
Computer Science and Information Systems 12(3):1101–1120 DOI: 10.2298/CSIS141112013J

Enhancing BPMN 2.0 Informational Perspective to

Support Interoperability for Cross-Organizational

Business Processes

Marija Jankovic, Miroslav Ljubicic, Nenad Anicic, and Zoran Marjanovic

Faculty of Organizational Sciences, University of Belgrade,

Jove Ilica 154, 11000 Belgrade, Serbia

{jankovic.marija, ljubicic.miroslav, anicic.nenad, marjanovic.zoran}@fon.bg.ac.rs

Abstract. Business Process Modeling Notation (BPMN) is being adopted as one

of the industry standards for modeling cross-organizational business processes

(CBPs). BPMN analyzes a business process as a set of interrelated activities,

focusing primarily on the functional perspective of the process. However, for

successful CBP modeling, an informational perspective is important. Although

BPMN 2.0 supports information flow design, existing representations of

data/information elements are not sufficient to support CBP modeling

requirements. In this light, the paper proposes an approach for formal modeling

and specification of information requirements used and generated in the CBPs. A

UML View Profile is introduced to specify information requirements as views

over the common reference ontology. A BPMN 2.0 extension is introduced to

connect the defined views and the corresponding process activities. Ultimately,

the proposed information requirements specification enables generation of the

message instance and its transformation at the implementation level.

Keywords: BPMN, UML, interoperability, view, CBP.

1. Introduction

Business processes are often executed across multiple independent partners crossing

organizational boundaries. Modeling of cross-organizational business processes (CBPs)

focuses on defining process views describing the interaction between two or more

business partners [1]. Typically, a three-level approach is applied for a comprehensive

CBPs modeling [2]:

Business level: Business processes: This level specifies a computational independent

view of the cooperation and the interaction expected between the partners. The CBPs

modeled at this level may contain physical activities and additional information that is

relevant to the perspective of the business analyst.

Business level: Technical processes: This level provides complete control flow of the

CBP, modeled in a platform independent manner in order to support model reuse.

However, all activities in the model should be implementable within Information and

Communication Technology (ICT) system. For instance, physical activities are not

included in the model.

1102 Marija Jankovic et al.

Execution level: Executable processes: The CBP on this level is modeled in an actual

language of the execution engine and contains system specific information e.g. data

formats.

Currently, BPMN 2.0 could support all three levels, due to executable modeling that

has been introduced as a brand new capability [3]. Executable details are fully captured

in the BPMN standard attributes. Additional advantage of BPMN 2.0 is the capability to

represent four important process modeling perspectives: functional (what activities are

being performed), behavioral (when and how activities are performed), organizational

(where and by whom activities are performed) and informational (informational

entities/data produced or manipulated by a process) [4].

The problem is that in addition to specifying the CBP process flow, it is also

necessary to define the detailed information requirements associated with that flow. In

BPMN1.x it was not possible to define the process semantics for informational elements

such as data or data flow. These elements were classified as artifacts; e.g., simple

annotations of the diagram. In BPMN 2.0, data has been upgraded to a process variable,

but only a small part of the information specified by semantic model is represented in

the diagram; e.g., text label, data, and data store icon. Instead, BPMN designates XML

Schema as its default data structure [3]. A significant disadvantage of the way that data

structure is expressed in XML Schema is the lack of the clear graphical representation.

Clear graphical representation should include only the constructs used to describe data

semantics not including any constructs used to define syntax rules, such as choice or

sequence constructs in the case of XML Schema.

The descriptions of document types - the informational and message models, and

especially descriptions of their relationships - should be an integral part of the business

processes’ informational aspect. The BPMN 2.0 notation is not meant to allow data

modeling and the breakdown of data information in specific data models [3]. Instead, it

provides extension points to accommodate diverse technologies. Therefore, we propose

an approach for formal modeling and specification of information requirements used

and generated in the CBPs.

Our approach is based on the idea that information requirements should be specified

in terms of a common, reference ontology. In the context of this work, a reference

ontology is used as an unambiguous and formal representation of a set of business

concepts and their relationships, for a particular CBP environment. That ontology

provides a shared vocabulary and a conceptual model for communication between the

collaborating business partners [5]. We will introduce a UML View Profile to specify

information requirements as views over the common reference ontology. A BPMN 2.0

extension is introduced to enable the association of the defined views and the

corresponding process activities. Finally, the proposed information requirements

specification enables generation of the message instances and their transformation at the

implementation level.

The remainder of the paper is structured as follows. The following section discusses

the problem statement and gives essential background information. The third section

discusses related work. The fourth section proposes the approach to solving the identified

problems. The next section demonstrates the approach on an illustrative example. The

final section concludes the paper.

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1103

2. Problem Statement and Background

This section presents a brief discussion of the problem statement that motivated our

research. It also includes the essential background information on ontologies, the BPMN

informational perspective, and available extension mechanisms that are relevant to this

paper.

2.1. Problem Statement

The major problem addressed in this paper is the weaknesses of BPMN2.0 modeling

notation. Specifically, we focus on the lack of support for modeling of informational

perspective in the context of joint, cross-organizational, business processes. First, we

present requirements for modeling of CBPs and discuss the importance of information

flow specification on business, technical and execution level. Next, we identify problems

during the modeling of information flow using BPMN 2.0 notation, and propose

extensions necessary to address those problems.

CBPs Modeling Requirements. One of the first steps in designing CBPs is to identify

and document modeling requirements. Different aspects and classification frameworks of

CBPs requirements are proposed in [1, 2, 6]. We consider the following top-level

requirements: support of a common reference ontology, information requirements

formalization, and information requirements granularity.

Common reference ontology: The successful modeling of CBPs requires the inclusion

of multiple domains and the interoperation with stakeholders’ public and private

business process models [7]. Using heterogeneous information models and domain

business vocabularies raises the important research question of modeling the cross-

organizational business processes and the corresponding information flows in CBPs [7].

