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Abstract. In this paper an approach in realization of analogy-based reasoning in 

semantic networks is presented. New semantic model, called Active Semantic 

Model (ASM), was used. Core of the process is performed by ASM’s association 

(semantic relation) plexus upgrading procedure based on recognition and 

determining similarity between association plexuses. Determining similarity 

between association plexuses is performed by recognition of topological analogy 

between association plexuses. ASM responds to unpredicted input by upgrading 

new association plexus modeled on remainder of the context whose subset is 

recognized as topologically analogous association plexus. 
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1. Introduction 

Example: Angelina, a preschool girl, enters the office of school’s psychologist who 

assesses cognitive abilities of newcoming first class pupils. After welcoming Angelina, 

psychologist asks the girl to seat and look the paper laying on the table. Psychologist 

begins to explain the task to Angelina: Here you have two pictures in the first row, and 

your task is to choose the missing picture in the second row (Fig. 1). 

 

? 
 

Fig. 1. Angelina’s task 

Angelina’s mother, IT expert, also present in the office, intrigued by the task, tries to 

come up with computational procedure, method or approach that already exists, and 

which can be employed for solving Angelina’s task. She also contemplates about efforts 

needed to ―force‖ such system to bring proper conclusion without input pre-planning. 

First it’s necessary to describe the pictures in a way so that system would be able to 
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provide reasonable response. To ensure such a response, system should be prepared to 

interpret pictures and their spatial relations semantically, as well the task itself, i.e. to 

identify what it is expected to return. Finally, the system should be able to generate a 

kind of unique (previously never defined) and valuable response based on a very small 

portion of domain knowledge already modeled within it. Additionally, that system 

should not be custom-made for Raven’s progressive matrices solving. While mother 

was thinking about the system she would need, Angelina chose the correct picture. 

―That’s my girl!‖, she thought. 

Semantic interpretation of data represents one of the biggest challenges faced by 

modern information technologies. In fact, this problem is closely related to the ability of 

computer applications to attach certain meaning to data which is being processed. The 

motive for solving this problem lies in ever increasing need to enable software 

applications to provide meaningful answers when it is not possible to predict the input, 

and consequently the code by which a meaningful response is programmed. 

2. Related Work 

2.1. Issues with Reasoning and Learning in DL Based Ontologies 

The most exploited current model of knowledge representation in form of semantic 

network is ontology. Actually, ontology in IT and AI contexts usually refers to a kind of 

vocabulary of terms (concepts) and relations among the terms codified in a description 

logic (DL) formalism that should enable a computer application to interpret meaning of 

the terms from the vocabulary [1]. Aiming the ultimate objective to enable computer to 

draw meaningful response on unpredicted input, which is essentially related to its ability 

to interpret semantics of the input data, IT experts in last two decades were focusing 

mainly on development of DL-based ontologies that utilize first-principles reasoning for 

semantic interpretation. First-principles reasoning ensures logical deduction applying 

logical inference rules on axioms (mainly employing First-Order Logic – FOL) that are 

related to closed domain of richly axiomatized discourse [2]. In particular, almost all 

DL oriented reasoners are based on tableau-based decision algorithms or resolution-

based decision procedures [3], [4], [5]. Besides the core set of logical rules, these 

semantic models usually also provide a production rules dialect [6] which allows creator 

of vocabulary to define domain specific rules of inference to ensure correct entailments 

for the case of not logically derivable semantic interpretation. 

By insisting on richly axiomatized ontologies current semantic models are struggling 

to stay in domain of strongly structured knowledge which allows application of first-

principles reasoning approach. The remarkable effort has been carried out in last two 

decades to generate a large set of different ontologies that demonstrate undoubted power 

of DL and FOL. However, the most common real situations where computer-

autonomous semantic interpretation is highly required are related to data sets whose 

semantics is not consistently and precisely logically modeled. Besides, constructing 

richly axiomatized ontologies for real world knowledge intensive applications is a time 

consuming and difficult task [7], [8], which often results in incompleteness of ontology. 
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Due to lack of explicit specification of vocabulary terms intended meaning or 

insufficiently structured data semantics, it is hard for current semantic reasoners to 

provide relevant entailments [9], [10]. The same cause generates challenges related to 

ontology learning, assertions populating, ontology enrichment and evolution, as well as 

ontology matching and mapping [11], [12]. To extract ontological elements from an 

input and learn about new ontology elements or to enrich existing ontology from that 

input autonomously (by computer application), it is necessary for the set of input 

elements to be already formalized in a way that automated inference will yield the 

expected results [11], [13]. To match and align two different ontologies, even 

semantically very close, but created by different domain experts, first and inevitable 

step is identifying common concepts [14], [15], [16], [17], [18]. The key question is 

how to measure ―commonality‖, i.e. similarity between differently conceptualized and 

hence differently described concepts; even more, how to measure similarity between 

concepts of semantically very distant vocabularies (completely disjointed) [19]. Existing 

research in the domain of ontology alignment has developed several semi-automatic 

approaches for measuring concept similarity [14], [17], like lexical similarity between 

concepts, structural similarity of concepts in ontologies (similarity of 

ancestors/descendant, depth and length of path in the tree) and similarity of concept 

instances/annotations. Nevertheless, in most of the real word cases, ontology alignment 

process mainly relies on human interventions (i.e. similarity assessments) [14], [19]. 

After recognition of similarity between concepts there are two more activities to 

perform before engaging semantic reasoners to produce entailments autonomously. 

First, there is a need to formalize and/or harmonize semantics of concepts with DL to 

ensure alignment and secondly, one should identify mapping rules, which is very 

complex and nonautomated task [15]. Aforementioned activities (needed to learn, enrich 

and/or align onotologies codified in DL) can only be performed if domain experts 

collaborate with skilled ontology engineers familiar with the theory and practice of 

knowledge representation [11]. 

