
Computer Science and Information Systems 12(3):961–977 DOI: 10.2298/CSIS141031035N

Context Modeling based on Feature Models Expressed as

Views on Ontologies via Mappings

Siniša Nešković1, Rade Matić
2

1 University of Belgrade, Faculty of Organizational Sciences

Jove Ilića 154, 11000 Belgrade, Serbia

sinisa.neskovic@fon.bg.ac.rs
2 Belgrade Business School, Kraljice Marije 73,

11000 Belgrade, Serbia

rade.matic@bbs.edu.rs

Abstract. This paper presents an approach for context modeling in complex self-

adapted systems consisting of many independent context-aware applications. The

contextual information used for adaptation of all system applications is described

by an ontology treated as a global context model. A local context model tailored to

the specific needs of a particular application is defined as a view over the global

context in the form of a feature model. Feature models and their configurations

derived from the global context state are then used by a specific dynamic software

product line in order to adapt applications at runtime. The main focus of the paper

is on the realization of mappings between global and local contexts. The paper

describes an overall model architecture and provides corresponding metamodels as

well as rules for a mapping between feature models and ontologies.

Keywords: context modeling, feature models, dynamic software product line,

ontology, model mappings.

1. Introduction

The Internet of Things (IoT) vision assumes a very large number of “smart” devices or

objects which can mutually interact and dynamically respond to events in their

surrounding by adopting their behavior correspondingly [32], [27], [3]. From the

software point of view, IoT consists of a large number of software applications (running

on and managing “smart” objects) which react to users and their surroundings without

user’s explicit commands. In other words, IoT requires a development of a context-

aware self-adapted system (CASAS) which possess an adaptation mechanism enabled to

timely end highly efficient adapts applications at runtime according to changes in their

context.

The development of such an adaptation mechanism is usually based on a single

context model and rules that specify which configurations of the applications should run

in every possible instance of the context [2], [5], [17], [12], [11], [13], [25]. However, in

case of IoT, consisting of very large number of context-aware applications, it is very

difficult and inefficient to use a single context due to its complexity. Such a single

global context must include all information needed by all applications (“smart” objects),

i.e. data about a large number of different situations and different users with different

mailto:sinisa.neskovic@fon.bg.ac.rs
mailto:rade.matic@bbs.edu.rs

962 Siniša Nešković and Rade Matić

interests and views. Thus, an adaptation of a single working application must deal with

the entire context including a large amount of context classes and objects (both metadata

and data) that are mostly irrelevant. Therefore, such application adaptation is difficult

to specify and implement in an efficient manner. Having in mind that the number of

smart objects in IoT is increasing exponentially, the problem of an efficient application

adaptation is becoming crucial for the IoT vision to be realized to its full potential.

A possible solution to this problem could be to use separate local contexts tailored for

each particular application. Having in consideration only the relevant context

information will certainly reduce response time and increase the reasoning performance

in the adaptation process. However, such solution is also connected with many

difficulties due to synchronization and potential inconsistencies among a large number

of different local contexts that possess overlapping contextual information. Therefore,

although efficient, such solution would lead to an inadequate or incorrect behavior of

“smart” objects, i.e. instead of solving the problem it would create an even more serious

one.

This paper presents an approach to the problem of self-adaptation in such complex

CASAS which is based on the usage of both global and local contexts. Global context is

treated as an ontology describing contextual information required by all applications,

whereas local contexts are derived as views over the global context tailored to the needs

of particular applications. Views are defined through mappings (correspondences)

between modeling elements of global and local contexts. Additionally, local context

models in our approach are expressed in the form of feature models (FM) [21], which

are commonly used in software product line engineering (SPLE) to enable efficient

generation of application variants customized to specific needs of users. In our

approach, derived feature models are used to instantiate variants of context-aware

applications corresponding to a specific context state. Thereby, our approach relies on

so called dynamic software product lines (DSPL) [14] as the main adaptation

mechanism in CASAS.

The main focus of this paper is on describing the realization of mappings between

global and local contexts. The rest of the paper is structured as follows. The next section

gives an overview of work related to our research. In Section 3 our approach is

described by an overall model architecture, a brief description of the adaptation process

and detailed descriptions of models used to realize global and local contexts. An

example to illustrate our approach is also given. Implementation aspects of a CASAS

based on our approach are discussed in Section 4. Finally Section 5 concludes the paper.

2. Related Work

As the next evolution of the Internet, IoT envisions a world where all the objects around

us are interconnected and behave smartly, i.e. they know what we like, what we want or

need and can act accordingly. However, this vision poses a lot of technical challenges

which makes its realization a difficult task. More about the IoT as a new computing

paradigm, its potentials and possible applications, methods and models used to

overcome challenges as well as existing middleware solutions can be found in [27]. One

of the main challenges that this paper identifies is the context-awareness of smart

Context Modeling based on Feature Models Expressed as Views on Ontologies 963

objects. Hence, a lot of research has been recently dedicated to context modeling and

development of context-aware systems.