Lippe et. al. point out that the information flow within the CBP has to be represented

[2]. Moreover, they argue that global business information schema, which provides a

common reference of interchanged business messages in CBPs should also be supported

[2]. The usage of such a reference ontology to facilitate such interchanges is a broadly

accepted approach to reconciling semantic mismatches between heterogeneous

information models [5, 8, 9, 10, 11]. In a similar manner, to address aforementioned

issues, we propose the specification of the information requirements in terms of a

common reference ontology. Such an ontology will provide the unambiguous

interpretation required by all stakeholders in the business process.

Information requirements formalization: Barnickel et.al. [12] point out that one of the

common problems in designing CBPs information flows design is the lack of

formalization. For example, they indicate that business process experts usually use

business-oriented, high-level descriptions of information entities that are informal or

semi-formal and expressed using a natural language. In that same paper, Barnickel et.

al. argue that such descriptions increase the designated business-IT gap since the used

terms are not explicitly linked to existing information or data models of the

organization.

Information requirements granularity: Barkmeyer and Denno [13] point out that

information requirements should have a fine-grained form, down to a property that is an

1104 Marija Jankovic et al.

information unit of the entity. According to them, the information requirement arises

when an agent uses a property of an entity or relationship in conducting a modeled

activity. Here, the agent is an actor involved in the execution of the business process

activity. The entity is a business entity defined within the information model such as

database model, messaging standard or reference ontology.

The information model should provide a detailed description of the related business

entities covering all information that might be used in several business processes.

Hence, the business entities from the reference ontology have a general nature including

a wide range of properties that are used across various business processes. Therefore,

the information requirements of the activity should be defined as a subset of the

business entity properties including only those properties involved in the realization of

the particular activity. However, the business entities may contain other properties that

are not relevant for given process activity. Consequently, a formal mechanism for

specifying the information requirements as a subset of the business entity properties is

needed.

BPMN 2.0 Shortcomings. BPMN 2.0 diagrams are not adequate for the discussed

information requirements. BPMN 2.0 cannot address any resolution finer than the entity,

although only a few modeled properties are used in many cases. Information

requirements needed for activity execution are specified as Data Inputs while data that is

produced is captured using Data Outputs [3]. The structure of Data Input/Output

elements is not visible on the diagram; but, it can be defined using XML schema.

However, XML schemas are difficult to create and understand by the business process

experts who are responsible for defining the information flow on a conceptual level. A

challenging issue is to specify information requirements in a suitable form for both,

business analysts and IT experts.

We propose (1) a UML View Profile to solve the discussed shortcomings and (2) a

BPMN 2.0 metamodel extension to include the information requirements specification

based on that Profile. In designing both, we had to overcome three important problems:

how to specify information requirements for the activity, how to represent needed

associations between an activity and the requirements, and, how to exchange

messages/documents during the activity realization. In addition to providing solutions to

these problems, our approach has an additional advantage. It enhances the possibility to

implement a generic transformation that supports specified information requirements

automatically from messages exchanged at runtime during the process execution.

2.2. Background

Ontologies. In this section, we describe the use of ontologies in the context of our work.

For a detailed introduction and a valuable overview of the ontologies see work by [14 –

17]. Gruber [18] has defined an ontology as “formal, explicit specification of a shared

conceptualization”. In this paper, we use a common reference ontology that specifies,

formalizes, and explicates the domain business concepts and their relationships involved

in a particular CBP scenario [8]. The formal specification of business domain concepts,

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1105

given in the reference ontology, is important in order to provide a basis for unambiguous

interpretation of data-exchange artifacts in CBPs [11].

 As stated in [19, 20, 21], various languages can be used for the construction of the

reference ontology. In our work, we use reference ontologies to support systems

interoperability where we use UML to represent ontologies. The reasons for choosing

UML for ontology representation are:

- UML Class diagram supports visual modeling of important ontology elements

(e.g. class/sub-class hierarchies, relationships between classes, class attributes).

This facilitates easier understanding by business analysts and end-users.

- UML is an open standard and has a standard mechanism for defining

extensions, e.g. Profiles.

- OCL is a powerful mechanism for defining additional constraints; e.g. attribute

values or possible instances of the relationships.

- UML is widely accepted in industry and has a large user community. For

example, UML is most frequently used for visual representation of integration

standards that are based on XML Schema, e.g. OAGIS, RosettaNet, Universal

Business Language (UBL).

- Core UML concepts map appropriately to OWL concepts, as it is defined in

[22].

Detailed specification of the UML reference ontology model used in our example, along

with corresponding formal OWL representation can be found in [23].

A variety of different research project have been applying UML for ontology

representation either directly or as graphical front-end for ontology languages that don't

have visualization capabilities [21,24]. In their work, Baclawski et. al. [21] implemented

tools for ontology development based on UML. They indicate that UML is not

convenient for visualization of complex ontologies only, but for managing ontology

development process as well. Cranfield and Purvis have investigated the use of UML

class diagrams for representing ontologies [24,25].

BPMN Informational Perspective. In this section, we provide an overview of BPMN

Informational Perspective that is relevant to the problem statement. Information flow

plays a crucial role in CBP modeling, although BPMN focusses on the control flow

aspects [26, 27]. The flow of informational entities (e.g., data, artifacts, products)

between process elements is decoupled from the Sequence flow to allow modeling

flexibility [26][27].

 A primary construct for modeling all kinds of informational entities regardless of

their physical nature (e.g. paper or electronic documents) in BPMN is a Data Object [3].

In BPMN 2.0, Data Objects are upgraded to first-class, semantic elements and defined

as additional Data Categories aside from flow objects, connecting objects, swim-lanes,

and artifacts. This is a big change, having in mind that in BPMN1.2 Data Objects were

considered artifacts, simple annotation without any semantics [28]. Bruce Silver in [28]

points out that Data Objects are programming constructs, a temporary data stored in the

process instance. Data object elements are visually presented on a Process diagram (see

Fig.1), and can be referenced by DataObjectReference that specifies different states of

the same DataObject (e.g., <DataObject Name>[DataObjectReferenceState]). The

structure of the Data Object is not visible on the diagram, but it can be defined by its

associated itemDefinition element that specifies an XML schema.