It seems that strongly structured knowledge approach within DL-founded ontologies 

is certainly powerful tool for deduction in the ―local field‖ of semantics, but at the same 

time it reduces capability to infer autonomously and flexibly. Actually, semantic 

reasoners designed to work with DL-founded ontologies showed themselves weak in 

making relevant entailments beyond the predefined and embedded logical formalism of 

deduction. The similar is also true for reasoning flexibility – ability to make a relevant, 

but quite different entailments about the same concept for semantically distant or 

different contexts (vocabularies) with a single set of logical inference rules and axioms 

on disposal. Finally, having analytical ability to autonomously dissolve a portion of 

knowledge about one concept or group of concepts from one context and apply it to 

quite different (semantically distant) concept or a group of concepts that are inherent to 

equally different context is something which appears not as strong side of richly 

axiomatized ontologies which rely on first-principles reasoning approach. 

Often emphasized, essential weakness of ontologies, as well as all semantic models, 

is reflected in the fact that an increase in level of detail of the meaning to be described, 

significantly increases complexity and time required to create the ontology [20]. 

Therefore, much more ontologies that do not require a high level of semantic detail 

were developed. 
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2.2. Why to develop new semantic model? 

In order to overcome obvious weaknesses of DL ontologies it becomes more attractive 

to explore whether the cognitive process of analogy making or analogical reasoning can 

serve as the basis for ontology learning and alignment  processes [21], [22], [23]. In 

addition, growing exploration within the field of DL ontologies similarity indicates that 

focus is moving to analogy-based identification of semantic correspondence between 

ontologies [14], [17], [24]. As Forbus et al. state in [2] ―analogy based reasoning is a 

method of last resort‖ for DL ontologies issues, ―something to use only when other 

forms of inference have failed‖. 

Familiarizing with research [25] on how humans derive knowledge from analogies 

between symbols, concepts, situations and events inspired us to try to create our own 

semantic model with better capacity to perform analogy based reasoning. We found that 

links structure in a semantic network needed to be changed slightly in order to 

determine and categorize similarities between concepts, situations and events more 

efficiently. 

However, before we get down to describe in-house developed semantic model 

featured by original structure of links, we need to give a short survey on Analogies and 

Analogy-Based Reasoning. 

2.3. Analogies 

Achieving autonomy, flexibility and analyticity of semantic interpretation is considered 

a major current goal of all artificial intelligence methods and models, including 

ontologies [1]. In pursuit for solution, interest for approach where semantic 

interpretation of data is based on analogies reappears [26]. Research in cognitive 

psychology often indicate that use of analogies represents the core of cognitive process, 

and may be considered as primary process of cognition and communication [27]. 

Traditional logic distinguishes three forms of reasoning: deductive, inductive, and 

analogy-based reasoning (ABR). Examples of heuristics most commonly used for 

solving problems are determination of partial goals and reliance on analogies [28]. In 

the latter case, known procedure, which proved to be successful in solving previous 

related (similar) problems is used to solve new problem. Precondition for success of this 

strategy is recognition of analogy between two problems and recalling the solution 

applied earlier. One of the reasons why sometimes it is difficult to recognize analogy 

between two problems is the fact that their elements are different, although relations are 

the same [25]. 

ABR is often used to characterize methods that solve new problems based on past 

cases from a different domain, while typical case-based reasoning (CBR) methods focus 

on indexing and matching strategies for single-domain cases [29]. In general, analogy 

involves several subtasks including retrieving from memory the source case most 

similar to the target problem, mapping (or aligning) the elements of target and the 

source, transferring knowledge from the source to the target, evaluating what was 

transferred in the context of the target, and storing the target in memory [30]. 

Three major types of case representation are feature vector cases, structured cases, 

and textual cases [31]. Feature vector approach represents a case as a vector of attribute-
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value pairs, while structured approach as clusters of relations between the kinds of 

elementary objects that comprise it [32]. 

Case representation and the way similarity is assessed during retrieval are strongly 

related to each other. In some applications of ABR, similarity of stored cases is assessed 

in terms of their surface features, which are parts of their description typically 

represented using attribute-value pairs. Various methods exist: k-nearest neighbor (k-

NN) based on Euclidean distance, mix neural networks [33], fuzzy logic [34], and 

genetic algorithms [35]. Structured cases often require knowledge intensive matching 

algorithms to assess structural similarity. Experiments confirmed that both surface and 

structural similarity assessment are necessary for sound retrieval [36], [37]. Structural 

features, however, have a greater impact than surface features on a problem solver’s 

ability to use an analogue once its relevance has been pointed out [37]. Retrieval based 

solely on similarity has limitations. That’s why similarity is increasingly being 

combined with other criteria to guide the retrieval process, such as adaptability of the 

retrieved case [38], [39]. 

ABR is considered the most flexible and analytical approach within the corpus of 

CBR systems [29], [40]. MARVIN [40] is interesting and very expressive example. It is 

a system for general knowledge representation in form of analogies, and 

graphical/tabular visualization and searching for analogies, i.e. analogy-based 

reasoning. What’s special about this example is that the system uses XML syntax for 

representing and visualizing analogies. Searching for analogies in this system is based 

on the so-called superficial similarity of analogies (full or partial match of node’s names 

in the structure). Additional structural search mechanism traces synonyms, hypernyms 

relations and other k-level generalizations in order to extend the set of potential 

analogies which could be used for reasoning. This approach of structural mapping, i.e. 

searching graphs of semantic or functional model is dominant in many other earlier or 

later realizations. Unfortunately, it doesn’t bring, nor demonstrate, full potential and 

advantage of ABR approach, but often discredits it as too limited and arbitrary. 

