attentional LSTM 71.1% -

Pointer Mixture Network - 62.2%

Our Model 77.8% 63.8%

features of the code. In the prediction task of VALUE, the accuracy is improved by 1.6%.
Although the accuracy has not improved much, the overall prediction time of the model
has been reduced significantly.

Table 7. Comparison of prediction time cost

Total Time Type Task Time Value Task Time

Attentional LSTM
>20h - -

Pointer Mixture Network

Our Model 8.5h 2.3h 6.2h

As shown in Table 7, the running time of the deep learning model method on the same
data set exceeds 20 hours. And the interpretability of the deep learning model is low. The
total consumption time of our proposed model is 8.5 hours, and the complex VALUE
prediction task takes about 70% of the time. This is mainly because the training graph has
more nodes than the training graph of the TYPE task, so the embedding of the graph takes
longer time.

The model graph structure feature extraction proposed in this paper is more inter-
pretable and more intuitive than deep learning model for prediction tasks. In the over-
all graph embedded in the model, the value range of the (p, q) parameter is mainly
(p > 1, q < 1). The node sequence of the model incorporates more depth-first node
information.

We predict the example in Fig. 1 and the result is shown in Fig. 6. We calculated
the similarity between the node in the graph structure and the parent node Assign. After
model calculation, we find that the type of the missing node is NameStore. Then we
get the candidate value table through the screening of the code semantic structure, and
calculate the predicted value of the OoV word LOG as the final value. The missing node
is (T, V ) = (NameLoad, LOG). Experiments show that the OoV rate in the predicted
data drops from 19.6% to 5.7%, and most of them are Str nodes that fail to accurately
predict. The overall OoV rate has dropped significantly, and the prediction accuracy has
also been significantly improved.

However, nodes of type Str are difficult to predict. First of all, these words may
have been created by the programmer themselves, so they will basically not appear in the
candidate value table. Secondly, these words appear rarely. they do not even appear in
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(a)Source code file

from lmi.scripts.common import get_logger
from lmi.scripts.common.errors import LmiFailed
...
_?_ = get_logger(__name__)
...
def create_luks(ns, device, passphrase):

 device = common.str2device(ns, device)
 ...
 LOG().info("Created LUKS on %s", device.Name)
 return outparams['Format']

...

01.
02.
03.
04.
05.
06.
07.
08.
09.
10.
11.

Candidates for Type:

1.'NameStore'
2.'Call'
3.'ListLoad'
4.'NameLoad'
5.'Str'
...

Candidates for Value:

1.'LOG'
2.'__name__'
3.'reduce'

(b)Candidates  Table
(c)Prediction

Fig. 6. Code prediction example

the training Graph, which leads to a reduction in the overall prediction accuracy of value.
This is also a disadvantage of this model.

6. Conclusion and Future Work

In this paper, we use the node information of the source code AST to construct training
graphs, which contain a lot of node structure information. Through the embedding model,
we can embed the graph structure node sequence as a fixed-dimensional vector. Then
carry it to the downstream task for calculation. In the selection of candidate values, we
use semantic structural features to dynamically filter candidate values, which not only
reduces the prediction time, but also effectively reduces the OoV situation.

The experimental results show that the model can effectively extract structural fea-
tures in the prediction task of TYPE, and the prediction accuracy is greatly improved. In
the prediction task of VALUE, the screening of candidate values not only improves the
accuracy, but also shortens the time.

The accuracy improvement of TYPE shows that the accuracy of the programming
language with more strict structure will be more obvious. Therefore, in future work we
will add Java data sets to verify our model. And, we will further extract the semantic
features of the fusion Control Flow Graph(CFG).
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