1106 Marija Jankovic et al.

For the purpose of representing persistent data (e.g., database records) BPMN2.0

introduces a new concept – Data Store. Additional elements of Data Category are Data

Inputs, Data Outputs and Properties [3]. Collections of Data Objects, Data Inputs and

Data Outputs are represented by Data Object Collection, InputSet and OutputSet,

respectively. Property elements have no visual representation in the diagram, and they

are relevant for process execution. Graphical representations of the Data Category

elements are represented in the Fig.1.

Label Label Label Label Label Label Label

Fig. 1. Data Category elements (adapted from [3])

Besides simple, non-directional Association that is still used to link text annotations in

the diagram, in BPMN2.0 Data Association is introduced [28]. Elements of Data

Category are connected to other model elements (e.g., activities or events) through

directional Data Association. This association represents a mapping between a Data

Object and Data Input or Data Output [28]. When source and target of data flow are

unambiguous, non-directional data associations to a sequence flow are allowed [28].

Data Objects are no longer used to represent the information content of a message

between different pools or external entity; a new message symbol, an envelope icon, is

introduced in BPMN 2.0.

BPMN Extension Mechanism. The BPMN is designed to be extensible by a standard

extension mechanism that can be used by modelers to define new concepts with needed

semantics. The BPMN extension mechanism consists of a set of extension elements

that allow the attachment of additional elements and attributes to standard and

existing BPMN elements [3]. These extension elements are: ExtensionDefinition,

ExtensionAttributeDefinition, ExtensionAttributeValue and Extension [3]. Extension

element is used to bind a BPMN model with an extension whose structure is defined

using ExtensionDefinition element. ExtensionDefinition element groups additional

attributes used to extend the BPMN model by attaching them to any BPMN element. The

definition of each attribute includes the name and type of the attribute; and, it is given by

corresponding ExtensionAttributeDefinition element. Within an extended BPMN

element, ExtensionAttributeValue element is used to assign a value to a particular

extension’s attribute that has been defined previously within ExtensionDefinition using

ExtensionAttributeDefinition element.

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1107

3. Related Work

The approach proposed by Barkmayer and Denno [13] relates to ours since they

introduce a common, reference-ontology-based specification of needed information

requirements in a joint business process. The term joint process denotes a shared

viewpoint of the joint actions between collaborating partners. Their methodology

includes three major components: a reference ontology for the business entities, a formal

specification of the joint process, and a binding between process elements and business

entities. They introduce concepts for the improvement of information flows through

introducing message structures into the diagram itself. They offered an interesting

conceptual solution that motivated our research. As the authors themselves mention

“while the proposed concepts are simple, the actual representations of user and provider

flows may be complex”. They do not propose any notation for information requirements

specification. The authors do not give a formal definition of the view over the reference

ontology, whereby their concept of the view represents a simple filter over the predefined

entities of the reference ontology without the possibility to define more complex rules of

execution (such as model traversing or calculations), which is possible in our approach.

Barnickel et. al. demonstrated a mediated, business-process-modeling approach for

incorporating semantic bridges to implement information flow design [7]. They provide a

complete end-to-end solution, from specification to implementation. Their approach is

based on semantic bridges, which are applied to the domain ontology-based information

entities in order to overcome semantic heterogeneities. For the purpose of better

understanding and visualization, they propose a BPMN extension of Data Object

category using a semantic sub-graphs. The paper highlights the ontological

representation of information flows by the application of RDF and OWL. It does not

offer a description of the implementation of information requirements, as parts of the

entities from the reference ontology, they are rather used unchanged and complete.

Consequently, there is a need for the semantic reconciliation of different reference

ontologies used by different parties. The work in this article differs from their approach

as we propose the use of common reference ontology, assuming that each party has a

formalized ontological model that comprises, or is mapped to elements of a publicly

available common ontological library.

Another interesting extension of BPMN 2.0 using semantic ontologies is presented in

[29]. Gao et. al. state that BPMN 2.0 should be described in more details with respect to

functional, data, organizational and control ARIS views. For our work is relevant Data

View BPMN 2.0 extension using Linked Data Principle. They propose that BPMN

ItemAwareElements should be annotated with concepts from domain-specific ontologies

that are specified in RDFS or OWL using StructuredWebResource (SWR) framework.

The authors argue that the proposed approach can make improvements not only in the

execution phase, but also during other phases of the BPM lifecycle. However, in our

opinion, graphical UML representation is more convenient for business process

specification at conceptual level. The BPMN 2.0 extension proposed in our solution is

more general since their solution is aligned with ARIS specific views.

The idea of Semantic Business Process Management (SBPM) is introduced in [30].

Hepp et.al. propose to combine Semantic Web services frameworks, ontology

infrastructure, and BPM to create one consolidated technology. Representational

requirements of SBPM are discussed in [31]. SBPM approaches are focused mainly on

1108 Marija Jankovic et al.

ontology-based process flow annotation. Our work is, however, concerned with

ontology-based information flow specification.

Various approaches highlight the importance of data flow modeling in business

process languages. Deutch and Milo notice that business process flow affects data and

vice versa [32]. According to [32], an important aspect of business process modeling is

capturing the data manipulation and transformations performed by the process. On the

other hand, approaches in [33, 34, 35] suggest to include process perspective into data

management practice. Magnani and Montesi [36], identify and address shortcomings of

data modeling using BPMN 1.2 modeling notation. They define BPMN extension called

BPDMN (Business Process and Data Modeling Notation) in order to enhance visual data

capabilities. While extending BPMN 1.2, their extension implies direct changes in the

BPMN metamodel. In our work, the extension of BPMN is given through the use of a

currently default and formally defined extension mechanism that is part of the BPMN 2.0

standard.