Research on analogy reasoning is concerned with mechanisms for identification and 

utilization of cross-domain analogies [41], [42]. The major focus has been on finding a 

way to transfer (or map) the solution of an identified analogue problem to the present 

problem. Analogical mapping has been studied in many theories of analogy, such as 

Proteus [30], AMBR [43], [44], LISA [45], SME [46], and ACME [47]. 

In order to recognize analogy between two problems, it is necessary to have insight 

into common elements of the solution which can be applied to new problem. This 

insight is actually contained in similarity and/or sameness of relations between these 

elements [25]. Realization of this claim is the main objective of Active Semantic Model 

(ASM) – to embed knowledge in semantic relations and their plexuses (not in the nodes 

of the semantic network), and also to try to recognize analogies by determining the 

similarity of semantic relations and their plexuses in order to interpret the meaning and 

draw conclusions. Structure of ASM [48], and approaches to semantic categorization of 

data [49], [50], and recognizing topological analogy in ASM semantic network were 

presented so far. This paper proposes to extend ASM for ABR. 

ABR brought by ASM allows us to overcome the need for: 1) pre-planned conditions 

which have to be fulfilled in order to trigger predefined response, i.e. inference, and 2) 

standardization of nomenclature. It provides system with ability to make creative 

reactions, and to ensure relevant answer with minimal investment in preparation. 
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3. Active Semantic Model 

ASM is a sort of semantic network model, developed in-house, aiming to capture and 

interpret semantics of design features related to manufacturability issues [48]. The most 

frequent representation of semantic network is graph notation consisting of nodes and 

links (or edges, arcs). Nodes usually represent concepts, objects or situations in a 

particular domain, while links usually represent the semantic relations between these 

concepts, objects or situations. More complex link structure is what distinguishes ASM 

from other semantic network models. Actually, decision to focus on link structure came 

from the thesis stating that the knowledge people have about things (visual 

representations, objects, situations, etc.) is contained in associations between concepts 

that abstractly represent those things [51]. Beside functional relation between concepts, 

ASM’s link express also its affiliation, accuracy, and significance for specific context, 

and for particular instructor (user). In this way semantic link provides chunk of 

knowledge which is subjective and context related. Furthermore, each semantic link 

bears information about direction and character of associating between concepts (that is, 

about the way in which semantic interpretation should be made). This feature of ASM’s 

link – to point out the pathway of inference – induced us to use the term association for 

the link instead of relation. Here, we will explain ASM in brief. 

3.1. Structure 

The structure of ASM is built just from associations (links of network). Each 

association is characterized by eleven parameters [49] among which two of them are 

names of concepts (cpti, cptj). Considering that these parameters can belong to more 

than one association, they represent junctions of associations, i.e. virtual nodes of 

network. The explicit knowledge related to concepts and their instances is also linked to 

these virtual nodes of ASM’s network via associations. On the other side of the 

association which connects concept of ASM network with a chunk of explicit 

knowledge about it is a pointer to a certain local computer or internet depository where 

the knowledge is stored. These pointers are named concept bodies, because they point 

out to some kind of knowledge embodiments of each instance of the concept. For 

example, concept Blue-Color can be embodied by one or plenty of specific values of 

color codes and procedure to generate this color on the computer screen in accordance 

to its code. Thus, one concept can have several concept bodies, i.e. its real represents. 

The parameter name of the concept in an association is used to designate human 

abstraction of different level of complexity, from ―Something‖ concept to very complex 

spatial and time and/or abstract contexts. The ―Something‖ concepts can be tangible 

(e.g. pencil) and intangible (e.g. geometrical shape, circle) objects, attributes (e.g. blue), 

activities (e.g. cause, use), or abstract ideas (e.g. number, below). The spatial and time 

contexts can be different situations and events. The abstract context can be e.g. 

differential equation. There can be only one concept with a given name, but there can be 

many associations belonging to different contexts associating it with other concepts. 

Beside two different names of concept, an association in ASM is defined by 

additional three sets of parameters: 
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Topological parameters: 

roles (ri, rj) of concepts within association denote what functional role each of these 

concepts have in their mutual association (e.g. Photo associates to Photo-Album as a 

part to assembly). 

type (t) denotes type of associating (e.g. affiliation in the aforementioned association 

between Photo and Photo-Album). Actually, roles and type of associating make a 

determinate triplet. For semantically unsymmetrical types of associations (e.g. 

affiliation) roles indicate the default orientation of association. 

direction (d) of associating (←, ↔, →) denotes whether both concepts linked by 

association associate to each other or just one of them associates to another and not vice 

versa (e.g. in the association between Triangle and Geometric-Shape, Triangle almost 

always associates to Geometric-Shape, but Geometric-Shape doesn’t associate 

necessarily to Triangle). It should be noted that direction is not a parameter which 

indicates the direction of deduction process (graph routing). 

character (c) of associating (+, -) denotes how both concepts in an association 

associate to each other (positive character denotes that concepts associate to each other 

affirmatively, like Ball and Oval – when we think about the Ball we think that it is Oval, 

while negative character denotes that concepts associate to each other, but negatively, 

like Ball and Cubical – Ball is something which is not Cubical). 

Weight parameters: 

accuracy (h) of an association for the given context (0; 0.25; 0.5; 0.75; 1) denotes 

how accurate are the values of all other parameters. 0 accuracy denotes that association 

(values of the other parameters) is untrue and 1 denotes that instructor (user) is 

convinced in absolute correctness of other parameters’ values of association (of course 

for the given context). Untrue associations are important because these associations 

indicate misapprehensions which are, sometime, very important for inference process. 

