
Computer Science and Information Systems 15(3):733–750 https://doi.org/10.2298/CSIS180115032N

On the Use of Self-? Island-based Evolutionary
Computation Methods on Complex Environments?

Rafael Nogueras and Carlos Cotta�

ETSI Informática, Campus de Teatinos,
Universidad de Málaga, 29071 Málaga, Spain

ccottap@lcc.uma.es

Abstract. We consider the use of island-based evolutionary algorithms (EAs) on
fault-prone computational settings. More precisely, we consider scenarios plagued
with correlated node failures. To this end, we use the sandpile model in order to
induce such complex, correlated failures in the system. Several EA variants fea-
turing self-adaptive capabilities aimed to alleviate the impact of node failures are
considered, and their performance is studied in both correlated and non-correlated
scenarios for increasingly large volatility rates. Simple island-based EAs are shown
to have a significant performance degradation in the correlated scenario with re-
spect to its uncorrelated counterpart. Resilience is however much improved via the
use of self-? properties (self-scaling and self-healing), which leads to a more gen-
tle degradation profile. The inclusion of self-generation also contributes to boost
performance, leading to negligible degradation in the scenarios considered.

Keywords: evolutionary algorithms, memetic algorithms, self-? properties, ephemeral
computing, sandpile model.

1. Introduction

The use of parallel environments is of paramount interest for tackling intensive compu-
tational tasks. This turns out to be one of the fundamental advantages of metaheuristics,
and more specifically of its population-based variants, given their amenability for being
implemented in parallel and distributed environments [2]. In particular, evolutionary al-
gorithms (EAs) [14] have a long success story in this kind of environments, dating back to
the 1980s [19,21,22]. In this sense, there has been during the last years an important focus
on the use of EAs in emergent computational scenarios that depart from classical dedi-
cated networks so common in the past. Among these we can cite cloud computing [35],
P2P networks [37,60], or volunteer computing [9,51], just to name a few. The dynamic
nature of the underlying computational substrate is one of the most distinguished features
of some of these new scenarios –consider for example a P2P network in which nodes
may enter or leave the system subject to some uncontrollable dynamics caused by user
interventions, network disruptions, eventual crashes, etc. The term churn is used to denote
this phenomenon [54]. Under some circumstances, a potential solution to this issue might
be to hide these computational fluctuations under an intermediate layer, thus providing a
virtual stable environment to algorithms running on it. Nonetheless, this can constitute a
formidable challenge, mainly in situations in which the underlying substrate is composed

? This is an extended version of [49].



734 R. Nogueras and C. Cotta

of nodes with low computing power just providing brief, ephemeral bursts of computa-
tion (think of, e.g., a large collection of low-end networked devices –cell phones, smart
wearables, etc.– contributing their idle time). Making an effective use of such highly-
volatile resources is the key idea that underlies the notion of Ephemeral Computing (Eph-
C), which has been recently defined as the use and exploitation of computing resources
whose availability is ephemeral (i.e., transient and short-lived) to carry out complex com-
putational tasks [10].

In order to approach Eph-C, algorithms can be made fully aware of the complex dy-
namic nature of the underlying computational environment and adapted to work natively
on these conditions. In this sense, EAs can fit very well to this scenario. To begin with,
they are intrinsically resilient at a fine-grained scale (this has been shown in master-slave
models, where a reliable node runs the central logic of the algorithm and individual op-
erations –such as fitness calculations or applications of reproductive operators– are dis-
tributed on fault-prone nodes [28,29,30,31]). The situation is however somewhat different
at a coarse grain level. Consider, for example, the so-called island model of evolutionary
algorithms [55], whereby multiple populations evolve in parallel (be it just as an algo-
rithmic construct or as truly physically-distributed processes) and occasionally exchange
information (leading to better solutions as well as to a great reduction of the computa-
tional cost necessary to achieve these [1]). As it is well known, an unstable computational
environment such as the one described can lead to the loss of the current best solution [23]
and will also negatively impact genetic diversity and the progress of the search process.
In order to address these problems effectively, several strategies have been proposed in
the past, such as redundancy [15] or epidemic algorithms [16] in the case of fine-grained
models, and checkpointing [34,45] in the case of coarse-grained models, to name just a
few.

Although checkpointing (that is, saving periodic snapshots of the state of the volatile
nodes), seems to be a very sensible option in advance, it is important to consider that in
order for it to work properly, some type of access to external stable storage is required.
The main drawback of this is that it can contribute a significant overhead, mainly when
the frequency of these snapshots is required to be high, e.g., due to a high failure rate
in the nodes [43], with the subsequent performance degradation. A much more attractive
option is to provide the algorithms with (self-)adaptive strategies so that they can react
autonomously to changes in the environment, adjusting their behavior or functioning ac-
cordingly. Such strategies are often captured under the general umbrella term of self-?
properties [4,7], that encompasses all those different mechanisms through which a system
can self-manage any aspect of its own functioning. In this particular context we are dis-
cussing, these strategies should preferably have a decentralized nature since centralized
control strategies are less likely to achieve a consistent image of the state of the com-
putational landscape at a given time, and therefore, the decisions that arise from them
would lag the changing conditions of the latter, cf. [10]. Again, this fits well to the in-
trinsically decentralized nature of island-based models and with the amenability of EAs
for self-adaptation [13,24]. Indeed, this capability has been prominently featured by these
techniques since the initial developments of the paradigm. In particular, it is currently
central in the area of memetic computing [50] which can be described as the study of
complex and dynamic computing structures composed of interacting modules (memes)
whose evolution dynamics is inspired by the diffusion of ideas [39]. This definition tries



Using Self-? Island EAs on Complex Environments 735

to bridge the notion of memetic algorithms [40] –understood as optimization algorithms
that combine local and global search strategies (often using an evolutionary search en-
gine for the latter purpose) and orchestrate their interplay in a synergistic way– with some
specific self-? properties such as self-organization and self-generation [27].

Recent work has precisely studied the use of self-? properties such as self-scaling [46]
and self-healing [47] in this context, providing some evidence on the contribution of these
techniques to the robustness of the algorithm when run on unstable computational envi-
ronments. Quite interestingly, these previous studies have however only considered simple
network models in which the dynamics of each node is independent of the rest of the net-
work, that is, the availability of a computing node does not depend on the availability of
other nodes. A more general situation would encompass complex correlated availability
patterns, that is, situations in which the dynamics of each node might be affected by the
dynamics of other nodes, see e.g., [25]. Overall, the presence of correlated failures puts
to test the robustness and resilience of the EA, and hence studying it can provide a wider
perspective on the usefulness of self-? techniques to cope with computational instability.