Unlike any mentioned approach, which makes use of reference ontology documents

the way they are, we offer the possibility to define a view over reference ontology

documents without the need to use complete document structures. All mentioned works

describe the process on the technical level without specifying the implementation. Our

work proposes a formalized definition of the view, associated with the process through

the BPMN extension, and a described algorithm for obtaining a view instance on the

implementation level, at the time of the process execution. Also, all mentioned works are

oriented towards the semantic reconciliation of ontologies without defining the way in

which this will affect the implementation itself. Our approach does not solve the problem

of semantic reconciliation, it rather focuses on the method to enable executable

specifications, in the sense to define how the specified information flows are realized on

the implementation level.

4. Details of the Approach

The approach is based on the idea that the reference ontology is a shared definition of the

types, properties and interrelationships of the business entities that are used to construct

the messages exchanged between the collaborating business partners. We propose the use

of information requirements defined in terms of the reference ontology as the basis for

the sound design of information flows in CBPs. The idea is that during modeling of

business processes, the reference ontology will enable unambiguous interpretation of

specified information requirements. It does this by supporting common procedures for

deriving the information requirements from interoperable, ontology-based, message

exchange.

To specify information requirements as a subset of the business entity properties

(attributes and relationships), we propose UML View Profile: a UML extension defined

using the UML profile mechanism. This approach is similar to the concept of a database

view. Business entities from a reference ontology correspond to tables of a database

schema. The model defined using UML View Profile corresponds to the database view

(in the rest of the paper this model is referenced as view model). The view model

contains the definition of the information requirements of the activity including the

mapping rules to the business entity properties. The mapping rules are used to derive

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1109

defined information requirements from the reference ontology model at runtime. They

are defined using Object Constraint Language (OCL) [37]. To include our view model

into BPMN model, we propose a BPMN extension based on the BPMN 2.0 extension

mechanism.

The procedure for specifying the information requirements comprises the following

steps.

a. Reference Ontology Development. The reference ontology for a specific business

domain is created, or an existing reference ontology is selected. Ontology

specification at the conceptual level is presented using the UML class diagram.

b. Business Process Model Development. The BPMN model of cross-organizational

business process is created.

c. Annotation and Association of Information Requirements. The BPMN model is

annotated and enriched using concepts defined in the BPMN extension.

d. View Model Specification. Detailed specification of the information requirements

of the process activities is created by defining view models using the UML View

Profile.

The UML View Profile, BPMN extension and model transformation process are

described in the following sections.

4.1. UML View Profile

This section lays out a UML profile proposal, called the UML View profile, as a formal

mechanism for identifying the information requirements of the process activities. Using

the proposed UML View Profile, information requirements are defined as a subgroup of

properties of the appropriate business entities from the reference ontology model. The

defined stereotypes of the UML View profile are described as follows.

Stereotype: ViewPackage

Base Class: Package

Description: Represents a package that contains view model definition.

Constraints: The package members must be one of the stereotypes: ViewClass,

ViewAssociation or basedOn.

Tagged Values: expressionLanguage - the language used to define the expressions and

derivation rules within the package members.

Stereotype: ViewClass

Base Class: Class

Description: Represents a class defined within the view model definition, based on the

reference ontology class. Contains ViewProperty properties that define subgroup of

properties of corresponding reference ontology class.

Constraints: It must contain at least one property with the ViewProperty stereotype. It

must be based on the reference ontology class (represented by the dependency

relationship with the basedOn stereotype).

Tagged Values: isEntryPoint - signifies whether ViewClass is the entry point of the

view, i.e. the initial point for the transformation execution.

1110 Marija Jankovic et al.

Stereotype: ViewProperty

Base Class: Property

Description: Represents a property defined within ViewClass whose value is

determined by an expression defined over the properties of the reference ontology class.

Constraints: It must have a defined value for the tagged value expression.

Tagged Values: expression - the expression that defines the mapping of the

ViewProperty to one or more properties of the reference ontology class (derivation rule).

Stereotype: ViewAssociation

Base Class: Association

Description: Represents an association that connects two ViewClasses.

Constraints: The association ends owner must be ViewClass or ViewAssociation

itself (depending on the navigability of the association end). It must have a defined value

for the tagged value refinementExpression.

Tagged Values: refinementExpression - the expression that defines the condition for

additional filtration of the set of ViewClass objects at the ViewAssociation end.

Stereotype: basedOn

Base Class: Dependency

Description: Dependency relationship of this stereotype defines the dependency of

ViewClass from the reference ontology class, i.e. it defines the reference ontology class

whose properties are subsetted by ViewProperties of the ViewClass.

Constraints: The basedOn dependency source must be ViewClass while the target

must be Class.

Stereotype: Key

Base Class: Property

Description: Represents the ViewClass identifier.

Constraints: It must be applied to ViewProperty.

4.2. BPMN Extension

We used the BPMN 2.0 extension mechanism to define the BPMN metamodel extension

depicted in Fig. 2. Proposed extension enables inclusion of the ontology document model

definition (i.e., part of the reference ontology model corresponding to the message

exchanged) and view model definition into the BPMN process. ExtensionDefinition and

ExtensionAttributeDefinition elements are used to define the structure of the proposed

extension. In Fig. 2, they are represented as stereotypes, using the same name as the

related elements. Original BPMN metamodel elements are marked with the stereotype

BPMN.

The BPMN metamodel elements relevant for the association of the ontology

document/view model definitions are DataObject, DataInput and DataOutput. They are

subclasses of ItemAwareElement, selected as the BPMN metamodel concept being

extended. The ItemAwareElement is extended either by the OntologyElement or the

ViewElement extension definition. In Fig. 2 this is illustrated by the {xor} constraint. An

ItemAwareElement (e.g. DataObject) can practically contain either the reference

ontology document (represented by the OntologyElement) or the view model defined

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1111

over the reference ontology document (represented by the ViewElement). The original

BPMN elements used in a general case to specify the data structures contained by an

ItemAwareElement are ItemDefinition and Import elements. Likewise, within our

proposed extension, these BPMN elements are utilized to import data structures of the

reference ontology document model or the view model. If unspecified, each data

structure is by default serialized in XML Schema format.