These associations indicate what segments of network should be ignore by inference 

engine. 

significance (s) of an association for the given context (0; 0.25; 0.5; 0.75; 1) denotes 

how significant this association is for semantic interpretation of related concepts in a 

given context. For example, in a context related to the Raven’s problem shown in Fig. 1 

the associations which can exist and are used to describe that Circle has no Corners are 

not as significant as the associations which are used to describe Circle spatial location 

with regard to other geometric shapes. This parameter of association can help ASM 

inference engine to categorize Circle from two pictures in the first row as similar to 

Triangle from the picture in the second row, even though the associations that are used 

to describe geometric features of Triangle (e.g. it has Corners and it is not Oval) are 

quite opposite to the associations which describe geometric features of Circle. 

Affiliation parameters: 

context id is a parameter which denotes to which context an association belongs, i.e. 

in regard to which context the values of association’s parameters are valid. This feature 

allows instructor (user) to describe and ASM’s inference engine to interpret the very 

same concept in semantically quite different way for different contexts. 

instructor id or user id is a parameter which denotes who has created the association 

(Fig. 2). Like association affiliation to context, the origin of an association with regard 

to its creator allows instructors (users) to describe and, later, AMS’s inference engine to 

interpret the semantics of the same concept in a different way. That is how ASM 

provides possibility to add subjectivity to semantics of a concept. After all, we should 
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never forget that values for aforementioned parameters are assigned based on the 

instructor’s (user’s) subjective assessment. 

Beside associations (links) as the basic structure of ASM’s network, the association 

plexuses have very important role in inference process that ASM carries out. Actually, 

association plexus (PLX) is a term used to denote a set of at least two associations 

connected by the mutual virtual node(s) (name(s) of concepts). In general, association 

plexus doesn’t need to have specific abstract meaning, neither instructor (user) needs to 

define it (like an association). However, perceiving the semantic network of ASM 

segregated not just by its basic elements – associations, but also by plexuses facilitates 

the identification of similarity or analogy of topology between different segments of the 

semantic network which drives analogy-based reasoning process in the core of inference 

engine of the ASM. Besides the association plexuses which are not created by instructor 

and may or do not have any abstract meaning, there is a possibility for instructor (user) 

to create (usually) more complex plexuses that serve to describe the semantics of 

complex concepts (like a concept that represents an activity, e.g. Cause), situations 

(time independent) or events (time dependent). These kind of plexuses is designated as 

contexts (CTX) just to emphasize the difference between plexuses with and without 

abstract meaning. Each context is defined by its name and its creator (instructor (user)) 

and is used to define affiliation of each association in ASM network, that is, its 

relevancy. General context is defined and built in ASM structure independently of the 

instructor (user), while other particular contexts are created by the user. All the 

associations from particular contexts are assigned to the general one, but usually with 

different parameters. 

 

Implant 

CAD-Model 
Free-Form 

Implant-Design context 

Implant-Extension 

Implant-Design-

Procedure 

 

{cpti=Implant,ri=sub-type,t=classifying, 

d=→,c=+,h=1,s=1,rj=type,cptj=CAD-Model} 

{cpti=Implant,ri=concept,t=attributive,d=→, 

c=+,h=0.75,s=0.75,rj=attribute,cptj=Free-Form} 

{cpti=Implant,ri=product,t=product-activity,d=↔,c=+, 

h=1,s=1,rj=activity,cptj=Implant-Design-Procedure} 
{cpti=Implant,ri=assembly,t=affiliation, 

d=→,c=+,h=1,s=1,rj=part,cptj=Implant-Extension} 

 

Fig. 2. ASM association structure: Several associations with specified parameters belonging to a 

context 

ASM structure is not domain-specific and can be used for knowledge representation 

in diverse fields. Knowledge from specific domain should be represented through 

context(s), while associations as semantic relations between contexts allow knowledge 

from one context to be applicable to others. 

4. Topologically Analogous Association Plexuses 

The most common and probably the most significant case of semantic content similarity 

between different association plexuses or contexts is called topological analogy 

(similarity) (Fig. 3). Topologically analogous association plexuses or contexts have the 
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same type of topology (combination of appropriate values of topological parameters of 

associations) and the same structure. Associations belonging to two different association 

plexuses or contexts, with similar values of weight parameters and the same values of 

topological parameters are called topologically correspondent associations (TCA) 

(associations represented by the same type of line in Fig. 3). Concepts belonging to 

TCA-s of two different association plexuses or contexts, which have the same role in 

these TCA-s are called topologically correspondent concepts (TCC) (concepts 

represented by the same background pattern in Fig. 3). Two types of topologically 

analogous association plexuses or contexts are distinguished: semantically distant 

(association plexuses or contexts do not share concepts, nor are their concepts similar, 

synonyms or connected over series of up to four associations) and semantically close 

(association plexuses or contexts share one or more concepts, or have concepts which 

are similar, synonyms or connected over series of up to four associations). 

 

CPT1 

CPT3 

CPT2 

CPT4 

CPT5 

R1 R3 

R2 

R6 

R1 

R3 

R2 

R6 

R5 

R4 

CPT31 

CPT33 

CPT32 

CPT34 

CPT35 

R1 

R3 

R2 

R6 

R1 

R3 

R2 

R6 

R5 

R4 

CPT21 

CPT22 

CPT25 

CPT57 

CPT54 

CPT51 

PLXX 

PLXN 

CTXX 
CTXN  

Fig. 3. Association plexuses PLXX and PLXN are topologically analogous 

4.1. Analogy and Similarities in ASM (Multi-level recognition of similarity) 

In the core of its process of data semantics interpretation ASM employs specially 

developed algorithms for recognizing topological similarity, i.e. analogy between 

different parts of the semantic network. Analogy of semantics that can be recognized 

between semantically (more or less) different concepts is essentially related to the 

similarity between topology of subgraphs built by links (associations) of these concepts 

in the semantic network. Depending on scope of focus in the process of topology 

similarity recognizing, ASM uses two main algorithms for recognizing topological 

similarity: 

1. Contiguous, algorithm for determination of similarity between associations of two 

concepts that are not directly connected, but over one layer of intermediate concepts 

[50], and 



988           Milos Stojkovic et al. 

 

2. Wide, algorithm for determination of similarity between plexuses (subgraphs) of 

associations (Determining the topological analogy between association plexuses – 

aimed for ―semantically distant‖ concepts). 