Regarding context modeling, several techniques are proposed in [27], [3], [2], [4],

[33], [29]. Ontologies are the most expressive and most used technique for modeling

contextual information. Based on semantic web languages such as RDF and OWL, the

application of ontologies for context modeling provides a unique way to specify

key concepts (as well as their instances) enabling thus reuse and sharing of information

or knowledge about the context in distributed systems. However, ontologies are not

without certain drawbacks [4], [18], [34], [35]. Most of suggested ontologies do not

provide a clear description of contextual information. Although different ontologies have

been proposed to model domain specific context information that are reusable in many

domains, they cannot be reused directly as all of them have certain drawbacks in

generality and/or dynamicity [2]. Additionally, as it is observed in [27], the processing of

contextual information can be very resource intensive and slow when semantic web

languages are used for expressing complex contextual ontologies (which in IoT is

normally the case).

 Approaches defined in [17], [9], [1], [16], [24], [30] use feature modeling as a

technique for context modeling and development of context-aware self-adaptive systems

in order to improve reusability and new configurability. A feature model (FM), firstly

proposed by Kang et al. [21], consists of a hierarchy (represented by a tree diagram) of

mandatory and optional features of some product within a specific domain. Since then it

had many extensions proposed in order to enhance semantic expressiveness such as

adding multiple feature instances and their cardinality constraints [7]. Group constraints,

cloning, attributes and additional relationships are also advanced variability extensions

because they give more descriptive power of feature modeling. A feature notation may

also support concepts like annotations and FM references. FM references allow dividing

large feature models into smaller ones. Annotations can capture additional information.

FMs are extensively used in software product line engineering (SPLE), an approach

which intends to industrialize the development of similar software applications (a product

family) by utilizing software production lines [26]. A software production line (SPL)

represents a development platform consisting of all necessary production assets like

tools, models, frameworks, processes, etc., which enable massive and efficient

production of family members, i.e. applications tailored to the needs of a particular

customer. FM with its mandatory and optional features is used to describe common and

variable parts of a software product family. In this way FM defines the set of all

configurations that are valid for applications in the particular domain. An application is

produced by SPL through the process of configuration, a selection of features from the

corresponding FM which suit the customer requirements.

In order to support adaptation at run time and enable context aware computing

dynamic software production lines (DSPL) were introduced [12], [23], [15]. Most of

DSPL approaches utilize two separate FMs. One FM is used to model the context while

another FM represents functional and/or non-functional features of the software system

(applications) operating in this context. These two FMs are usually related using feature

dependencies expressed via requires and excludes relationships, but many of the

approaches use some other special techniques to do that. For example, Fernandes et al.

[9] provide a modeling notation that extends feature models to model context-aware

systems. The general feature model is composed of a domain feature model with

composition rules, a context feature model with context definitions, and context rules that

964 Siniša Nešković and Rade Matić

make the link between these two models. The formalism and notation used to represent

feature models are not standard and their approach differs from our work in using a

domain-specific language which allows a developer to specify context rules. Adaptation

is guided by the context rules which specify how a specific context affects an application

configuration in the domain, deciding about variant selection in a variation point.

A similar idea was shown in [1]. The paper addresses the reconfiguration of Dynamic

Adaptive Systems where FMs are used to represent the context and the software system

using standard formalism and notation. Except the feature dependencies between the

contextual feature model and the application feature model that affect the selection of

features, a group of contextual features determines product goals and attributes, which

also constrain the selection of product features [24].

In [30] it is shown how requirements of runtime contexts are specified via require and

exclude cross-tree constraints between the context model and the feature model i.e.,

context-aware DSPL variability specification. Based on this context-aware feature model

(CFM), they introduce a transition system that provides appropriate reconfigurations at

runtime. Every state represents potential configurations of the DSPL which satisfy a

context or a set of context.

The framework explained in [17] is similar to our research because the view concept is

used too. The difference is the technique how FM is expressed as a view on ontology.

Their framework treats the context as a DSPL composed of a set of small contextual

pieces, namely context primitives, which are elements of an ontology-based context

model (OCM). Context feature model and OCM serve as a context model family.

Context primitives are annotated using existence conditions and metastatements.

Annotations are defined by features and feature attributes from the context feature model,

and can be evaluated by considering a feature configuration. Based on this feature

configuration, the corresponding context product (instance of a context model family) is

generated automatically.

3. Our approach

Our research was primarily motivated by the idea that FMs can be expressed as views on

ontologies [6] as well as that the derivation of a FM from an ontology should be very

efficient in order to fulfill highly demanding requirements of context aware computing in

IoT. Additionally, in order to support a wide range of existing and emerging technologies

that can be used as an implementation platform, our approach is based on model driven

engineering as development methodology [10]. This means that we use so called

platform (i.e. technology) independent models (PIM), which are then transformed to

highly efficient platform specific models (PSM) used for the implementation.

Contextual information shared by all system applications is described by an ontology

treated as a global context model. Since usual ontology languages like RDF or OWL are

not so efficient for large scale context information processing, we are using Entity-

Relationship (ER) model instead as PIM for context modeling. ER model is a semantic

data model with concepts which are semantically rich enough to express ontology [8],

[19]. In addition, an ER model can be easily translated to some highly efficient

implementation based on some DBMS.