<<BPMN>>
DataInput

<<BPMN>>
DataOutput

<<BPMN>>
DataObject

<<BPMN>>
ItemAwareElement

<<BPMN>>
DataAssociation

+targetRef 1

*

+sourceRef *

*

<<BPMN>>
DataInputAssociation

<<BPMN>>
DataOutputAssociation

<<ExtensionAttributeDefinition>>
-ontologyName:String

<<ExtensionDefinition>>
ViewElement

<<ExtensionAttributeDefinition>>
-ontologyName:String

<<ExtensionDefinition>>
OntologyElement

<<ExtensionDefinition>>
ViewOntologyAssociation

+OntElementRef 1

<<ExtensionAttributeDefinition>>

+targetRef 1

<<ExtensionAttributeDefinition>>

*

+sourceRef

1

*

+extensionDefinitions

*

+extensionDefinitions

*

+extensionDefinitions

*

{or}

-itemKind: ItemKind
-structureRef:Element
-isCollection:boolean

<<BPMN>>
ItemDefinition

-location:String
-importType:String
-namespace:String

<<BPMN>>
Import

Information
Physical

<<enumeration>>
ItemKind

+itemSubjectRef

0..1

*

+import

0..1*

<<
Exte

nsio
nA

ttribu
te

D
e

fin
itio

n
>>

Fig. 2. BPMN Extension

ViewElement has the OntElementRef property referencing the OntologyElement on

which it depends. For example, it defines the reference ontology document model to

which the view model is to be applied at runtime to derive the information requirements

from exchanged document/message. For the visual representation of this dependency, the

ViewOntologyAssociation extension is defined, extending the original BPMN element

DataAssociation. This extension limits DataAssociation by defining the ViewElement

(sourceRef property) as an association source and OntologyElement (targetRef property)

as the association target. When the ViewOntologyAssociation extension is used within a

DataAssociation element, sourceRef and targetRef properties of the DataAssociation, if

included, must have the same values as the respective properties of the

ViewOntologyAssociation extension. Fig. 3 shows an illustrative example using the

concepts defined in the BPMN extension (the extension concepts are marked with the

appropriate stereotypes).

1112 Marija Jankovic et al.

Task 1 Task 2

eKanbanShipment

<<OntologyElement>>

<<ViewOntologyAssociation>>

ViewShipment

<<ViewElement>>

Fig. 3. Sample BPMN process with extension elements

4.3. Model Transformation

As already stated, the UML View Profile is used to specify semantic mapping rules

between the view model and the reference ontology model (shown in Fig. 4 at M1 meta-

layer of the four-layered metamodel architecture). These rules are contained within the

view model definition. Based on them we can generate the transformation rules of the

reference ontology model instance (i.e. message exchanged within the business process)

to the instance of the view model. These instances are shown at M0 meta-layer in Fig. 4.

There are several ways in which the transformation of the models can be defined.

Query/View/Transformation (QVT) specification is one of the standard ways provided

by Object Management Group (OMG) [39]. XML transformation languages can be used

as well (e.g., XQUERY, Extensible Stylesheet Language Transformations (XSLT)). Our

approach uses QVT; note, the XML-based transformations can be generated from them if

necessary.

Transformation rules for the instances of the reference ontology model can be

generated automatically based on the view model. This is possible because the

transformation definition itself can be presented as a model. Specifically, result of a

QVT transformation can be QVT transformation itself. To execute the result of a QVT

transformation as a new QVT transformation, QVT specification defines

‘asTransformation’ operation. This is used to invoke on-the-fly transformations

definitions created dynamically. This QVT feature is used in our approach as illustrated

in Fig.4 with the Transformation Generation node. In this step, the QVT transformation

definitions are generated dynamically based on the rules defined within the view model.

The generation algorithm relies on the fact that both source and target models are

instances of the same metamodel; i.e. the UML metamodel. Since the model entry point

is given for each view model definition using entryPoint tagged value of the ViewClass

stereotype, the algorithm relies on the definition of the entry point ViewClass for further

processing. The rules for the generation of the QVT transformations from the OCL

expressions are applied primarily to the ViewProperties and ViewAssociations of the

entry point ViewClass. Thereafter, they are successively applied to other ViewClasses

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1113

and their ViewProperties and ViewAssociations. In the next step, the generated QVT

transformations (represented in Fig. 4 with the Data Transformation node) are executed.

M2

M0

M1

UML Metamodel UML View Profile

Reference

Ontology Model

conformsTo

extends

View Model

conformsTo

basedOn

RO Document

Instance
View Instance

conformsTo conformsTo

generate

in out

conformsTo

basedOn basedOn

Transformation

Generation

Data

Transformation

Fig. 4. Data Model Transformation

The transformation of data for the validation of the proposed approach is done within

the Eclipse Modeling Framework (EMF) with the application of QVTo implementation.

5. Example

Let us present our approach by an example. The example models a generic eKanban

scenario [39].

5.1. Reference Ontology Development

In the first step, we create the reference ontology. The ontology definition represents a

key part of the architecture and contains information about business concepts and the

connections between them. It also contains the contextual description, which describes

in what way the information entities (whether basic or aggregating) can be used in a

specific business scenario. Alternatively, an existing reference ontology can be chosen

instead of creating a new one. At this step, the eKanban reference ontology [23] was

selected to illustrate our approach.

1114 Marija Jankovic et al.

5.2. Business Process Model Development

The second step creates a formal specification for the collaborative business process

identifying all activities and shared information exchanged within the process. An

example of a collaborative shipping business process is given in Fig. 5, focusing solely

on Supplier participant's activities.

C
ar

ri
er

Su
p

p
lie

r

Request for
Shiping

Verification

ShipRequest ShipmentSchedule

Generate ASN
Data Shipment

Verify shipment
Evaluate &

prepare shipment

Fig. 5. Sample Shipping Process

5.3. Annotation and Association of Information Requirements

In this step, we associate the information requirements, defined as a view model, with the

appropriate BPMN elements by annotating them in accordance with the proposed BPMN

extension.