In this work, our initial study carried out with EAs in [49] is extended to island-based
multimemetic algorithms (MMAs). MMAs [26] are an extension of memetic algorithms
in which computational representations of problem solving strategies (neighborhood def-
initions for a local search operator in this case) are explicitly stored and evolved as a part
of solutions, very much in line with the concept of memetic computing anticipated above.
By deploying these techniques in a scenario as described different self-? properties (self-
generation, self-scaling and self-healing) are layered and put to test in this demanding
context. More precisely, we consider their deployment on a simulated computational en-
vironment that allows experimenting with different churn rates and, therefore, exploring
their limits, see Sect. 2.1. We relied on previous work [42,44,46] to address the different
self-? properties considered, as described in Sect. 2.2. We present the results of a broad
empirical evaluation of the strategies considered in Sect. 3. We close with conclusions
and an outline of future work in Sect. 4.

2. Methodology

We consider an island-based EA running on a simulated unstable environment. Each is-
land runs on a computational node of the system, whose availability fluctuates along time.
When a computational node goes down, its contents are lost. Similarly, when a computa-
tional node is reactivated, the island running on it must be created anew in some way. In
the following subsections we shall describe in more detail the model of the computational
scenario and the mechanisms used by the EA to cope with instability.

2.1. Network Model

Let us consider a network composed on nι nodes interconnected following a certain topol-
ogy. More precisely, we consider a regular toroidal lattice with von Neumann connectiv-
ity (virtual topology used for the purposes of migration in the island model) overlaid on
a scale-free network (underlying topology for the purposes of failure correlation) as it is
often the case in P2P networks, e.g., [33] – see Fig. 1. In the latter, node degrees are dis-
tributed following a power-law (i.e., the fraction p(d) of nodes with d neighbors goes as



736 R. Nogueras and C. Cotta

island topology

underlying network

Fig. 1. Depiction of the network model: a toroidal von Neumann 2D grid (wrap-around
links not shown to avoid clutter) is overlaid on an underlying scale-free network.

p(d) ∼ d−γ for some constant parameter γ) and hence there will be a few hubs with large
connectivity and increasingly more nodes with a smaller number of neighbors. To gener-
ate this kind of networks we use the Barabási-Albert model [3], whereby the network is
grown from a clique of m + 1 nodes by adding a node at a time, connecting it to m of
the nodes previously added (selected with probability proportional to their degree – the
so-called, preferential attachment mechanism [6]) where m is a parameter of the model.

As stated before, these nodes are volatile, and may abandon the system and re-enter
it at a later time, eventually repeating the process over and over again. To model this
instability we consider two scenarios: (i) independent or non-correlated failures and (ii)
correlated failures. The first one is the simplest model. Therein, the dynamics of each
node is independent of other nodes. Each of them can switch from active to inactive or
vice versa independently of other nodes with some probability that only depends on the
time it has been in its current state. More precisely, let p(t) be the probability of remaining
in the same state after time t. Following previous work, as well as the commonly observed
behavior of e.g., P2P systems [54], p(t) follows a Weibull distribution:

p(t) = exp (−(t/β)η) (1)

This distribution is controlled by two parameters β and η. The first one is the scale pa-
rameter and captures the spread of the distribution. The larger this parameter, the less
frequent failure events are. The second one is the shape parameter and captures the effect
that time has on failure events: for η > 1 (resp. η < 1), the longer the time elapsed, the
more (resp. less) likely a failure event will be. If η was exactly 1, failures would be time-
independent (i.e., the hazard function would be constant) and hence the time to failure
would be exponentially distributed.

As to the correlated scenario, it features node failures that will be influenced by neigh-
boring nodes. Consider for example the case of sensor networks in which nodes with a
large number of active neighbors have their energy depleted faster due to the increased



Using Self-? Island EAs on Complex Environments 737

a

0

b

5

c

0

d

0

e1

g 0 i

0

f

h

(a)

a

1

c

1

d

1

e2

g 1 i

0

f

h

b

6

(b)

c

1

d

1

g 1 i

1

b

f

h

a

1

e2

(c)

c

1

d

1

g 1 i

1

a b

e f

h

(d)

Fig. 2. Example of failure propagation in the sandpile model. Active (resp. inactive)
nodes are depicted with solid (resp. dashed) borders. The numbers next to each active
node indicate the cumulated number of failure events. The threshold θi for each node
equals here its degree. (a) Initial state (b) Failure on node b (c) Failure propagation to
nodes a and e (d) Final state.

energy toll for communications, or the case of networks that carry load and in which the
failure of a node makes other ones absorb the load of the latter, eventually resulting in ad-
ditional overload failures [25]. This can be modeled in different ways, e.g., [8,59]. In this
work we have considered the sandpile model in order to induce cascading failures [12].
Much like in the previous case, we consider micro-failure events happening on each node
with a certain probability. Now, each node i will have an associated threshold value θi, in-
dicating the number of micro-failure events required for it to go down. When the number



738 R. Nogueras and C. Cotta

of such micro-failures effectively equals this threshold, the node is disconnected from the
system, and each of the active neighbors of this node receives an additional micro-failure
event1. In case any of these neighbors now accumulated a number of micro-failures equal
to its own threshold, it would go down as well, propagating in turn another micro-failure
to its active neighbors, and so on (hence the possibility of cascading failures). Fig. 2 shows
an example: after node b (which was in a critical state, i.e., one event short of going down)
fails, neighboring nodes a and e (which were also in such a critical state) fail as well. We
have considered for simplicity that the threshold θi of each node i is constant and equal
to the number of neighbors (active or inactive) of the node. As to reactivation, just like in
the non-correlated case a single event is required.

2.2. Algorithmic Model

The core algorithm considered is a steady-state EA with one-point crossover, bit-flip mu-
tation, binary tournament selection and replacement of the worst parent. This algorithm
is deployed on a computational environment such as described in the previous section by
means of the island-model, whereby each node hosts an island that runs an instance of the
previously mentioned EA. After each iteration of the basic EA, these islands perform mi-
gration (stochastically with probability pmig) of a single individual to neighboring islands.
In each migration event the migrant is randomly selected from the current population and
the receiving island inserts it in its population by replacing the worst individual [41].