Context Modeling based on Feature Models Expressed as Views on Ontologies 965

To support efficient adaptation based on DSPL, we use local context models tailored

to the specific needs of particular applications, which are defined as views over the

global context in the form of FM. Views are defined through mappings

(correspondences) between modeling elements of global and local contexts, i.e. between

ER schema concepts and FM concepts. These definitions are then used to derive a FM

configuration from the global context state used by DSPL in order to adapt applications

at runtime. More about these implementation details is given in Section 4.

The rest of this section describes our approach in more detail. We first provide an

overall model architecture, which identifies all PIM models (including their metamodels)

and their relationships required in our approach. We also briefly describe the adaptation

process based on the introduced models. Then we show how ER models are mapped to

FM. At the end of the section we provide an illustrative example of our approach.

3.1. Model Architecture

The overall model architecture is shown as an UML package diagram in Figure 1. UML

packages in the diagram represent models, whereas various relationships among models

are represented by stereotyped dependency associations between corresponding

packages. The diagram also classifies models in three different categories according to

the time when they are created (represented as swim lanes in the diagram):

 Runtime category encompasses models which are automatically created and
maintained during runtime of CASAS components and user applications.

 Design time category encompasses models which are created by developers
during the design of CASAS components and user applications.

 Metamodels category encompasses models which are defined by our approach,
i.e. metamodels which are introduced in the next subsection of the paper.

Since ER data model is used as an ontology definition language [8], [19], [31], [28], a

global context model is defined using an ER schema. Hence, it must conform to ER

metamodel. On the other hand, FMs are used to represent local context models which

must conform to the corresponding FM metamodel.

FMs are defined as views on ontologies, namely, as projections of the ontologies from

different viewpoints [6]. The views definition is given by a mapping model which maps

the concept of an ER schema to concepts of a FM. The defined mappings have to follow

rules and constraints, which are defined by the mapping metamodel.

An ER schema serving as the application global context model is created by system

architects (chief system developers) usually using existing (one or more) ontologies,

which are possible expressed in different ontology languages (e.g. OWL). These

ontologies are then combined and tailored to the needs of the application and expressed

as an ER schema. FMs are created by use case developers and application programmers,

who are also responsible for defining mappings between the ER schema and FMs.

Detailed description of the development methodology and organizational aspects of

development are beyond the scope of this paper.

966 Siniša Nešković and Rade Matić

Working applications

Global context

model

(ER schema)

ER

metamodel

Local context

model

(FM)

Global context

state

Local context state

(FM configuration)

Mapping

Model

<<Conforms to>>

<<Derived from>>

Mapping

metamodel

<<Conforms to>>

<<Conforms to>>

FM

 metamodel

<<Conforms to>>

<<From>>
<<To>>

<<From>> <<To>>

<<Updates>>
<<Derived from>>

<<Conforms to>>

Metamodels

Design time

models

Runtime

models

Fig. 1. Model architecture

At runtime level, a CASAS maintains a global context state, which keeps contextual

information at the particular moment. The global context state is usually realized as some

form of a database structured according to its ER schema defined in the design time. The

database is updated, i.e. the global context state is maintained, by context-aware

applications (sensors and smart objects) and/or other CASAS’s run time components.
When significant changes of a context are detected, CASAS run time components will

trigger an adaptation process which will instantiate (generate) affected running
applications. The adaptation process consists of two main steps:

 Derivation of local contexts. Local context states for affected running applications
are derived from the current global context state. They use the corresponding
mapping models defined at the design time. According to SPL engineering
principles, the local context state is represented as a FM configuration.

 Instantiation of running applications. Using a DSPL, affected working
applications are instantiated based on corresponding FM configurations. Thus, a
new instance (version) of the application is adapted to the current local context
state.

The adaptation process is performed by a part of CASAS called Adaptation Manager.

Due to space limitations, a detailed description of the adaptation process and Adaptation

Manager is not included here.

Context Modeling based on Feature Models Expressed as Views on Ontologies 967

3.2. Metamodels and Mapping Rules

ER metamodel, shown in Figure 2, is based on ER model defined in [22]. ERConcept

represents the most abstract concept in the ER data model. It is specialized using more

concrete ER concepts:

 Entity represents types of objects in a system. It is further specialized into Kernel,
Subtype, Aggregation, and Weak entity types.

 Relationship is defined between two entity types.

 Mapping represents relationship roles as well as special relationships between
specific entity types. Min and Max attributes specify lower and upper bound of its
cardinality. Mapping is further specialized into more concrete subtypes:
OrdinaryMapping (i.e. relationship role), WeakMapping, AggregationMapping,
and SpecializationMapping.

 Attribute describes an entity type and Domain specifies the type value for an
attribute.