C
ar

ri
er

Su
p

p
lie

r Request for
Shiping

Verification

ShipRequest

Generate ASN
Data Shipment

Verify shipment

Evaluate &
prepare shipment

eKanbanOntology
<<OntologyElement>>

ShipmentSchedule
<<OntologyElement>>

<<ViewOntologyAssociation>>

ShipmentScheduleView
<<ViewElement>>

submodel

Fig. 6. Annotated Shipping Process

Fig. 6 illustrates annotation and association of information requirements for the Verify

Shipment activity. Different types of data objects associated with the activity are

annotated using appropriate stereotypes from the proposed BPMN extension. The

OntologyElement stereotype is applied to DataObject representing the ShipmentSchedule

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1115

document from eKanban reference ontology exchanged between Carrier and Supplier.

The ViewElement stereotype is applied to DataObject representing view model, named

ShipmentScheduleView, which defines the activity information requirements as a view

over ShipmentSchedule document model. Their mutual inter-dependency is shown

explicitly by the dependency relationship annotated with ViewOntologyAssociation

stereotype.

5.4. View Model Specification

In the final step, we create the information requirements specification using UML View

Profile. Fig. 7 depicts the ShipmentScheduleView definition.

<<ViewPackage>>
ViewShipment

{expressionLanguage=OCL}

-scheduleType:ScheduleType[1]

eKanbanShipment::
ShipmentSchedule

-totalReceived:Quantity[1]
-lineNumber:Integer[0..1]
-startOfShipments:DateTime[1]
-period:TimePeriod[1]

eKanbanShipment::
ScheduleLine

onSchedule 1

1..*lines

 <<ViewProperty>>
-Type:ScheduleType
 {expression= self.scheduleType }
 <<Key>><<ViewProperty>>
-ID:Integer
 {expression= self.documentID }
 <<ViewProperty>>
-allScheduleLines:Set
 {expression= self.lines }
 <<ViewProperty>>
-largeScheduleLines:Set
 {expression= self.lines ->
 select(totalReceived.amount > 100) }

<<ViewClass>>
ShipmentScheduleView

{isEntryPoint}

<<basedOn>>

 <<Key>><<ViewProperty>>
-lineNumber:Integer
 {expression= self.lineNumber }
 <<ViewProperty>>
-total:Quantity
 {expression= self.totalReceived }
 <<ViewProperty>>
-start:DateTime
 {expression= self.startOfShipments }

<<ViewClass>>
ScheduleLineView

{isEntryPoint=false}

<<basedOn>>

<<ViewAssociation>>
{refinementExpression = self.lines ->

 select(totalReceived.amount > 100) }

onScheduleView

0..*lineViews

Fig. 7. ShipmentScheduleView Definition

The view model is defined over the ShipmentSchedule document model of the

eKanban reference ontology. For the purpose of clarity, only the elements of the

ShipmentSchedule document model relevant for the definition of the view model are

1116 Marija Jankovic et al.

shown (ShipmentSchedule and ScheduleLine classes from the eKanbanShipment

package). The view model is defined within the ViewShipment package with the

ShipmentScheduleView ViewClass as the entry point of the transformation. The

ShipmentScheduleView is mapped to the ShipmentSchedule class of the eKanban

ontology. This is defined using basedOn dependency. ViewProperties of

ShipmentScheduleView are mapped to the properties of the ShipmentSchedule class.

These mappings are defined using OCL expressions given within the expression tagged

value of each ViewProperty. The OCL mapping expressions are defined in the form

suitable for direct execution against the appropriate reference ontology concept. The self

keyword within the OCL expressions marks the reference ontology class to which the

ViewClass, owner of the ViewProperty, is mapped. For example, ViewProperty Type is

defined by the "self.scheduleType" expression which is executed against the

ShipmentSchedule instance and results in the value of its scheduleType property.

A ViewClass can also define its ViewProperties over the related classes of the mapped

reference ontology class and their properties. In line with the aforementioned, the

ShipmentScheduleView contains allScheduleLines ViewProperty representing the Set of

all ScheduleLine objects of ShipmentSchedule. Similarly, it contains largeScheduleLines

ViewProperty representing the Set of ScheduleLine objects with amount greater than

100. In both cases, the Set will contain "full" ScheduleLine objects; i.e. objects having all

properties of the ScheduleLine class. If it is necessary to use only the subset of properties

of ScheduleLine class, a new ViewClass would have to be defined (ScheduleLineView in

Fig. 7). Additionally, a new ViewAssociation with appropriate refinement expression

have to be defined as well (ViewAssociation between ShipmentScheduleView and

ScheduleLineView in Fig. 7). It should be noted that now ShipmentScheduleView has

ViewProperty largeScheduleLines and ViewAssociation, both defined using the same

expression (self.lines->select (totalReceived.amount > 100)), but resulting in sets of

different objects. ViewProperty largeScheduleLines will contain the Set of ScheduleLine

objects while the Set obtained through ViewAssociation will contain ScheduleLineView

objects (that contains the subset of ScheduleLine properties relevant for the view

definition).

Fig. 8 depicts this by an example of the ShipmentSchedule document instance (Fig. 8

a) and the appropriate ShipmentScheduleView instance obtained as the result of the

transformation process (Fig. 8 b).

In summary, in the first step, eKanban reference ontology is used as a common

specification of business domain concepts and their relationships. In the second step, a

business process model is developed (see Fig.5). Next, that business process model is

enhanced using proposed BPMN extension elements. For example, Fig. 6 illustrates

information requirements for Verify Shipment activity, represented by

ShipmentScheduleView element and its association with eKanban ShipmentSchedule

document. Finally, detailed definition of information requirements for Verify Shipment

activity is created using UML View Profile, which results in view model shown in Fig. 7.

Defined view model contains mapping rules of specified information requirements to

eKanban business entities from ShipmentSchedule document. This provides support for

automatic document model instance transformation at runtime.