Actually, both algorithms are designed to determine degree and class of semantic 

similarity, i.e. semantic correspondence between two concepts and both of them are 

based on determination of similarity of topological parameters of associations. Weight 

parameters are used to refine associations that have to be considered in the similarity 

determination process by their semantic relevance regarding particular context, 

instructor/user and his motivation. Contiguous algorithm is simpler and more explicit 

(clearly defined) in similarity determination, but its application is limited to 

semantically close concepts. Wide algorithm is aimed for determination of semantic 

correspondence between two semantically distant concepts and for that it performs 

determination of similarity between topology of different plexuses (subgraphs) of 

associations. 

To create inference autonomously, ASM employs algorithm for association plexus 

upgrading which is executed in three ―attempts‖ (see section 5). Actually, the paper is 

mainly focused on describing this algorithm.  

ASM encompasses additional two self-learning algorithms: 1) algorithms for creation 

of heuristics, and 2) algorithm for knowledge ―crystallization‖ (weakly structured 

knowledge is crystallized into strongly structured knowledge, i.e. logic formalisms). 

Both algorithms are aimed to provide ASM with capability to learn, i.e. to formalize 

knowledge gained from experience with analogy-based reasoning and human 

interventions. In relation to learning (reasoning in acquiring new knowledge) 

capabilities of ASM, it should be mentioned that ASM is designed to perform data 

semantic interpretation in regard to user motivation context as a reference framework. 

Fulfillment of  user actual motivation appears as the most important criteria for learning 

analogies from experience. However, describing these algorithms is out of the scope of 

this paper. 

In ASM there are also CASE procedures (a sort of simplified set of predicate logic 

rules) that can be regarded as generic logic formalism that will be employed if the case 

of semantic graph is recognized to be suitable for triggering predefined logic rule. This 

set of rules can change (i.e. in case learning process) enabling ASM to learn and 

improve its reasoning performance over time. If case of ―unknown‖ association plexus 

(a sort of an ontology portion) is recognized as very similar or same as one from 

Experience Set, then it is more efficient to apply strict logic formalism which is very 

likely to be truthful for that kind of association  plexus topology. 

5. Association Plexus Upgrading Procedure 

Every association plexus can be observed as a part of the semantic network connected to 

other parts of the semantic network by associations involving other concepts. In general, 

it is very difficult to distinguish where one association plexus ―ends‖, and where others 

―begin‖. User introduces new association plexus (which represents new or unknown 

situation) to ASM, usually by creating associations between concepts of which some or 

all are known to ASM, i.e. were added to ASM semantic network earlier (Fig. 4). 
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ASM responds to input by recognizing topological analogy between new and known 

association plexuses (from the narrowed semantic network space) and upgrading new 

association plexus modeled on remainder of the context (whose subset is recognized as 

topologically analogous association plexus). The response is being formulated through 

creating new associations between concepts from new association plexus and known 

concepts in the network. 

Association plexus upgrading procedure is based on similarity between new and 

known association plexuses. New association plexus concepts will be connected 

modeled on their TCC-s in similar association plexuses. 

 

CPT1 

CPT3 

CPT2 

ASM space 

АX
1,3 

АX
1,2 PLXX 

Associations between 

known concept CPT2 

and other concepts 

from the ASM 

semantic network  

Fig. 4. Introducing new association plexus PLXX to ASM. Concept CPT2 is known to ASM 

In the case when new association plexus PLXX is topologically analogous to certain 

known association plexus PLXN (the more TCA-s they have, the better), regardless of 

whether they are semantically close or semantically distant, ASM will use the logic of 

topologically analogous association plexus upgrading (element   denotes topological 

correspondence (for associations and concepts) or topological analogy (for contexts and 

association plexuses); element   denotes association between concepts): 

If 

 
       

 

, ,
N NX XPLX PLXPLX PLX

i j k l i k

X N

A A CPT CPT

PLX PLX





 


 (1) 

where , ,, ,N NX X

i j k l

PLX PLXPLX PLX

i j CPT CPT k l CPT CPT N NA A A A PLX CTX    , 

then it is possible that there exists context CTXX, whose subset is new association plexus 

PLXX, which is topologically analogous to known context CTXN: 

 X X X X NCTX CTX PLX CTX CTX      (2) 

Therefore, new association plexus PLXX should be upgraded to context CTXX, 

modeled on the remainder of the known context CTXN (Fig. 5). 
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Fig. 5. Topologically analogous association plexus upgrading logic 

Logic of topologically analogous association plexus upgrading is carried out through 

three attempts (sub-procedures). First and second attempt have several iterations. 

Each iteration for every attempt is followed by iteration of the process of determining 

semantic similarity of concepts, which can also result in the creation of association(s) 

between concepts. This procedure is presented in detail in [50]. 

5.1. First Attempt 

The first attempt is carried out through several iterations. The procedure for each 

iteration is identical. First attempt ends in situation when ASM is not able to add new 

association to known association plexus. 

The same example will be used independently to illustrate first attempt procedure for 

semantically distant and semantically close TCC-s. 