Four variants of the island-based EA are considered by endowing it with different sets
of self-? properties:

– ∅: a simple island-based EA (simply termed EA in the following) in which every
island has a fixed size and random reinitialization is used whenever a new node enters
the system.

– {self-generation}: an island-based MMA (simply denoted as MMA in the following)
obtained by endowing EA with self-generation capabilities.

– {self-scaling, self-healing}: a self-adaptive island-based EA (denoted as EA∗) ob-
tained by augmenting the EA with self-scaling and self-healing to re-size each island
individually in response to fluctuations in the number of active neighbors and in the
population sizes of these.

– {self-scaling, self-healing, self-generation}: a self-adaptive island-based MMA
(termed MMA∗) obtained by endowing the MMA with self-scaling and self-healing
capabilities.

These self-? properties are described in the following.

Self-generation. Self-generation refers to the capability of the algorithm to redefine the
search tools it uses, that is, to create and adapt these to the circumstances of the search
process. We have considered a framework similar to that defined by Smith [52,53]. More
specifically, each individual in the population contains a binary genotype and a single
meme, the latter being represented as a rewriting rule. These rules have the form A→ C,

1 It must be noted that these so-called micro-failures are not intended to represent any real phenomenon, but
are just used as a means to introduce failure interdependencies.



Using Self-? Island EAs on Complex Environments 739

where both A and C are strings of the same length taken from {0, 1,#}∗, that is, the
binary alphabet used to represent the solutions plus a wildcard (‘#’). This meme defines
a neighborhood relationship in the search space: given a genotype g ∈ {0, 1}n (i.e., a
binary string of length n), its neighborhood N (M)(g) induced by meme M ≡ A→ C is
defined as

N (M)(g) = {g′ | g M−→ g′} (2)

i.e., it is composed of all binary strings attainable by applying the rewriting rule M to
g, that is, finding a match of the antecedent A in g (using the wildcard as “don’t care”
symbol) and replacing it with the consequent C (where the wildcard now means “don’t
change”). This neighborhood is subsequently used to optimize g by sampling N (M)(g)
w times (where w is a parameter used to keep the cost of the process under control)
and keeping the best solution found (if better than the original genotype g). Note that
since memes are a part of solutions, they are also subject to mutation [52], and they are
transferred from parents to offspring through local selection (the offspring inherits the
meme of the best parent).

Self-scaling. Self-scaling refers to the capability of the algorithm to adapt its functioning
in response to changes in the scale parameters of the task being tackled, either of the
problem under consideration or of the computational substrate on which the algorithm is
run. In this context we focus precisely on this latter issue, and use self-scaling strategies
aimed to attain a rather stable global population size across the islands that are active
in each particular moment. To this end, each island periodically monitors the state of
its neighbors to determine: whether they are active or not, their population sizes and the
number of active neighbors they have in turn. When a neighboring island is detected to
have just gone down, the island increases its own population size in order to compensate
the loss of the former. This is done by calculating the fraction of the population size of
the deactivated island corresponding to the number of active neighbors it had (e.g., if
an island with population size µ and ν active neighbors went down, each of the latter
would attempt to grow their populations by µ/ν individuals). On the other hand, if all
neighboring islands are active then they exchange individuals in order to balance their
population sizes. See [46] for details. Note that this is a completely autonomous and
decentralized policy and therefore each node cannot comprehend the global state of the
network, for instance, a node does not account for the simultaneous failure of nodes that
are themselves neighbors, hence the interest of studying the robustness of the EA in the
correlated scenario.

Self-healing. Self-healing refers to the capability of the system to repair or correct exter-
nally infringed damage [17]. EAs are intrinsically resilient as mentioned before (see also
[38] for a theoretical analysis) thanks to its population-based nature providing built-in
redundancy. Even more so, some explicit self-healing methods have been incorporated to
EAs –even if just in a rudimentary form– since the earlier developments of the paradigm
(consider for example the use of repairing functions to restore feasibility of solutions af-
ter the application of reproductive operators [36]). In this case, we specifically focus on
the re-sizing of islands as a result of the self-scaling process, and more precisely on the
situation in which an island has to grow as a result of a neighboring island having a crash.



740 R. Nogueras and C. Cotta

A simple solution is to have the population grow by introducing new random solutions
(the random immigrant strategy [20]). While this would certainly promote diversity by
introducing completely new genetic material, it could also drag backwards the search
process by moving the population away from promising regions of the search space that
might have been identified. As an alternative a self-sampling procedure could be used.
This amounts to maintaining within each island a probabilistic model of its current popu-
lation in order to sample it whenever the population needs to grow. This has the advantage
of introducing diversity due to the stochastic sampling, keeping as well the momentum
of the search since the newly created individuals are coherent with the current state of
the population (unlike the case of using random individuals to this end). In this work we
have considered the use of a tree-like bivariate probabilistic model such as that used in
the COMIT estimation of distribution algorithm [5] – see also [47] for details.

3. Experimentation

In order to study the resilience of the island-based EAs described in previous section,
these have been put to test in a broad variety of scenarios. Before reporting the results
obtained, next subsection describes in more detail the experimental setting considered.

3.1. Experimental Setting

We consider nι = 64 islands whose initial size is µ = 32 individuals and a total number
of evaluations maxevals = 250 000. We use crossover probability pX = 1.0, mutation
probability pM = 1/`, where ` is the genotype length, and migration probability pmig =
1/(5µ) = 1/160. Regarding the network parameters, we use m = 2 in the Barabási-
Albert model in order to define the topology of the underlying network; as for node de-
activation/reactivation, we use the shape parameter η = 1.5 (larger than 1 and hence
implying an increasing hazard rate with time), and scale parameters β = −1/ log(p) for
p = 1−1/(knι), k ∈ {1, 2, 5, 10, 20}. To interpret these parameters, note that they would
correspond to an average of one micro-failure event every k cycles if the failure rate was
constant. This provides different scenarios ranging from low volatility (k = 20) to very
high volatility (k = 1). Notice thus there is an inverse relationship between the value of
this parameter and stability: large values of this parameter correspond to great stability
(actually, full stability for k = ∞, a scenario that has been also included in the experi-
mentation to gauge the results) and small values correspond to high volatility (hitting a
maximum for k = 1/nι). In order to have a more meaningful comparison between both
scenarios (accommodating the fact that several micro-failure events are required in order
to take down a node in the correlated case but only one is needed in the non-correlated
case), in the non-correlated scenario we adjust k values as k′ = kθ̃, where θ̃ is the average
of all θi values in the correlated scenario (which in this case is also the average degree of
the network). Note at any rate that the main focus of the experimentation is the relative
behavior of the algorithms considered in either scenario rather than a comparison between
scenarios in absolute terms.