ER Metamodel

Mapping

Min

Max

Entity

ERConcept

ER model

Weak

Mapping

Aggregation

Mapping

Specialization

Mapping

OrdinaryMappingWeak AggregationSubType Kernel

Relationship

Domain

Attribut

1

*

2..*

2

1

1 1

1

*

1

*

*

1

1

1

*

domain

Fig. 2. ER metamodel

968 Siniša Nešković and Rade Matić

The version of FM we adopted in our approach is an enhanced version with

cardinalities and attributes [7]. This version has an enhanced semantic expressiveness

since it allows specification of constraints using cardinalities and supports also cloning of

features (solitary subfeatures with MaxCardinality > 1). Additionally, the usage of

attributes, instead of solitary subfeatures with parameters which is a semantically

equivalent alternative, leads to more compact FM models. Thus, more efficient

implementation is enabled.

The FM metamodel is shown in Figure 3. It is an original version developed by the

authors of this paper independently of other FM metamodels available in the literature

[7]. The main reason for developing our own metamodel version is to allow easier

correspondences between concepts of ER models and FM, especially between ER

mappings and FM relationships.

name

FM concept

FM diagram

isRoot

Feature

minCardinality
maxCardinality

Relationship

Rel2Solitary Rel2Grouped

1*

parent

2..*

0..1

grouped
feature

1

0..1

solitary
subfeature

Attribute

*

1

feature
attributes

Type
1 *

FM metamodel

FM
reference

1

*

ref by

Fig. 3. FM metamodel

Its most abstract concept is FMConcept which is further specialized into more concrete
concepts:

 Feature diagram represents a FM model which encompasses all other FM
concepts belonging to it.

 Feature is a central FM concept. Its property isRoot defines a feature which is the
root of a hierarchy of features comprising the given FM model. In a FM model
only one feature can have this property set to true.

 Relationship represents a parent/child association between features forming a
hierarchy of features. A relationship is subtyped to Rel2Solitary subclass,

Context Modeling based on Feature Models Expressed as Views on Ontologies 969

representing an association between a parent feature and its solitary subfeature,
and to Rel2Grouped subclass, representing an association between a parent
feature and a group of features (also called grouped features). Properties
MinCardinality and MaxCardinality enable expression of various constraints on
relationships between features. In case of Rel2Solitary relationship, these
properties determine whether a solitary feature is mandatory (value of
MinCardinality is 1) as well as whether multiple features are allowed
(MaxCardinality is higher than 1). In case of Rel2Grouped relationship, these
properties determine whether a feature group is mandatory as well as exclusive
(MaxCardinality is 1) or not (MaxCardinality is higher than 1).

 FM reference represents a reference to another FM enabling a division of large
feature models into smaller ones. It is modeled as subtype of Relationship, thus
enabling modelers to represent a subtree of features of some parent feature as a
separate FM model.

 Attribute is defined as a separate FM concept due to efficiency, although it could
be in essence represented as a solitary subfeature with a parameter.

The mapping between ER and FM concepts is determined by the following rules:

 ER2FM rule: Each ER model maps to a Feature model.

 Entity-Feature rule: Each Entity type (Kernel, Subtype, Aggregation, and Weak)
maps to a Feature.

 Mapp-Solitary rule: Each WeakMapping, AggregationMapping and
OrdinaryMapping maps to a Rel2Solitary relationship. Cardinalities of mappings
between entities become cardinalities of the relationships linking corresponding
features.

 Spec-Group rule: Each SpecializationMapping maps to a Rel2Grouped
relationship. All entity subtypes of SpecializationMapping are mapped to features
which are connected to the given Rel2Grouped relationship. Cardinalities of
SpecializationMapping become cardinalities Rel2Grouped relationship

 Ord-FMref rule: If two entities have two or more relationships or if three or
more entities form a circle then FM reference is created in order to maintain FM
as a strict hierarchy (tree) of features. A FM reference should also be created in
case of relationships linking an entity to itself (i.e. recursive relationships) for the
same reason.

 Attr-Attr rule: Each Attribute maps to a feature Attribute.

 Domain-Type rule: Each Domain maps to a Type.

The Mapping metamodel, shown in Figure 4, defines allowed correspondences between

ER concepts and FM concepts based on the aforementioned rules. A mapping between

two concrete ER and FM models is represented by ER2FM class, which encompasses all

correspondences between concrete elements of the ER and FM models made using the

mapping rules. Class Element represents an instance of such correspondences. For each

mapping rule there are appropriate subclasses of Element, which are named after the rule.

970 Siniša Nešković and Rade Matić

ER MM FM MMMapping model

Element

ER2FM

1
 1

..*

FeatureModel

1

1
ER model

Weak

Mapping

Aggregation

Mapping

Specialization

Mapping

OrdinaryMapping

Entity

Domain

Attribut

Rel2Grouped

Rel2Solitary

IsRoot

Feature

1

Entity-

Feature
1

1

Mapp-

Solitary

Spec-Group

1

1

Weak-

Solitary

1

Agg-

Solitary

1
1

Ord-Solitary1

TypeDomain-Type1
1

Attr-Attr

Attribut
1

FM referenceOrd-FM ref

1 1

Fig. 4. Mapping metamodel

As it is obvious from the metamodel, mappings between concepts of ER model and

FM are unique (non-ambiguous), except for OrdinaryMapping (ER relationship role).