Semantically Distant TCC-s. ASM first recognizes semantically distant TCC-s of new 

and known association plexus: 
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If such concepts are found, ASM searches for all associations in the semantic 

network involving concepts from new association plexus, which are topologically 

correspondent to associations from known association plexus involving their TCC-s, 

and adds these associations if TCC-s have the same roles in them (Fig. 6): 
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where , ,,X X M M

i k i k
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i k CPT CPT i k CPT CPTA A A A   . 
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Fig. 6. Association plexus upgrading in first attempt (semantically distant TCC-s). TCC-s (CPT1, 

CPT11) and (CPT2, CPT12) are semantically distant 

If several associations, involving concept CPT1 and topologically correspondent to 

association between concepts CPT11 and CPT14, are found in the semantic network, 

ASM analyzes if second concept in these associations is involved in the same or similar 

associations as concept CPT14 (e.g. concept CPT4 is involved in association with 

concept CPT15 or similar concept, which is topologically correspondent to association 

between concepts CPT14 and CPT15). ASM finally adds only associations that meet this 

condition. 

In many situations during the upgrading procedure in first and second attempt, 

structure of the known context CTXN has to be taken into account. One example is the 

addition of the association between concepts CPT2 and CPT4. In this situation ASM 

adds association between concept CPT2 and ―existing‖ concept CPT4 (it is assumed that 

association between concepts CPT1 and CPT4 was previously added) which is 

topologically correspondent to association between concepts CPT12 and CPT14. 
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Semantically Close TCC-s. Recognition of semantically distant TCC-s is followed by 

the recognition of semantically close TCC-s of new and known association plexus. First 

ASM recognizes TCC-s of new and known association plexus (or contexts of which 

they are a subset) which are identical (denoted by  ) or are synonyms (fifth class of 

similarity (denoted by 5.  ): absolute value of the difference of accuracy and 

significance for all association pairs connecting these concepts have to be less than 0.25; 

all association pairs connecting these concepts (through the same connectional 

concepts) have to have the same type of associating (and the same corresponding 

concept roles) and the same characters and directions of associating) or similar (fourth 

class of similarity (denoted by 4.  ): absolute value of the difference of accuracy and 

significance for all association pairs connecting these concepts have to be less than 0.5; 

all association pairs connecting these concepts have to have the same type of associating 

(and the same corresponding concept roles) and the same characters and directions of 

associating) in general context (semantically close TCC-s): 

    i i X j j NCPT CPT PLX CPT CPT PLX       (5) 

such that: 
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Fig. 7. Association plexus upgrading in first attempt (semantically close TCC-s). TCC-s (concept 

CPT12) of new and known association plexus are identical 

If such concepts are found, ASM adds associations of known association plexus 

involving found TCC-s, except that the concept from known association plexus will be 

replaced by its TCC in new association plexus (Fig. 7): 
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where 
1 1, 1 , 1, N NX X

i j j j

CTX CTXCTX CTX

i j CPT CPT j j CPT CPTA A A A
      . 

5.2. Second Attempt 

The second attempt is carried out in several iterations. The procedure for each iteration 

is identical. Second attempt ends in situation when ASM is not able to add new 

association to known association plexus. Complete first attempt is carried out between 

second attempt iterations. The second attempt will continue from the situation 

illustrated in Fig. 6 (first attempt for semantically distant TCC-s). 

ASM searches for concepts in the semantic network which are similar to concepts 

from new association plexus in specific context, and are involved in associations which 

are topologically correspondent to associations from known association plexus. It is 

necessary to find the concepts in the semantic network which are similar to concepts 

from new association plexus in at least third class of similarity (denoted by 3.  ; 

absolute value of the difference of accuracy and significance for all association pairs 

connecting these concepts have to be less than 0.5; all association pairs connecting these 

concepts have to have the same type of associating (and the same corresponding 

concept roles) and the same characters of associating): 
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If such concepts are found, ASM adds associations involving them, which are 

topologically correspondent to associations from known association plexus, except that 

found concept will be replaced by its similar concept in new association plexus (Fig. 8): 
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where 
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Fig. 8. Association plexus upgrading in second attempt. Concepts CPT1 and CPT51 are similar in 

context CTXK, while concepts CPT4 and CPT63 are similar in context CTXL 

5.3. Third Attempt 

Third attempt does not have iterations. After the third attempt is carried out, the user, 

depending on whether he is satisfied with the results, decides whether to complete the 

upgrading procedure or to carry it out from the beginning (from the first attempt). 

The goal of the third attempt is to find candidate concepts in the semantic network 

which should be connected with the remaining concepts (concept CPT3) from new 

association plexus. Candidate concepts and their corresponding concepts (concept 

CPT16) from known association plexus are usually semantically distant. Focus of the 

third attempt is the similarity between associations involving candidate concepts and 

associations involving their corresponding concepts from known association plexus.  

In the third attempt ASM recognizes concepts (concept CPT16) involved in 

associations from context whose subset is known association plexus, which do not have 

TCC-s in the context whose subset is new association plexus. After that ASM identifies 

all association plexuses with associations involving recognized concepts, as well as 

their topologically analogous association plexuses. In the last step ASM identifies TCC-

s of the recognized concepts which are involved in the same or similar set of TCA-s in 

recognized topologically analogous association plexuses (Fig. 9). 
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Fig. 9. Recognizing candidate concept(s) in the semantic network which should be connected 

with the concept CPT3. Concepts CPT6 and CPT16 are TCC-s in most cases of identified 

topologically analogous association plexuses 
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Fig. 10. Association plexus upgrading in third attempt 

If such TCC-s are found ASM adds associations between these concepts (concept 

CPT6) and corresponding concepts (concept CPT3) from new association plexus which 

will have the same parameters as associations from known association plexus 

recognized at the beginning of the attempt (association between concepts CPT13 and 

CPT16) (Fig. 10). 
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6. Case 

Association plexus upgrading procedure is demonstrated through solving one Raven’s 

Progressive Matrix which was Angelina’s task (Fig. 1). 