As stated in Sect. 2.2, we consider four algorithmic variants: EA (a standard island-
based EA with fixed island sizes and random reinitialization of islands upon reactivation)



Using Self-? Island EAs on Complex Environments 741

Table 1. Results (averaged for 25 runs) of the different EAs on the three problems
considered under the network model with non-correlated failures. The median (x̃), mean
(x̄) and standard error of the mean (σx̄) are indicated.

TRAP H-IFF MMDP
strategy k x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

EA ∞ 0.00 0.00 ± 0.00 0.00 5.33 ± 1.49 1.50 1.50 ± 0.17
20 0.00 0.10 ± 0.07 0.00 3.78 ± 1.27 1.50 1.84 ± 0.20
10 0.00 0.25 ± 0.10 11.11 9.44 ± 1.42 3.00 2.73 ± 0.26
5 1.25 1.20 ± 0.23 16.67 14.47 ± 1.53 4.49 4.74 ± 0.31
2 10.00 9.20 ± 0.61 32.64 31.97 ± 0.96 13.15 13.21 ± 0.34
1 30.00 29.88 ± 0.80 53.65 53.35 ± 0.58 28.96 28.25 ± 0.57

EA∗ 20 0.00 0.05 ± 0.05 0.00 6.22 ± 1.37 0.00 0.30 ± 0.12
10 0.00 0.00 ± 0.00 11.11 9.11 ± 1.66 0.00 0.06 ± 0.06
5 0.00 0.10 ± 0.07 16.67 13.00 ± 1.66 0.00 0.30 ± 0.12
2 0.00 0.35 ± 0.11 19.44 18.22 ± 1.39 0.00 0.48 ± 0.14
1 0.00 0.90 ± 0.22 22.22 22.28 ± 0.87 0.00 0.96 ± 0.23

MMA ∞ 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
20 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
10 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
5 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.18 ± 0.10
2 0.00 1.10 ± 0.30 0.00 0.00 ± 0.00 5.99 6.89 ± 0.54
1 22.50 22.20 ± 0.90 22.05 19.72 ± 3.40 22.13 22.24 ± 0.61

MMA∗ 20 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
10 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
5 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
2 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
1 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00

EA∗ (the island-based EA endowed with self-healing and self-scaling), MMA (an island-
based EA with self-generation) and MMA∗ (the island-based EA endowed with all three
self-? properties: self-generation, self-scaling and self-sampling). With regard to memes,
as explained in Sect. 2.2, they are represented by rewriting rules. Their length varies be-
tween lmin = 3 and lmax = 9 and they have a mutation probability pr = 1/lmax, and are
applied with parameter w = 1. The experimental benchmark comprises three test func-
tions, namely Deb’s trap function [11] (TRAP, concatenating 32 four-bit traps), Watson
et al.’s Hierarchical-if-and-only-if function [58] (HIFF, using 128 bits) and Goldberg et
al.’s Massively Multimodal Deceptive Problem [18] (MMDP, using 24 six-bit blocks). We
perform 25 simulations for each algorithm, problem, volatility scenario and failure model.

3.2. Experimental Results

Fig. 3 shows a summary of the results (detailed numerical data for each problem, algo-
rithm, and network model are provided in Tables 1–2). Let us firstly focus on variants
without self-generation, namely EA and EA∗ (Fig. 3a–3b). As expected, the performance
of the algorithm degrades as node volatility increases (that is, as we move to the right
along the X axis): the increasing perturbation and loss of information caused by the dis-
appearance of islands impairs the performance of the EAs. It is nevertheless interesting to



742 R. Nogueras and C. Cotta

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

non−correlated
correlated

(a)

0.2 0.4 0.6 0.8 1
0

5

10

15

20

25

30

35

40

45

50

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

non−correlated
correlated

(b)

0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

non−correlated
correlated

(c)

0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10

1/k

de
vi

at
io

n 
fr

om
 o

pt
im

um
 (

%
)

 

 

non−correlated
correlated

(d)

Fig. 3. Average deviation from the optimal solution across all problems for each
algorithmic variant and network failure model. (a) EA (b) EA∗ (c) MMA (d) MMA∗.
Notice the different range of the Y axis in each case.

note how the degradation profile of EA is more marked in the correlated scenario. More
frequent and simultaneous node failures have a clear toll on performance. If we now con-
sider the case of EA∗, two major observations stand out: on one hand, the performance of
EA∗ is notably better than that of EA for the same volatility rate. This had been already
observed in the non-correlated case (albeit for multimemetic algorithms – this behavior
is hence extended for plain EAs as well) and is now confirmed in the correlated scenario,
indicating than the self-? properties seem to keep providing robustness to the algorithm in