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1117

eKanbanShipment ViewShipment

documentID=156
lines=sl1, sl3, sl2
scheduleType=DeliveryBased

ss:ShipmentSchedule

lineNumber=1
onSchedule=ss
period= 15
startOfShipments= 2012-03-15
totalReceived= 80

sl1:ScheduleLine

lineNumber=2
onSchedule=ss
period= 12
startOfShipments= 2012-03-15
totalReceived= 150

sl2:ScheduleLine

lineNumber=3
onSchedule=ss
period= 82
startOfShipments= 2012-03-14
totalReceived= 124

sl3:ScheduleLine

allScheduleLines= sl1,sl2,sl3
ID=156
largeScheduleLines= sl2, sl3"
lineViews= slv1,slv2
Type=DeliveryBased

<<ViewClass>>
ss:ShipmentSchedule

Set of
ScheduleLine
objects

Set of
ScheduleLine
objects

lineNumber=2
onScheduleView=ssv
startstart= 2012-03-15
totalReceived= 150

<<ViewClass>>
slv1:ScheduleLineView

lineNumber=3
onSchedule=ssv
startOfShipments= 2012-03-14
totalReceived= 124

<<ViewCLass>>
slv2:ScheduleLineView

<<ViewAssociation>> <<ViewAssociation>>

a) b)

Fig. 8. Ontology document instance and view instance examples

6. Conclusion

This paper addresses two major topics. First, it presents an approach to formalize the

informational aspect of cross-organizational business processes. Second, it promotes the

possibility of automating the implementation of that formalization.

The key contributions of this paper are:

- the definition of the UML View Profile as a mechanism to specify the

information requirements in terms of the reference ontology

- the definition of the BPMN extension to allow association of the information

requirements to the BPMN model activities

- the definition of the role for and requirements for QVT transformations enabling

the automation of the model instance transformation for the purpose of their easier

implementation.

We believe that our proposed approach is sufficiently general and flexible to describe

cross-organizational business processes that include a detailed specification of the

informational content.

In the future, we plan to design tools to support the proposed manner of describing

processes. Such tools will (1) facilitate the application of the steps of that approach and

(2) make the application of the presented transformations possible.

References

1. D.A2.1: Cross-Organisational Business Process requirements and the State of the Art in

Research, Technology and Standards Version 2. ATHENA Project No. (507849). (2005)

1118 Marija Jankovic et al.

2. Lippe, S., Greiner, U., Barros, A.: A survey on state of the art to facilitate modelling of cross-

organisational business processes. In Proceedings of the 2nd GI-Workshop XML4BPM 2005.

Gesellschaft für Informatik Bonn, Germany, 7-22. (2005)

3. Business Process Model and Notation (BPMN) Version 2.0. OMG (2011). [Online].

Available: http://www.omg.org/spec/BPMN/2.0/PDF/ (current April 2015)

4. Curtis, B., Kellner, M., Over, J.: Process modeling. Communication of the ACM, Vol. 35,

No.9, 75-90. (1992)

5. Vujasinovic, M., Barkmeyer, E., Ivezic, N., Marjanovic, Z.: Interoperable Supply-Chain

Applications: Message Metamodel-based Semantic Reconciliation of B2B Messages.

International Journal of Cooperative Information Systems, World Scientific Publishing Co Pte

Ltd, Vol. 19, No. 1-2, 31-69. (2010)

6. Dori, D., Beimel, D., Toch, E.: OPCATeam–collaborative business process modeling with

OPM. Business Process Management, Lecture Notes in Computer Science, Springer Berlin

Heidelberg, Vol. 3080, 66–81. (2004)

7. Barnickel, N., Bottcher, J., Paschke, A.: Incorporating semantic bridges into information flow

of cross-organizational business process models. In Proceedings of the 6th International

Conference on Semantic Systems (I-SEMANTICS '10), ACM, New York, NY, USA, Article

17, 1-9. (2010)

8. Vujasinovic, M., Ivezic, N., Kulvatunyou, B., Barkmeyer, E., Missikoff, M., Taglino, F.,

Marjanovic, Z., Miletic, I.: Semantic mediation for standard-based B2B interoperability.

Internet Computing, IEEE, Vol.14, No.1, 52-63. (2010)

9. Yarimagan, Y., Dogac, A.: A semantic-based solution for UBL schema interoperability.

Internet Computing, IEEE, Vol.13, No.3, 64-71. (2009)

10. Anicic, N., Ivezic, N., Jones, A.: An architecture for semantic enterprise application

integration standards. Interoperability of Enterprise Software and Applications, Springer-

Verlag, London, 25-34. (2006)

11. Vujasinovic, M., Ivezic, N., Barkmeyer, E., Marjanovic, Z.: Semantic B2B-integration using

an Ontological Message Metamodel. Concurrent Engineering, IEEE, Vol.18, 219-232. (2010)

12. Barnickel, N., Bottcher, J., Paschke, A.: Semantic Mediation of Information flow in Cross-

Organizational Business Process Modeling. In Proceedings of the 5th International Workshop

on Semantic Business Process Management collocated with the Extended Semantic Web

Conference, ACM, Heraklion, Greece, 21-28. (2010)

13. Barkmeyer, E. J., Denno, P.: On capturing information requirements in process specifications.

Enterprise Interoperability II, Springer, London, 365-376. (2007)

14. Bunge, M.: Treatise on basic philosophy. III. Ontology: The future of the world. Reidel,

Dordrecht, Holland.(1977)

15. Bunge, M.: Treatise on basic philosophy. III. Ontology: A word of systems. Reidel,

Dordrecht, Holland. (1979)

16. Sowa, J.: Knowledge Representation: Logical, Philosophical, and Computational Foundations.

Brooks/Cole Publishing Co., Pacific Grove, CA. (2000)

17. Guarino, N.: Formal ontology, conceptual analysis and knowledge representation.

International Journal of Human-Computer Studies, Vol. 43, No. 5-6, 625-640. (1995)

18. Gruber, T. R.: Toward principles for the design of ontologies used for knowledge sharing.

International Journal of Human-Computer Studies, Vol. 43, No. 5–6, 907-928. (1995)

19. Gomez-Perez A., Fernandez-Lopez M., Corcho, O.: Ontological Engineering with Examples

from the Areas of Knowledge Management, e-Commerce and the Semantic Web. Series:

Advanced Information and Knowledge Processing. Springer-Verlag, New York, Inc.,

Secaucus, USA. (2007)

20. Borgo, S.: How formal ontology can help civil engineers. In Ontologies for Urban

Development, Studies in Computational Intelligence, Vol. 61, Springer Berlin Heidelberg.