Raven’s Progressive Matrices (RPM) is a multiple choice test of abstract reasoning 

introduced by dr John C. Raven in 1936. They are often used as a test of so-called 

general intelligence [52], which was also one of Raven’s motives when constructing the 

test. Each RPM problem is presented as a 2x2 or 3x3 matrix of pictures following a 

pattern. Bottom right position in each matrix is left blank and solver’s task is to choose 

the missing picture for that cell from provided list with eight possible solutions. The 

first and most common set of RPM are the Standard Progressive Matrices (SPM), 

consisting of 60 matrices, developed in 1936 [53] and published in 1938. 

Why Raven’s Progressive Matrices?: The RPM is a type of problem which is 

familiar to almost everyone, since most people faced an IQ test and it is very clear what 

the task is. Describing data semantic interpretation process is already too complex task 

by itself and would be even more difficult to understand if we try to introduce it through 

ASM cognitive process applied upon some domain specific problem (e.g. choosing the 

most suitable CAD procedure for reverse modeling of a free-form shape like sternum 

i.e. chest bone, which actually was our real task to solve). On the other side, introducing 

new research product (such as ASM) usually needs more space and details, which is 

always an issue. 

In addition, RPM can be very useful and simple example for comparing different 

approaches in describing and interpreting semantics of figures presented in RPM. 

Considering the universality, RPM seems as very appropriate domain to compare 

learning capabilities of different not domain-specific knowledge representation models. 

Finally, within this kind of domain different reasoning engines can be compared by how 

many elementary activities in preparation i.e. customization of reasoner an instructor 

should do to make it capable for relevant entailments. 

As of today the cognitive and computational characteristics of RPM aren’t yet well 

understood [54] and no general algorithm for solving them in their entirety has been 

developed. 

In our approach the missing picture (solution) is not chosen from the provided 

alternatives, but rather built (generated), making the task much harder than in 

conventional RPM solving. 

Two pictures in the first row of the matrix presented in Fig. 1 are semantically 

described in the context CTX1 (Fig. 11). 

One picture in the second row of the matrix presented in Fig. 1 is semantically 

described in the context CTX2 (Fig. 12). 
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Fig. 11. Semantic description of the two pictures (―Figure 1‖ (left) and ―Figure 2‖ (right)) in the 

first row of the matrix. In first picture we have empty triangle which comprises filled circle, while 

filled circle occupies empty triangle’s lower right corner. In second we have empty triangle which 

comprises empty circle, while empty circle occupies empty triangle’s lower left corner 
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Fig. 12. Semantic description of the picture (―Figure 3‖) in the second row of the matrix. ―Figure 

4‖ will eventually be the missing picture (solution) 
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General context contains, among other things, knowledge about the geometric shapes 

from the pictures of the matrix (Fig. 13). 
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Fig. 13. Knowledge about the geometric shapes from the pictures of the matrix 

Association plexuses representing knowledge about the picture in the second row of 

the matrix and the first picture in the first row of the matrix are topologically analogous 

and semantically close (Fig. 14). TCA of these two association plexuses are represented 

by the same type of line, while TCC are represented by the same background pattern. 

ASM tries to upgrade new association plexus (representing knowledge about one 

picture in the second row of the matrix) through several iterations. In the first iteration 

ASM recognizes semantically distant TCC-s of two association plexuses: 1) ―Empty-

Rectangle‖ and ―Empty-Triangle‖, and 2) ―Triangle‖ and ―Circle‖. ASM searches for 

associations in the semantic network involving concept ―Empty-Rectangle‖ which are 

topologically correspondent to association between concepts ―Empty-Triangle‖ and 

―Empty-Triangle-Lower-Left-Corner‖. If several of them are found (e.g. in General 

context), ASM selects the one whose second concept is involved in the same or similar 

associations as concept ―Empty-Triangle-Lower-Left-Corner‖ (Fig. 15 up). The same 

approach is used (applied) for concept ―Triangle‖ (Fig. 15 up). The next step is 

upgrading of new association plexus through creating new associations: 1) between 

concepts ―Empty-Rectangle‖ and ―Empty-Rectangle-Lower-Left-Corner‖, and 2) 

between concepts ―Triangle‖ and ―Empty-Triangle‖ (Fig. 15 down). 
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Fig. 14. Recognized topologically analogous and semantically close association plexuses – 

Subsets of CTX1 and CTX2 contexts. TCA are represented by the same type of line, while TCC are 

represented by the same background pattern. Associations from the context CTX1 which don’t 

belong to recognized topologically analogous association plexus are grayed out 
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Fig. 15. First iteration of upgrading new association plexus – Creation of new associations: 1) 

between concepts ―Empty-Rectangle‖ and ―Empty-Rectangle-Lower-Left-Corner‖, and 2) 

between concepts ―Triangle‖ and ―Empty-Triangle‖ (down). Explanation for choosing the 

appropriate associations (up) 

In second iteration ASM recognizes semantically close TCC-s of two association 

plexuses (concepts ―Lower‖, ―Empty‖, ―Occupy‖, and ―Comprise‖). Instead of adding 

associations of context CTX1 involving found semantically close TCC-s (like 
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association between concepts ―Lower‖ and ―Empty-Triangle-Lower-Left-Corner‖), 

ASM analyzes the structure of context CTX1, and creates appropriate associations 

between existing concepts (association between concepts ―Lower‖ and ―Empty-

Rectangle-Lower-Left-Corner‖) (Fig. 16 up). The same approach is used (applied) for 

other recognized semantically close TCC-s. ASM upgrades new association plexus 

through creating five new associations (Fig. 16 down). 
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Fig. 16. Second attempt of upgrading new association plexus – Creation of five new associations 