Using Self-? Island EAs on Complex Environments 743

this case too. As a matter of fact –and this leads to the second observation– the degrada-
tion of performance in the correlated case is much less marked for EA∗ than it was for EA.
More precisely, if we conduct a ranksum test on the results obtained by each algorithm on
each problem and network scenario we observe that the performance of EA significantly
(at level α = 0.01) degrades in the correlated scenario with respect to the non-correlated
one for all churn rates, whereas EA∗ is only significantly degraded for moderate and high
churn rates (k 6 5 for TRAP and HIFF and k 6 2 for MMDP). This is not to say that
EA∗ is not adversely affected by the new scenario (in the non-correlated case the perfor-
mance of EA∗ was only significantly degraded with respect to the stable k = ∞ case
for k 6 5 in HIFF and k 6 2 in TRAP, whereas in the correlated scenario there are
statistically significant differences for k 6 2 in MMDP, k 6 5 in TRAP and k 6 10 in
HIFF) but this degradation is mostly in the most volatile cases (unlike EA, whose perfor-
mance is degraded with respect to k = ∞ in the correlated case for all churn rates in all
three problems) and not so large in magnitude as for EA. A result consistent with this can
also be seen in Fig. 4, in which the genetic diversity of the population (measured using
Shannon’s entropy) is depicted for each algorithm and scenario (the data corresponds to
the TRAP function, but the behavior is qualitatively similar in the remaining problems).
Notice how EA faces increasingly large difficulties to converge as the volatility goes up,
and how these difficulties are noticeable even for low-volatility settings in the correlated
scenario. EA∗ can however maintain a better focus on the search, and seems mostly af-
fected in the most volatile settings of the correlated scenario. The use of self-scaling seems
crucial for this, since it damps perturbations in the overall size of the population and con-
tributes to exchange genetic information among islands (it can be actually regarded as a
self-adaptive, instability-driven migration process). This information exchange provides
the convergence boost required to overcome to a great extent the perturbation caused by
island losses (this perturbation is further alleviated by the use of self-healing, which helps
avoiding having to create solutions from scratch, something that would contribute diver-
sity but hamper convergence). This said, it is clear that a decentralized strategy such as
the one considered, whereby each island takes decisions based on the interaction with its
neighbors, can be more sensitive to simultaneous failures of neighboring nodes which is
more frequent in the correlated scenario considered. Hence, while the EA∗ can be better
equipped than plain EAs to withstand unstable scenarios, it is not immune to churn.

As for the EAs endowed with self-generation, we can draw similar observations. If
we look firstly at MMA (Fig. 3c) we obtain the expected result, as in the case of the EA,
i.e., the performance of the algorithm degrades as the volatility of the node increases, but
this degradation is negligible in the non-correlated scenario except for the most volatile
setting (k=1), unlike the much more marked degradation that takes place in the correlated
scenario. In this sense, it must be taken into account the non-linear relationship between
the value of k and instability, which makes the growth in churn when going from k = 2 to
k = 1 much larger than, say, going from k = 20 to k = 10. Indeed, a certain increase in
volatility will induce a steady degradation of performance, until the latter saturates (i.e.,
when the search degenerates completely and the algorithm is not capable of converging,
there is not much further room for degradation – this can be seen for example in Fig.
4, in which for some low values of k the EA is not capable of converging). The onset
of this degradation is also dictated by the inherent resilience of the algorithm. In this
sense, the MMA is somewhat similar in behavior to the EA, although the fact that the



744 R. Nogueras and C. Cotta

Table 2. Results (averaged for 25 runs) of the different EAs on the three problems
considered under the network model with correlated failures. The median (x̃), mean (x̄)
and standard error of the mean (σx̄) are indicated.

TRAP H-IFF MMDP
strategy k x̃ x̄± σx̄ x̃ x̄± σx̄ x̃ x̄± σx̄

EA ∞ 0.00 0.00 ± 0.00 0.00 5.33 ± 1.49 1.50 1.50 ± 0.17
20 1.25 1.47 ± 0.21 16.67 13.18 ± 1.68 4.49 4.93 ± 0.41
10 6.87 7.15 ± 0.41 25.87 26.97 ± 1.05 11.98 12.19 ± 0.43
5 26.25 26.15 ± 0.85 47.40 47.67 ± 0.63 25.97 25.35 ± 0.48
2 46.88 46.33 ± 0.58 61.46 61.19 ± 0.29 35.46 35.87 ± 0.40
1 51.25 51.27 ± 0.50 63.72 63.80 ± 0.21 39.95 40.08 ± 0.36

EA∗ 20 0.00 0.05 ± 0.05 11.11 7.22 ± 1.49 0.00 0.06 ± 0.06
10 0.00 0.10 ± 0.07 16.67 14.06 ± 1.57 0.00 0.60 ± 0.23
5 0.00 0.70 ± 0.18 19.44 20.61 ± 1.19 0.00 0.78 ± 0.21
2 2.50 2.10 ± 0.21 27.78 27.08 ± 0.83 4.49 3.95 ± 0.37
1 5.00 5.68 ± 0.41 31.94 30.53 ± 1.04 7.49 6.83 ± 0.42

MMA ∞ 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
20 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.18 ± 0.10
10 0.00 0.55 ± 0.26 0.00 0.00 ± 0.00 4.49 4.68 ± 0.65
5 17.50 17.82 ± 1.18 0.00 11.88 ± 2.61 21.47 20.39 ± 0.91
2 41.25 41.45 ± 0.58 59.55 58.26 ± 1.02 33.97 34.10 ± 0.54
1 50.63 50.45 ± 0.43 62.50 62.65 ± 0.28 38.46 38.44 ± 0.52

MMA∗ 20 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
10 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
5 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00 0.00 0.00 ± 0.00
2 0.00 0.00 ± 0.00 0.00 1.89 ± 1.07 0.00 0.00 ± 0.00
1 0.00 0.00 ± 0.00 0.00 2.89 ± 1.36 0.00 0.87 ± 0.69

former includes local search contributes to improve slightly the results and counteracts
the effects of degradation for large values of k, but cannot prevent it for small k. At any
rate, the greater hardness of the correlated scenario makes degradation being qualitatively
noticeable for larger values of k.

On the other hand, if we now consider the case of MMA∗, three fundamental issues
can be observed: firstly, its performance is considerably better than that of MMA in these
latter settings; secondly, the degradation of performance is much more gentle for any
value of k; thirdly, the performance is considerably better and more stable in the case of
the MMA than in the EA, for all values of k and for both the correlated and the non-
correlated cases, being in the latter case very close to 0, i.e., the MMA with the self-?
properties is seemingly able to overcome the inconveniences of instability of the environ-
ment and alleviate the degradation of the algorithm. The increased resilience provided by
self-scaling and self-healing –for the same reasons pointed out in the case of the EA– is in
this case amplified by the better search capabilities of the MMA with respect to plain EAs
thanks to their being endowed with local search. If a ranksum test is performed on the
results obtained for the MMA by each algorithm on each problem and network scenario
we can observe that the performance of MMA significantly (in the α = 0.01 level) de-
grades in the correlated scenario with respect to the non-correlated one for moderate and



Using Self-? Island EAs on Complex Environments 745

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

 

 

k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(a)

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

 

 

k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(b)

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

 

 

k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(c)

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

en
tr

op
y

 

 

k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(d)

Fig. 4. Genetic diversity for the TRAP function. The top row corresponds to EA and the
bottom row to EA∗; the left column corresponds to non-correlated failures, and the right
row to correlated failures.