OrdinaryMapping can be mapped by Mapp-Solitary rule to a Rel2Solitary relationship,

linking a feature and its solitary subfeature, or can be mapped to FM reference (a link to

another FM model) by Ord-FM-ref rule. However, in case of recursive or circular ER

relationships modelers are forced to use Ord-FM-ref rule instead of using Mapp-Solitary

rule. So, the non-ambiguity of mapping ER concepts to FM concepts is also preserved in

this case. In other cases developers can freely choose between these two rules, i.e. to

choose Ord-FM-ref rule instead of Mapp-Solitary rule when they want to break a large

FM model into smaller ones.

Context Modeling based on Feature Models Expressed as Views on Ontologies 971

3.3. An Example

In this section we illustrate our approach by an example of a CASAS aimed to support a

consortium of flower stores in a big city. The consortium has made an agreement with

local taxi drivers to deliver flowers from the stores to their customers. When a store gets

a flower delivery order from a customer, it creates a request which is sent to drivers from

the store in order to select a driver assigned for the actual delivery. Drivers compete for

the delivery by sending their current location. Depending of preferences of stores (e.g.

automatic or manual delivery assignments to drivers, delivery confirmation required or

not, etc.) and equipment options for drivers (e.g. whether the driver is equipped with a

GPS mobile device), there can be many different variants of applications supporting

stores and drivers. Here we give three use cases (UC) with contextual variants which are

expressed using #if metastatements:

1. Use case: Select driver for delivery

Actor: Florist

- The system sends an offer for delivery to all drivers

- The system registers the positive responses and the location of the driver

- The system ranks all driver responses based on current driver distances from the

store

#if FloristContext.AutoAssign // Variant 1: Automatic Assignment

- The system selects the driver with the best rank.

#else // Variant 2: Manual assignment

- Florist manually selects the driver from the driver ranking list.

#endif

2. Use case: Send bid for delivery

Actor: Driver

- The driver receives a request for a delivery

- The driver accepts the offer

#if DriverContext.Device.Mobile.GPS // Variant 1: driver with GPS device

- The system gets the current location from the driver’s GPS device

#else // Variant 2: driver is without GPS device

- Driver enters and sends manually current location

#endif

3. Use case: Confirming delivery

Actor: Driver and Customer

- #if FloristContext.DeliveryConfirmation

// Variant 1: Store requires delivery confirmation

- The driver asks the client to enter the confirmation code given to him by the

store

- Confirmation code is sent to the store

#else // Variant 2: Store doesn’t require confirmation

- Use case does not exist for this driver.

#endif

972 Siniša Nešković and Rade Matić

In order to do required adaptations, our CASAS system must keep the contextual

information about stores and drivers. The (simplified) global context model is given in

Figure 5. It includes information about stores, their preferences on task assignment and

delivery confirmation as well as information about drivers working for a particular store.

Drivers can be equipped with different devices, which can be mobile phones (with or

without GPS) or GPS navigation devices. Additionally, each driver can have as his/her

replacement another driver to whom requests are forwarded in case the initial driver is

out of work.

0,M 0,M

Device

Type

S

0,M

Mobile
GPS

Navigation

GPS (bool)

DevName

(string)

Driver

DrvName (string)

has replacement

replacedBy 0,1

replaces 0..M

Store

workFor

1,M

1,M

StrName (string)

AutoAssign (bool)

Global context

Delivery

Confirmation

(bool)

Fig. 5. An example of global context model

Since stores and drivers have two independent applications for realizing appropriate

use cases, each application must have its own local context model. The two local context

models include only relevant contextual information projected from the global context.

These local contexts are shown in Figure 6. In addition to store's preferences, the FM for

the local context of the store includes a list of drivers who work for this particular store

(represented as solitary subfeature with cardinality 1..M). On the other hand, the FM for

the local context of driver includes a list of devices a driver possesses (solitary subfeature

with cardinality 1..M). Each device may have aditional subfeatures acorcoding to its type

(represented as XOR grouped feature). Since each driver's replacement is also a driver

with its own context, this situation is in the FM represented as a recursive FM reference

to itself.

A part of the corresponding mapping model between the global context model and the

local driver’s context models of driver is given in the object diagram in Fig 7.

ER_schema package contains instances of global context model from Fig 5, while

package FM contains instances of FM Driver_Context from Fig 6. Package

Mapping_model contains instances of the corresponding mapping rules by which

concepts of the global context are mapped to the concept of the local context. Thus,

features f1 (Driver) and f2 (DeviceType) are mapped from corresponding entities of the

same name using Entity-Feature rule. On the other hand, relationship r2, which defines

that f2 is a solitary subfetaure of f1, is mapped from o1 ordinary mapping

(hasDeviceType) by rule OrdSolitary. FM reference fm1 (replacedBy) is mapped from

ordinary mapping o2 using Ord-FM-ref rule.