(2007)

Enhancing BPMN 2.0 Informational Perspective to Support Interoperability for CBPs 1119

21. Baclawski K., Mieczyslaw K., Kokar K., Kogut P., Lewis H., Smith J., Letkowski J., Emery,

P.: Extending the Unified Modeling Language for ontology development. Software and

Systems Modeling, Springer-Verlag, Vol. 1, No. 2, 142-156. (2002)

22. Ontology Definition Metamodel Version 1.1. OMG (2014). [Online]. Available:

http://www.omg.org/spec/ODM/1.1/PDF/ (current April 2015)

23. Barkmeyer E. J., Kulvatunyou, B.: An Ontology for the e-Kanban Business Process. NIST

Internal Report 7404, National Institute of Standards and Technology (NIST). (2007).

[Online]. Available: http://www.nist.gov/customcf/get_pdf.cfm?pub_id=822708 (current

April 2015)

24. Kogut, P., Cranfield, S., Hart, L., Dutra, A., Baclawski, K., Kokar, M., Smith, J.: UML for

ontology development. The Knowledge Engineering Review, Cambridge University Press,

Vol. 17, No.01, 61-64. (2002)

25. Cranefield, S., Purvis, M.: UML as an Ontology Modeling Language. In Proceedings of the

Workshop on Intelligent Information Integration, 16th Int. Joint Conference on AI (IJCAI-99),

Germany, 46-53. (1999)

26. White, S., Miers, D.: BPMN modeling and reference guide. Future Strategies Inc., Lighthouse

Point, Fla. (2008).

27. Freund, J., Rucker, B.: Real-Life BPMN: Using BPMN 2.0 to Analyze, Improve and

Automate Processes in Your Company. Camunda, Lexington, KY. (2012)

28. Silver, B.: BPMN Method and Style, 2nd Edition, with BPMN Implementer's Guide. Cody-

Cassidy Press, Aptos (2011)

29. Gao, F., Derguech, W., Zaremba, M.: Extending BPMN 2.0 to Enable Links between Process

Models and ARIS Views Modeled with Linked Data. Business Information Systems

Workshops, BIS 2011 International Workshops and BPSC International Conference, Poznan,

Poland, 41-52. (2011)

30. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business process

management: a vision towards using semantic Web services for business process

management. IEEE International Conference on e-Business Engineering (ICEBE'05), 535-

540. (2005)

31. Hepp, M., Roman, D.: An Ontology Framework for Semantic Business Process Management.

In Proceedings of Wirtschaftsinformatik, Karlsruhe, 423-440. (2007)

32. Deutsch D., Milo, T.: Business Processes: A Database Perspective. Synthesis Lectures on

Data Management, Morgan & Claypool Publishers, San Rafael, Calif., 1-103. (2012)

33. Beeri, C., Eyal, A., Milo, T., Pilberg, A.: Monitoring business processes with queries. In

Proceedings of the 33rd Int. Conf. on Very Large Data Bases, Vienna, Austria, 603–614.

(2007)

34. Deutsch, A., Marcus, M., Sui, L., Vianu, V., Zhou, D.: A verifier for interactive, data-driven

web applications. In Proceedings of the 2005 ACM SIGMOD international conference on

Management of data - SIGMOD '05, Baltimore, MD, USA, 539-550.(2005).

35. Fritz, C., Hull, R., Su, J.: Automatic construction of simple artifact-based business processes.

In Proceedings of the 12th International Conference on Database Theory - ICDT '09, Saint-

Petersburg, Russia, 225-238. (2009).

36. Magnani, M., Montesi, D.: BPDMN: A Conservative Extension of BPMN with Enhanced

Data Representation Capabilities. arXiv:0907.1978v1[cs.SE] (2009)

37. Object Constraint Language (OCL) Version 2.3.1. OMG (2012). [Online]. Available:

http://www.omg.org/spec/OCL/2.3.1/PDF (current April 2015)

38. Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification Version 1.1. OMG

(2011). [Online]. Available: http://www.omg.org/spec/QVT/1.1 (current April 2015)

39. IBP-2 Inventory Visibility & Interoperability Electronic Kanban Business Process Version 1.

Automotive Industry Action Group (AIAG). (2006)

1120 Marija Jankovic et al.

Marija Jankovic is a teaching assistant in the Department of Information System and
Technologies at the Faculty of Organizational Sciences, University of Belgrade. She
received the M.Sc. degree in Information Systems from University of Belgrade, Serbia in
2007. Her research interests include business process modeling, information systems
development methodologies, enterprise application interoperability, contemporary
software architecture and database systems.

Miroslav Ljubicic is a teaching assistant in the Department of Information System and
Technologies at the Faculty of Organizational Sciences, University of Belgrade. He
received the M.Sc. degree in Information Systems from University of Belgrade, Serbia in
2011. His research interests include information systems development methodologies,
databases, model driven development, service-oriented architecture, semantic
technologies, and enterprise application interoperability.

Nenad Anicic is an associate professor in the Department of Information System and
Technologies at the Faculty of Organizational Sciences, University of Belgrade. He
received the M.Sc. and Ph.D. degrees in Information Systems from University of
Belgrade, Serbia in 2001 and 2006, respectively. His research interests include
information systems development methodologies, model driven development, semantic
technologies, and interoperable application systems.

Zoran Marjanovic is a full professor at Faculty of Organizational Sciences, University

of Belgrade, and a founder and president of the Breza Software Engineering company.

His research interests are information systems development methodologies, databases,

and semantic enterprise application interoperability. Professor Marjanovic is a lead on

several on-going projects with government and commercial entities that address design,

deployment, and testing of enterprise resource planning and other business systems. He

received his MS and PhD degrees in Information Systems from University of Belgrade.

He is a member of ACM and IEEE.

Received: November 12, 2014; Accepted: April 14, 2015.