high churn rates (k 6 5 for TRAP and HIFF and k 6 2 for MMDP), whereas MMA∗ is
not significantly degraded for any churn rate. This is consistent with the meme dynamics
shown in Fig. 5 for correlated scenarios. For low volatility, the length of memes in the
MMA (Fig. 5a) seems to be converging, and the improvement rate (percentage of meme
applications that result in an improvement) takes a U shape (Fig. 5b), a typical pattern ob-
served in standard (panmictic) versions of the algorithm [44]. However, for high volatility
memes are unable to converge (meme lengths fluctuate around the initial mean) and the
improvement rate is rather flat (pointing to the population maintaining in a similar state



746 R. Nogueras and C. Cotta

0.5 1 1.5 2 2.5

x 10
5

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

evaluations

m
em

e 
le

ng
th

s

 

 

k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(a)

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

im
pr

ov
em

en
t r

at
e

 

 
k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(b)

0.5 1 1.5 2 2.5

x 10
5

4

4.5

5

5.5

6

evaluations

m
em

e 
le

ng
th

s

 

 

k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(c)

0.5 1 1.5 2 2.5

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

evaluations

im
pr

ov
em

en
t r

at
e

 

 
k =∞

k = 20
k = 10
k = 5
k = 2
k = 1

(d)

Fig. 5. Meme dynamics in the correlated scenario. The top row corresponds to MMA and
the bottom row to MMA∗. The left column shows meme lengths and the right column
the improvement rate.

during the whole run). However, MMA∗ maintains a much more consistent profile (Fig.
5c–5d) across all configurations considered, indicating that the algorithm could keep the
momentum of the search in spite of the larger instability.

4. Conclusions and Future Work

Unstable computational environments put to test the resilience of algorithms that run on
them, even more so when volatility is high and follow complex patterns. In this work we



Using Self-? Island EAs on Complex Environments 747

have analyzed how these unstable scenarios can affect the performance of several variants
of island-based EAs, and observed a marked degradation of the results in absence of ap-
propriate policies to deal with this harder setting. Endowing the EA with self-? properties
can however increase its resilience and make it able to withstand from low up to moder-
ately high volatility. Stacking together self-generation, self-scaling, and self-healing re-
dound in increased resilience and a much more stable behavior, leading in some cases to
a negligible loss of performance in the scenarios considered.

There are several lines of research for future work. First of all, the network model
could be expanded, either by trying new topologies or by considering other different
models of correlated faults. In line with the latter, the use of dynamic thresholds could be
considered (work is in progress in this area [48]) or even the utilization of completely dif-
ferent correlation models, e.g., [8,59]. A complementary issue of interest is the potential
heterogeneity of the network, allowing a one-to-many mapping between some computing
nodes and the islands of the algorithm. In the longer term, a related problem is the op-
timization of the network itself to cope with this kind of failures. Some recent work has
addressed this issue [56], paving the way for other developments in this direction. Finally,
other non-evolutionary algorithms could be deployed in this scenario. These works are
currently underway.
Acknowledgments. This work is supported by the Spanish Ministerio de Economı́a and European
FEDER under Projects EphemeCH (TIN2014-56494-C4-1-P –http://ephemech.wordpress.
com) and DeepBIO (TIN2017-85727-C4-1-P) and by Universidad de Málaga, Campus de Excelen-
cia Internacional Andalucı́a Tech.

References

1. Alba, E.: Parallel evolutionary algorithms can achieve super-linear performance. Information
Processing Letters 82(1), 7–13 (2002)

2. Alba, E.: Parallel Metaheuristics: A New Class of Algorithms. Wiley-Interscience, Hoboken,
New Jersey, USA (2005)

3. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Review of Modern
Physics 74(1), 47–97 (2002)

4. Babaoğlu, Ö., Jelasity, M., Montresor, A., Fetzer, C., Leonardi, S., van Moorsel, A., van Steen,
M. (eds.): Self-star Properties in Complex Information Systems, Lecture Notes in Computer
Science, vol. 3460. Springer-Verlag, Berlin Heidelberg (2005)

5. Baluja, S., Davies, S.: Using optimal dependency-trees for combinatorial optimization: Learn-
ing the structure of the search space. In: 14th International Conference on Machine Learning.
pp. 30–38. Morgan Kaufmann Publishers (1997)

6. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–
512 (1999)

7. Berns, A., Ghosh, S.: Dissecting self-? properties. In: Third IEEE International Conference
on Self-Adaptive and Self-Organizing Systems - SASO 2009. pp. 10–19. IEEE Press, San
Francisco, CA (2009)

8. Böttcher, L., Luković, M., Nagler, J., Havlin, S., Herrmann, H.J.: Failure and recovery in dy-
namical networks. Scientific Reports 7, 41729 EP – (2 2017)

9. Cole, N., Desell, T., González, D.L., Fernández de Vega, F., Magdon-Ismail, M., Newberg,
H., Szymanski, B., Varela, C.: Evolutionary algorithms on volunteer computing platforms:
The milkyway@home project. In: Fernández de Vega, F., Cantú-Paz, E. (eds.) Parallel and
Distributed Computational Intelligence, Studies in Computational Intelligence, vol. 269, pp.
63–90. Springer-Verlag, Berlin Heidelberg (2010)

http://ephemech.wordpress.com
http://ephemech.wordpress.com


748 R. Nogueras and C. Cotta

10. Cotta, C., Fernández-Leiva, A.J., Fernández de Vega, F., Chávez, F., Merelo, J.J., Castillo, P.A.,
Bello, G., Camacho, D.: Ephemeral computing and bioinspired optimization - challenges and
opportunities. In: 7th International Joint Conference on Evolutionary Computation Theory and
Applications. pp. 319–324. SCITEPRESS, Lisboa, Portugal (2015)

11. Deb, K., Goldberg, D.: Analyzing deception in trap functions. In: Whitley, L. (ed.) Second
Workshop on Foundations of Genetic Algorithms. pp. 93–108. Morgan Kaufmann Publishers,
Vail, Colorado, USA (1993)

12. Dorogovtsev, S.N., Goltsev, A.V., Mendes, J.F.F.: Critical phenomena in complex networks.
Rev. Mod. Phys. 80, 1275–1335 (Oct 2008)