(down). Decisions are made based on the analysis of the structure of context CTX1 (up) 

In third iteration ASM recognizes semantically distant TCC-s of two association 

plexuses: 1) ―Empty-Rectangle-Lower-Left-Corner‖ and ―Empty-Triangle-Lower-Left-
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Corner‖, 2) ―Empty-Rectangle‖ and ―Empty-Triangle‖, and 3) ―Empty-Triangle‖ and 

―Empty-Circle‖. Association between concepts ―Empty-Rectangle-Lower-Left-Corner‖ 

and ―Left‖ was found in General context, and is topologically correspondent to 

association between concepts ―Empty-Triangle-Lower-Left-Corner‖ and ―Left‖. As for 

the remaining two TCC-s ASM analyzes the structure of context CTX1, and creates two 

appropriate associations between existing concepts in context CTX2. ASM finally 

upgrades new association plexus through creating three new associations (Fig. 17). 
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Fig. 17. New association plexus is finally upgraded through creating three new associations 

Experimental evaluation of upgrading procedure was done for the following cases: 

product quality assessment in the early stages of product design [55]; automation of 

choosing and composing manufacturing process for free-form design parts [56]; 

exception detection in business process management systems [57]. Presented approach 

is also being evaluated in the area of digital reconstruction of free-form objects. 

7. Implementation and Evaluation 

AcSeMod web application, implementing ASM structure and accompanying cognitive 

data processing algorithms, has been developed for testing purposes and dissemination. 

The web application was developed using Java programming language. Apache Tomcat 

v6 was used as application server. Associations and other elements of the ASM 
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structure are stored using MySQL Community Server v5 relational database 

management system. Presented association plexus upgrading procedure is one of the 

cognitive data processing algorithms, and is implemented on database level through 

stored procedures and views. 

Performance of the association plexus upgrading procedure was assessed on desktop 

computer with Windows 7 Enterprise operating system and the following hardware 

specifications: Intel Core i5 quad-core processor with 3.0 GHz clock speed and 6 MB of 

cache memory; 8 GB DDR3 RAM memory; hard disk with 1 TB capacity and 32 MB 

of cache memory. As for the software specifications, MySQL Community Server 

v5.5.27 relational database management system, Apache Tomcat v6.0.37 application 

server, and Google Chrome v34.0.1847.131 m web browser were used. Semantic 

network contained seven contexts with 98 associations. All three iterations were 

finished in three or less seconds. 

8. Conclusion 

As it is shown, ASM brings original approach in realization of ABR in semantic 

network. The core of the ABR process and semantic interpretation of data is performed 

by ASM’s association plexus upgrading procedure which is based on recognition and 

determining the similarity of association plexuses. Determining the similarity of 

association plexuses is performed by the recognition of topological analogy between 

association plexuses. Relaying on this approach ASM responds to an unpredicted input, 

which is defined through input association plexuses, by upgrading that association 

plexus modeled on remainder of the context whose subset is recognized as topologically 

analogous association plexus. ABR process designed in this way enables autonomous, 

flexible and analytic semantic interpretation of data described in the semantic network. 

Limitations: First users involved in testing or incorporating knowledge can be 

discouraged by difficulty to understand ASM operating mode. The degree of 

meaningfulness of ASM responses depends to a large extent on the way in which user 

described the request for semantic interpretation. Request description is currently the 

biggest functional problem of ASM. Of course, before describing request some 

knowledge should be incorporated in ASM. Testing showed that for some successful, 

meaningful conclusions ASM needed only small portions of knowledge in the network. 

This can be considered as advantage (like with the case presented in this paper). 

Another weakness of ASM is the imprecision (inaccuracy) of the responses. This is 

also the problem of all approaches which base semantic interpretation of data on 

analogies. Related to this problem is also the problem of ―imaginative‖ period of work 

in ASM. In situations when there is little knowledge incorporated in the network, ASM 

responses can be characterized by ―imagination‖, and ASM can relate concepts that 

can’t be related. 

Since responses of ASM are based on knowledge previously incorporated in the 

network, there is a risk of indoctrination. Incorrect indoctrination of ASM, leading to 

creation (generation) of incorrect conclusions, can appear when multiple users are 

incorporating their knowledge about the same domain. In this case there is a risk of 

making semantic content inconsistent (if their interpretations are extremely 

inconsistent). 
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Future work on ASM could include testing and adjustment of data structure 

(semantic network) and set of algorithms for processing of data. Development of 

intuitive interface, which will enable other software applications from various fields to 

connect with ASM could be second direction of ASM development. As for the 

enhancement of ASM functionality there is a need for developing structural elements 

for incorporation and semantic categorization of events, i.e. contexts which string one 

after another in the time sequence of discrete time instants. 

The ability to recognize analogy between semantically very distant situations is 

considered as one of the essential characteristics of creativity. Creative conclusions 

usually start by recognizing similarity between apparently semantically disconnected 

elements and arise by creating new semantic relations between these elements or ideas. 

According to another stand [25], creative conclusions arise by creating new context-

suitable semantic relations between elements or ideas which are already connected by 

some ―old‖ semantic relations, which are not applicable for the actual context. In ASM 

topologically correspondent associations from completely semantically distant contexts 

can be used for drawing conclusions. In this way knowledge from one context can be 

applied in situations which belong to other completely different contexts enabling ASM 

to demonstrate creativity. Associations between the same concepts, belonging to 

different contexts (and having different parameters), participate in the decision making 

process in a completely different way, depending on the context they belong to, which 

makes ASM more flexible and productive in capturing and interpreting semantics of 

data compared to existing semantic models [49]. 

One can see ASM as a kind of layer above the DL ontologies layer (strongly 

structured knowledge, i.e. richly axiomatized discourse) which helps semantic 

interpretation. 
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