Context Modeling based on Feature Models Expressed as Views on Ontologies 973

Driver Context

GPS Navigation

Driver

replacement

DrvName: string

Driver

DevName: string

Device Type

GPS :bool

Mobile

[1..M]

Store Context

AutoAssign: bool

DeliveryConfirmation: bool

Store

Driver Name: string

Driver

Fig. 6. FM Local contexts for stores and drivers

ER schema FM Mapping model

:Entity-Feature

Entity-Feature

:Attr-Attr

Name:Driver

e1:Entity

Name: Device Type

e2:Entity

Name:DrvName

a1:Attribute

Name: hasDeviceType

Min: 0

Max: M

O1: OrdMapping

domain

Name: Driver

f1:Feature

Name:DrvName

a1:Attribute

Name: hasDeviceType

Min: 0

Max: M

r2: Rel2Solitary

Name: Device Type

f2:Feature

partent

feature

Solitary

subfeature

feature attributrs

Name: replacedBy

Min: 0

Max: 1

O2: OrdMapping

Name: Driver context

:FM model

Name: replacedBy

Min: 0

Max: 1

fm1:FM reference

parent

 feature

refBy

domain

:OrdSolitary

:Ord FM ref

Fig. 7. A part of mapping model between global and local context

974 Siniša Nešković and Rade Matić

4. Implementation aspects

Since it is based on model driven engineering, our approach allows different

implementation architectures and platforms. Here we describe one possible

implementation used in our prototype system that is currently under development (shown

in Figure 8).

For the realization of global context state we have chosen a relational database. We

consider that database technology, including latest memory based RDBMS targeting

mobile platforms, is superior in IoT environment where a large number of applications

(sensors and other “smart” objects) concurrently access the global context state.

Regarding the realization of the local context state, we decided to use JSON objects

[20] as a very efficient implementation of FM configurations. JSON format is used in

many web platforms as an efficient alternative to XML format for transferring data

between distributed applications. Additionally, JSON objects are easily transformed to

native objects in many programming languages (Java, PHP, JavaScript, etc.).

Global context

model

(ER schema)

Local context model

(FM)

Global context state

(Relational DBMS)

Local context state

(JSON object)

Mapping Model

<<Transformed from>>

<<Conforms to>>

<<From>>

<<To>>

Platform Independent Models Platform Specific Models

Local context derivation

<<From>>

<<To>>

<<Conforms to>>

Fig. 8. Implementation architecture of prototype system

JSON objects are created by Adaptation Manager through the process called Local

context derivation. Local context derivation is done according to Mapping Model by

making appropriate queries over global context state (i.e. relational database) in order to

create a JSON representation of local context state.

Context Modeling based on Feature Models Expressed as Views on Ontologies 975

In order to adapt applications at runtime, our current prototype version of Adaptation

Manager, which is built on the principles of DSPL, utilizes template engines as a

technique to render application source code based on templates and JSON objects

representing the local context state.

5. Conclusions

The main advantage of our approach stems from the utilization of both global and local

contexts modeled by two different modeling techniques. Ontologies are superior for

context modeling and realization of global context state, but not so suitable for the

adaptation purposes in DSPL. On the other hand, feature models are suitable for the

adaptation purposes, but no so adequate for global context modeling. Thus, our approach

takes the best of both ontologies and feature models by using synergy effects.

Comparing to other existing approaches, the key benefit of our approach is in the

adaptation process. It can be much more efficient due to smaller, less complex and better

tailored local context models. This efficiency is achieved without sacrificing the

advantages of ontologies. Thanks to the view-based approach, context can be easily

shared between different applications increasing reuse of context information and

reducing their complexity. Separating local contexts tailored for each particular

application and considering only the relevant context will keep integrity of context

information with no redundancy, reduce response time and increase the reasoning

performance which is a critical concern in IoT environment.

An additional level of efficiency is also achieved by applying model driven

development. It allows developers to use high level modeling techniques in the design

time, while for implementation technology platforms can be used which are the most

efficient in the given circumstances. Our initial experience with our first prototype

implementation is very encouraging.

While some of the issues have been resolved, much work is yet to be done. In future

research we would like to thoroughly verify benefits in efficiency of our approach over

traditional approaches for context modeling and implementation in a large scale IoT

environment. Future work also includes developing a full feature DSPL for a context-

aware self-adaptive system based on our approach. We plan to generate logic and source

code of Adaptation Manager such as local context derivation. We also plan to extend our

developer prototype with complex event processing in order to better support and

improve efficiency of reasoning and run time adaptations.

References

1. Acher, M., Collet, P., Fleurey, F., Lahire, P., Moisan, S., Rigault, J.P.: Modeling Context and

Dynamic Adaptations with Feature Models. In Int'l Workshop Models@run.time at Models

2009 (MRT'09). (October, 2009)

2. Baldauf, M., Dustdar, S., Rosenberg, F.: A survey on context-aware systems. Int. Journal of

Ad Hoc and Ubiquitous Computing, Vol. 2, No. 4, 263–277 (June 2007)

976 Siniša Nešković and Rade Matić

3. Bellavista, P., Corradi, A., Fanelli, M., Foschini, L.: A survey of context data distribution for

mobile ubiquitous systems, ACM Computing Surveys (CSUR), v.44 n.4, p.1-45, (August

2012)

4. Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., Riboni,

D.: A survey of context modeling and reasoning techniques. Pervasive and Mobile

Computing, vol.6 no.2, p.161-180, (April, 2010)

5. Bolchini, C., Curino, C.A., Quintarelli, E., Schreiber, F. A., Tanca, L.: A data-oriented

survey of context models. ACM SIGMOD Record, Vol. 36, No. 4, (December 2007)

6. Czarnecki, K., Chang Hwan, P.K., Kalleberg, K.T.: Feature Models are Views on

Ontologies. Proceedings of the 10th International on Software Product Line Conference,

p.41-51, August 21-24, (2006)

7. Czarnecki, K., Helsen, S., Eisenecker, U.: Staged Configuration Using Feature Models, R.L.

Nord (Ed.): SPLC 2004, LNCS 3154, pp. 266-283 (2004)

8. Devedžić, V.: Understanding ontological engineering. Communications of the ACM, vol.45

no.4, (April 2002)

9. Fernandes, P., Werner, C., Teixeira, E.: An Approach for Feature Modeling of Context-

Aware Software Product Line. Journal of Universal Computer Science, Special Issue on

Software Components, Architectures and Reuse, vol. 17, no. 5, pp.807-829, (2010)

10. France, R., Rumpe, B.: Model-driven development of complex software: A research

roadmap. Future of Software Engineering. IEEE Computer Society, (2007)

11. Geihs et all, K.: Software engineering for self-adaptive systems. Springer-Verlag, Berlin,

Heidelberg, Chapter Modeling of Context-Aware Self-Adaptive Applications in Ubiquitous

and Service-Oriented Environments, (2009)

12. Gomaa, H., Hussein M.: Dynamic software reconfiguration in software product families. In:

van der Linden, F. (Ed.), Software Product Family Engineering. Lecture Notes in Computer

Science 3014, Springer-Verlag, Berlin, Heidelberg. pp. 435-444, (2004)

13. Hallsteinsen, S., Geihs, K., Paspallis, N., Eliassen, F., Horn, G., Lorenzo, J., Mamelli, A.,

Papadopoulos, G.A.: A development framework and methodology for self-adapting

applications in ubiquitous computing environments. Journal of Systems and Software, v.85

n.12, p.2840-2859, (December 2012)

14. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic Software Product Lines.

Computer, Vol. 41, No. 4, 93–95. (2008)

15. Hallsteinsen, S., Stav, E., Solberg, A., Floch, J.: Using Product Line Techniques to Build

Adaptive Systems. In Proc. Int’l. Software Product Line Conf. (SPLC), pages 141–150.

IEEE CS, (2006)

16. Hartmann, H., Trew, T.: Using Feature Diagrams with Context Variability to Model Multiple

Product Lines for Software Supply Chains. In 12th International Software Product Line

Conference, IEEE (2008), pp. 12-21, Ireland, (September 2008)

17. Jaroucheh, Z., Liu, X., Smith S.: CANDEL: Product Line Based Dynamic Context

Management for Pervasive Applications. International Conference on Complex, Intelligent

and Software Intensive Systems (ARES/CISIS 2010), IEEE CS, 209-216. (2010)

18. Jaroucheh, Z., Liu, X., Smith, S.: Mapping features to context information: Supporting

context variability for context-aware pervasive applications. In Web Intelligence and

Intelligent Agent Technology (WI-IAT), 2010 IEEE/WIC/ACM International Conference

on (Vol. 1, pp. 611-614). IEEE, (Avgust 2010)

19. Jarrar, M., Demey, J., Meersman, R.: On Using Conceptual Data Modeling for Ontology

Engineering. In Spaccapietra, S., March, S., Aberer, K., (Eds.): Journal on Data Semantics

(Special issue on Best papers from the ER, ODBASE, and COOPIS 2002 Conferences).

LNCS, Vol. 2800, Springer, pp.:185-207. (October 2003)

20. JSON Tutorial , http://www.w3schools.com/json/.

21. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, S.: Feature-Oriented Domain Analysis

(FODA) Feasibility Study. Software Engineering Institute, Carnegie Mellon

University,Tech. Rep. CMU/SEI-90-TR-21, (Novembar 1990)