13. Eiben, A.E.: Evolutionary computing and autonomic computing: Shared problems, shared so-
lutions? In: Babaoğlu et al. [4], pp. 36–48

14. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computation. Natural Computing Series,
Springer-Verlag, Berlin Heidelberg (2003)

15. Gagné, C., Parizeau, M., Dubreuil, M.: Distributed beagle: An environment for parallel and dis-
tributed evolutionary computations. In: 17th Annual International Symposium on High Perfor-
mance Computing Systems and Applications - HPCS 2003. pp. 201–208. Sherbrooke, Quebec,
Canada (2013)

16. Garcı́a Arenas, M., Collet, P., Eiben, A.E., Jelasity, M., Merelo Guervós, J.J., Paechter,
B., Preuß, M., Schoenauer, M.: A framework for distributed evolutionary algorithms. In:
Merelo Guervós, J.J., et al. (eds.) Parallel Problem Solving from Nature - PPSN VII. Lec-
ture Notes in Computer Science, vol. 2439, pp. 665–675. Springer Verlag, Berlin Heidelberg
(2002)

17. Ghosh, D., Sharman, R., Rao, H., Upadhyaya, S.: Self-healing systems - survey and synthesis.
Decision Support Systems 42(4), 2164–2185 (2007)

18. Goldberg, D., Deb, K., Horn, J.: Massive multimodality, deception and genetic algorithms. In:
Männer and Manderick [32], pp. 37–48

19. Gorges-Schleuter, M.: ASPARAGOS: an asynchronous parallel genetic optimization strategy.
In: Schaffer, J. (ed.) Third International Conference on Genetic Algorithms. pp. 422–427. Mor-
gan Kaufmann Publishers, San Francisco, CA (1989)

20. Grefenstette, J.: Genetic algorithms for changing environments. In: Männer and Manderick
[32], pp. 137–144

21. Grefenstette, J.J.: Parallel adaptive algorithms for function optimization. Tech. Rep. CS-81-19,
Vanderbilt University, Nashville, TN (1981)

22. Grosso, P.: Computer simulation of genetic adaptation: Parallel subcomponent interaction in a
multilocus model. Ph.D. thesis, University of Michigan, Ann Arbor (1985)

23. Hidalgo, J., Lanchares, J., Fernández de Vega, F., Lombraña, D.: Is the island model fault
tolerant? In: Thierens et al. [57], pp. 2737 – 2744

24. Hinterding, R., Michalewicz, Z., Eiben, A.: Adaptation in evolutionary computation: A survey.
In: Fourth IEEE Conference on Evolutionary Computation. pp. 65–69. IEEE Press, Piscataway,
New Jersey (1997)

25. Kong, Z., Yeh, E.M.: Correlated and cascading node failures in random geometric networks: A
percolation view. In: 2012 Fourth International Conference on Ubiquitous and Future Networks
(ICUFN). pp. 520–525. IEEE, Phuket, Thailand (July 2012)

26. Krasnogor, N., Blackburne, B., Burke, E., Hirst, J.: Multimeme algorithms for protein struc-
ture prediction. In: Merelo Guervós, J.J., et al. (eds.) Parallel Problem Solving From Nature
- PPSN VII. Lecture Notes in Computer Science, vol. 2439, pp. 769–778. Springer Verlag,
Berlin Heidelberg (2002)

27. Krasnogor, N., Gustafson, S.: A study on the use of “self-generation” in memetic algorithms.
Natural Computing 3(1), 53–76 (2004)

28. Laredo, J., Castillo, P., Mora, A., Merelo, J.J., Fernandes, C.: Resilience to churn of a peer-to-
peer evolutionary algorithm. International Journal of High Performance Systems Architecture
1(4), 260–268 (2008)



Using Self-? Island EAs on Complex Environments 749

29. Lombraña González, D., Jiménez Laredo, J., Fernández de Vega, F., Merelo Guervós, J.J.:
Characterizing fault-tolerance of genetic algorithms in desktop grid systems. In: Cowling, P.,
Merz, P. (eds.) Evolutionary Computation in Combinatorial Optimization. Lecture Notes in
Computer Science, vol. 6022, pp. 131–142. Springer-Verlag, Berlin Heidelberg (2010)

30. Lombraña González, D., Jiménez Laredo, J., Fernández de Vega, F., Merelo Guervós, J.J.:
Characterizing fault-tolerance in evolutionary algorithms. In: Fernández de Vega, F., et al. (eds.)
Parallel Architectures and Bioinspired Algorithms, Studies in Computational Intelligence, vol.
415, pp. 77–99. Springer-Verlag, Berlin Heidelberg (2012)

31. Lombraña González, D., Fernández de Vega, F., Casanova., H.: Characterizing fault tolerance
in genetic programming. Future Generation Computer Systems 26(6), 847–856 (2010)

32. Männer, R., Manderick, B. (eds.): Parallel Problem Solving from Nature - PPSN II. Elsevier
Science Inc., New York, NY, USA (1992)

33. Matei, R., Iamnitchi, A., Foster, P.: Mapping the Gnutella network. IEEE Internet Computing
6(1), 50–57 (Jan 2002)

34. Melab, N., Cahon, S., Talbi, E.: Grid computing for parallel bioinspired algorithms. Journal of
Parallel and Distributed Computing 66(8), 1052–1061 (2006)

35. Meri, K., Arenas, M., Mora, A., Merelo, J.J., Castillo, P., Garcı́a-Sánchez, P., Laredo, J.:
Cloud-based evolutionary algorithms: An algorithmic study. Natural Computing 12(2), 135–
147 (2013)

36. Michalewicz, Z.: Repair algorithms. In: Bäck, T., et al. (eds.) Handbook of Evolutionary Com-
putation, pp. C5.4:1–5. Institute of Physics Publishing and Oxford University Press, Bristol,
New York (1997)

37. Milojičić, D., Kalogeraki, V., Lukose, R., Nagaraja, K., Pruyne, J., Richard, B., Rollins, S., Xu,
Z.: Peer-to-peer computing. Tech. Rep. HPL-2002-57, Hewlett-Packard Labs (2002)

38. Muszyński, J., Varrette, S., Bouvry, P., Seredyński, F., Khan, S.U.: Convergence analysis of
evolutionary algorithms in the presence of crash-faults and cheaters. Computers & Mathematics
with Applications 64(12), 3805 – 3819 (2012)

39. Neri, F., Cotta, C.: Memetic algorithms and memetic computing optimization: A literature re-
view. Swarm and Evolutionary Computation 2, 1–14 (2012)

40. Neri, F., Cotta, C., Moscato, P. (eds.): Handbook of Memetic Algorithms, Studies in Computa-
tional Intelligence, vol. 379. Springer-Verlag, Berlin Heidelberg (2012)

41. Nogueras, R., Cotta, C.: An analysis of migration strategies in island-based multimemetic al-
gorithms. In: Bartz-Beielstein, T., et al. (eds.) Parallel Problem Solving from Nature - PPSN
XIII. Lecture Notes in Computer Science, vol. 8672, pp. 731–740. Springer Verlag, Berlin
Heidelberg (2014)

42. Nogueras, R., Cotta, C.: Self-sampling strategies for multimemetic algorithms in unstable com-
putational environments. In: Ferrández Vicente, J., et al. (eds.) Bioinspired Computation in Ar-
tificial Systems. Lecture Notes in Computer Science, vol. 9108, pp. 69–78. Springer Verlag,
Berlin Heidelberg (2015)

43. Nogueras, R., Cotta, C.: Sensitivity analysis of checkpointing strategies for multimemetic al-
gorithms on dynamic complex networks. In: 10th International Conference on Large Scale Sci-
entific Computations. Lecture Notes in Computer Science, vol. 9374, pp. 233–240. Springer
Verlag, Berlin Heidelberg (2015)

44. Nogueras, R., Cotta, C.: A study on meme propagation in multimemetic algorithms. Interna-
tional Journal of Applied Mathematics and Computer Science 25(3), 499–512 (2015)

45. Nogueras, R., Cotta, C.: Studying fault-tolerance in island-based evolutionary and multi-
memetic algorithms. Journal of Grid Computing 13(3), 351–374 (2015)

46. Nogueras, R., Cotta, C.: Studying self-balancing strategies in island-based multimemetic algo-
rithms. Journal of Computational and Applied Mathematics 293, 180–191 (2016)

47. Nogueras, R., Cotta, C.: Self-healing strategies for memetic algorithms in unstable and
ephemeral computational environments. Natural Computing 16(2), 189–200 (2017)



750 R. Nogueras and C. Cotta

48. Nogueras, R., Cotta, C.: Evaluating island-based EAs on unstable networks with complex fail-
ure patterns. In: Proceedings of GECCO’ 17 Companion (late breaking abstract). Berlin, Ger-
many (2017), 2 pages

49. Nogueras, R., Cotta, C.: A performance analysis of self-? evolutionary algorithms on networks
with correlated failures. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić,
M. (eds.) Intelligent Distributed Computing XI – IDC 2017, Studies in Computational Intelli-
gence, vol. 737, pp. 3–13. Springer, Cham (2018)

50. Ong, Y., Lim, M., Chen, X.: Memetic computation –past, present and future. IEEE Computa-
tional Intelligence Magazine 5(2), 24–31 (2010)

51. Sarmenta, L.: Bayanihan: Web-based volunteer computing using java. In: Masunaga, Y.,
Katayama, T., Tsukamoto, M. (eds.) Worldwide Computing and Its Applications - WWCA
1998. Lecture Notes in Computer Science, vol. 1368, pp. 444–461. Springer-Verlag, Berlin
Heidelberg (1998)

52. Smith, J.E.: Self-adaptation in evolutionary algorithms for combinatorial optimisation. In:
Cotta, C., Sevaux, M., Sörensen, K. (eds.) Adaptive and Multilevel Metaheuristics, Studies
in Computational Intelligence, vol. 136, pp. 31–57. Springer-Verlag, Berlin Heidelberg (2008)

53. Smith, J.E.: Self-adaptative and coevolving memetic algorithms. In: Neri et al. [40], pp. 167–
188

54. Stutzbach, D., Rejaie, R.: Understanding churn in peer-to-peer networks. In: 6th ACM SIG-
COMM Conference on Internet Measurement - IMC 2006. pp. 189–202. ACM Press, New
York, NY, USA (2006)

55. Tanese, R.: Distributed genetic algorithms. In: 3rd International Conference on Genetic Algo-
rithms. pp. 434–439. Morgan Kaufmann Publishers, San Francisco, CA, USA (1989)

56. Tang, X., Liu, J., Hao, X.: Mitigate cascading failures on networks using a memetic algorithm.
Scientific Reports 6, 38713 EP – (12 2016)

57. Thierens, D., et al. (eds.): Genetic and Evolutionary Computation - GECCO 2007. ACM Press,
New York, NY, USA (2007)

58. Watson, R., Hornby, G., Pollack, J.: Modeling building-block interdependency. In: Eiben, A.,
et al. (eds.) Parallel Problem Solving from Nature - PPSN V. Lecture Notes in Computer Sci-
ence, vol. 1498, pp. 97–106. Springer Verlag, Berlin Heidelberg (1998)

59. Watts, D.J.: A simple model of global cascades on random networks. Proceedings of the Na-
tional Academy of Sciences 99(9), 5766–5771 (2002)

60. Wickramasinghe, W., Steen, M.V., Eiben, A.E.: Peer-to-peer evolutionary algorithms with
adaptive autonomous selection. In: Thierens et al. [57], pp. 1460–1467

Rafael Nogueras obtained his MSc and PhD in Computer Science from the University
of Málaga in 1998 and 2015 respectively and his MSc in Electronic Engineering from
the University of Granada in 2012, all in Spain. He worked in industry for more than
ten years before returning to Public Administration in 2012. He has interests in the field
of evolutionary computation, primarily in memetic algorithms in distributed systems and
ephemeral computing systems with self-* properties.

Carlos Cotta obtained his MSc and PhD in Computer Science from the University of
Málaga, Spain, in 1994 and 1998, respectively. He holds a full professorship at this uni-
versity since 2017. His main research areas involve metaheuristic optimization, in par-
ticular hybrid and memetic approaches with the focus on both algorithmic and applied
aspects (particularly combinatorial optimization) and complex systems.

Received: January 15, 2018; Accepted: September 4, 2018.


	Introduction
	Methodology
	Network Model
	Algorithmic Model
	Self-generation.
	Self-scaling.
	Self-healing.


	Experimentation
	Experimental Setting
	Experimental Results

	Conclusions and Future Work