http://dl.acm.org/citation.cfm?id=2333119&CFID=436558296&CFTOKEN=55099423
http://dl.acm.org/citation.cfm?id=2333119&CFID=436558296&CFTOKEN=55099423
http://dl.acm.org/citation.cfm?id=2333119&CFID=436558296&CFTOKEN=55099423
http://dl.acm.org/citation.cfm?id=1755484&CFID=77077237&CFTOKEN=91453206
http://dl.acm.org/citation.cfm?id=1755484&CFID=77077237&CFTOKEN=91453206
http://dl.acm.org/citation.cfm?id=1755484&CFID=77077237&CFTOKEN=91453206
http://dl.acm.org/citation.cfm?id=1755484&CFID=77077237&CFTOKEN=91453206
http://dl.acm.org/citation.cfm?id=1361353&CFID=77840160&CFTOKEN=61246408
http://dl.acm.org/citation.cfm?id=1361353&CFID=77840160&CFTOKEN=61246408
http://dl.acm.org/citation.cfm?id=1158678&CFID=80902313&CFTOKEN=80045780
http://dl.acm.org/citation.cfm?id=1158678&CFID=80902313&CFTOKEN=80045780
http://dl.acm.org/citation.cfm?id=1158678&CFID=80902313&CFTOKEN=80045780
http://dl.acm.org/citation.cfm?id=1158678&CFID=80902313&CFTOKEN=80045780
http://dl.acm.org/citation.cfm?id=506002&CFID=360167214&CFTOKEN=16187811
http://dl.acm.org/citation.cfm?id=506002&CFID=360167214&CFTOKEN=16187811
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/f/Fernandes:Paula.html
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/t/Teixeira:Eld=acirc=nae.html
http://dl.acm.org/citation.cfm?id=2381595&CFID=403520758&CFTOKEN=20818418
http://dl.acm.org/citation.cfm?id=2381595&CFID=403520758&CFTOKEN=20818418
http://dl.acm.org/citation.cfm?id=2381595&CFID=403520758&CFTOKEN=20818418
http://dl.acm.org/citation.cfm?id=2381595&CFID=403520758&CFTOKEN=20818418
http://www.w3schools.com/json/

Context Modeling based on Feature Models Expressed as Views on Ontologies 977

22. Lazarević, B., Marjanović., Z., Aničić, N., Babarogić, S.: Introduction to Databases,

Beograd, (2006)

23. Lee, J., Kang, K.C.: A Feature-Oriented Approach to Developing Dynamically

Reconfigurable Products in Product Line Engineering. In Proc. Int’l. Software Product Line

Conf. (SPLC), pages 131–140. IEEE CS, (2006)

24. Lee, K., Kang, K.C.: Usage context as key driver for feature selection. In J. Bosch and J.

Lee, editors, Software Product Lines: Going Beyond, volume 6287 of Lecture Notes in

Computer Science, pages 32-46. Springer Berlin Heidelberg, (2010)

25. Morin, B., Barais, O., Jézéquel, J-M., Fleurey, F., Solberg, A.: Models@ run. time to support

dynamic adaptation. Computer 42, no. 10: 44-51, (2009)

26. Northrop, L. M.: SEI's Software Product Line Tenets. IEEE Software, v.19, n.4, p.32-40,

(July 2002)

27. Perera, C., Zaslavsky, A., Christen, P., Georgakopoulos, D.: Context aware computing for

the Internet of Things: A survey, IEEE Commun. Surveys Tuts., vol. PP, no. 99, pp.1 -41

(2013)

28. Rajiv Kishore, K., Hong, Z., Ramesh, R.: A Helix-Spindle model for ontological

engineering. Communications of the ACM, vol.47 no.2, p.69-75, (February 2004)

29. Raptis, D., Tselios, N., Avouris, N.: Context-based design of mobile applications for

museums: a survey of existing practices. In Proc. 7th Int. Conf. on Human computer

interaction with mobile devices & services, pages 153–160, (2005)

30. Saller, K., Lochau, M., Reimund, I.: Context-aware dspls: model based runtime adaptation

for resource-constrained systems. In SPLC'13, pages 106-113. ACM, (2013)

31. Sanchez, D.M., Cavero, J.M., Martinez, E.M.: The road toward ontologies. In

ONTOLOGIES : A handbook of priciples, concepts and applications in information systems,

R. Sharman, R. Kishore, and R. Ramesh, Eds. London: Springer, pp. 3-20, (2006)

32. Schmidt, A.: Implicit human-computer interaction through context. 2nd Workshop on

Human Computer. Interaction with Mobile Devices. (1999)

33. Strang, T., Linnhoff-Popien, C.: A context modeling survey. In 1st Int. Workshop on

Advanced Context Modelling, Reasoning and Management, (2004)

34. Vanathi, B., Uthariaraj, V.R.: Collaborative Context Management and Selection in Context

Aware Computing. In Communications in Computer and Information Science, 1, Vol. 133,

Advanced Computing, Part 4, Springer-Verlag Berlin Heidelberg, pp: 348-357. (2011)

35. Vanathi, B., Uthariaraj, V.R.: Hybrid hierarchical context representation in a context aware

system. In Proc. of the 2nd International Conference on IT and Business Intelligence

(ITBI’10), IEEE and IEEE Computational Intelligence Society, Nagpur, (2010)

Siniša Nešković is a lecturer of information systems at the University of Belgrade,

Faculty of Organizational Sciences. He is the leader of the Laboratory for Information

Systems, a research group working on the development of software tools, frameworks

and components used for building complex information systems. His research interests

include information systems development, business process modeling and automation,

model driven development, software product line engineering, advanced software

architectures, information retrieval and integration on the Web.

Rade Matić is the head of Informatics and E-business Department at the Belgrade

Business School, a higher education institution for applied studies. He currently teaches

courses in Design of Information Systems and Management Information Systems at BSc

level. His research interests include information systems development, business process

modeling and analysis, context modeling, software product line engineering and

business intelligence.

Received: October 31, 2014; Accepted: April 17, 2015.

