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Abstract Anomaly detection is the process of identifying nonconforming beha-
viour. Many approaches from machine learning to statistical methods exist to detect
behaviour that deviate from its norm. These non-conformances of specifications can
stem from failures in the system or undocumented changes of the system during its
evolution. However, no generic solutions exist for classifying and identifying these
non-conformances. In this paper, we present the CRI-Model (Cause, Reaction, Im-
pact), which is a taxonomy based on a study of anomaly types in the literature, an
analysis of system outages in major cloud companies and evolution scenarios which
describe and implement changes in Cyber-Physical Production Systems.
The goal of the taxonomy is to be usable for different objectives like discover gaps
in the detection process, determine components most often affected by a particular
anomaly type or describe system evolution. While the dimensions of the taxonomy
are fixed, the categories can be adapted to different domains. We show and validate
the applicability of the taxonomy to distributed cloud systems using a large data set
of anomaly reports and cyber-physical production systems by categorizing common
changes of an evolution benchmarking plant.

Keywords: taxonomy of anomalies, anomaly detection, evolution, distributed cloud
systems, cyber-physical system

1. Introduction

To develop the specification and to implement this specification in the system requires
and create a high amount of knowledge from the developer and end user [10]. Anomalies
are the non-conformances between these created specification and the actually observed
behaviour. They occur as failures in the system due to not normal and unanticipated condi-
tions and can lead to user dissatisfaction (e.g. decreased performance) [20], loss of data or

? Extended version of the IDC 2017 conference paper “A Taxonomy of Anomalies in Distributed Cloud Sys-
tems: The CRI-Model” from Kim Reichert et al.
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Figure 1. Relation of anomaly detection and co-evolution described as non-conformances

incursion of penalties due to a broken service level agreement. Until the reason for the an-
omaly is found and can be remedied, the system might be vulnerable to attacks or require
additional resources. According to [23], e.g., Amazon lost roughly $25.000 per minute
during a Thanksgiving weekend in 2001 due to a series of outages. Thus, early detection
of system outages and automated recovery are very valuable for software companies.

But in a practical environment anomalies are not the only reason why nonconforming
behaviour is detected during the operation of a software system, because nonconforming
behaviour also results from incomplete or falsely specified behaviour. Then, the noncon-
forming behaviour is intended and just the detection process is not sufficient or up-to-date.
These lack of specification between the documented behaviour and the operated system
results from unplanned and unstructured changes due to time and cost pressure or staff
turnover [27]and is for a long time well known as the loss of knowledge in the software
community [22]. In this context, evolution describes the process of adapting software
during its operation, in order to prevent it to degenerate relative to its environment. [10]
To prevent degeneration detection of non-conformances between the specification and its
systems becomes a major topic in the evolution research community [10]. This challenge
is often coined as co-evolution of the system and its specification [29] and needs to be
systematised and automated since the release times of changes are rapidly decreasing.
For example, Amazon releases under the DevOps idea new or changed code of for their
products every 11 seconds on average [2].

Both topics (evolution and anomaly detection) are generally isolated considered, but
in this article we want to investigate the overlap between both topics by presenting a com-
bined taxonomy. Therefore, we define non-conformances as differences between observ-
able system behaviour and its normal system state that is documented in its specification.
The resulting view is shown in figure 1. On the one hand, anomalies targeted in anomaly
detection approaches exist that are undesired and malicious. These anomalies arise due to
often temporal changes in the system condition and mostly have a malicious impact. On
the other hand, deviation between the system behaviour and its specification can arise that
can have a positive impact. These deviations often result from an adapted requirement and
the software engineer reacts by changing the system to fulfil the new requirement without
changing the specification. Anomalies and deviations are not disjunct as shown in figure
1. Such non-conforming nehaviour generally arise when the system is adapted resulting
in a desired behaviour change (deviation), but the change also has an undesired side-effect
that has not be foreseen (anomaly).

Following this broad definition of understanding non-conformances between system
and specification, any system might exhibit a potentially large number of non-conformances.
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In this regard, Ibidunmoye et al. state that a priori definition of all possible behaviours of
an application is unrealistic [11, p.7]. However, every non-conformance, regardless of its
type, will happen within a known system, which puts constraints on what and how beha-
viour within that system can occur. This also holds for evolution, because during evolution
the current behaviour of the system is known and the system after evolution should act
like the system before except the desired change. The assumption of this contribution is
that while it may not be possible to predict all non-conformances that can occur, it might
be feasible to provide an a priori classification for them. In their survey, Ibidunmoye et
al. determine that “a taxonomy of performance issues [. . . ] will be highly essential for
industry and academia” [11, 4:24].

A taxonomy including anomalies enables developers to define malicious behaviour
they want to detect, verify which types are already covered by detection or prevention
policies and which are yet untreated. And also the detection of such anomalies benefits,
because as Baddar et al. find “[. . . ], when the types of anomalies are not known a priori
[. . . ] selecting an fitting detection technique is not trivial.” [3, p.30]. Given the variety
of anomaly types and manifold of metrics with an encompassing taxonomy this selection
process of detection mechanisms and metrics can be supported by mapping different de-
tection methods to different anomaly classes. At this point, a suitable taxonomy can serve
as an analysis-tool by classifying types of already identified anomalies in a system and
laying the groundwork of a mapping of approaches to detect future ones.

Further a taxonomy considering deviations allows to formulate underlying changes
by specifying the cause of the change, the reaction as a deviation to the specification as
well as its desired impact. Here, a taxonomy serves as a documentation of changes made
to the system which is specified as a deviation detected in the system as a reaction to the
triggering cause. This allows for specifying changes as differences to its previous version
which is one of the most essential preconditions to understand and plan the evolution [29].

The here presented CRI-Model is a taxonomy which can be used regardless of the
targeted type of non-conformances as well as the targeted domain. It provides general
dimensions, but allowing domain-specific categories based on the system’s characteristic
by being adaptable at its lower category level.

This paper first gives an overview of related work in 2. In section 3 we explain our
approach to designing the taxonomy. In 4 we present the resulting CRI-Model, and show
the usage for anomalies within the domain of distributed cloud systems and deviations
within the domain of cyber-physical production systems. In section 5 the applicability is
shown by presenting an exemplary use of the CRI-Model in the different domains. Finally,
in section 6 we discuss our takeaways and possible extensions of the taxonomy.

2. Related Work

Looking at the literature, in the domain of anomaly detection attempts have been made
to create taxonomies of anomalies in (distributed) software systems. In [18], Mazel et al.
define a taxonomy for anomalies in backbone network traffic, Plonka and colleagues in-
troduce a taxonomy which focuses on network anomalies in general [24] and Mirkovic et
al. present a classification of DoS-Attack anomalies [19]. Contrary to our point of view,
Mazel’s anomaly also contains normal events (since an important part of their taxonomy
is the mapping of signatures, it makes sense to consider normal signatures for reasons of
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exclusion as well) [18]. Furthermore, their result contains classes and subclasses of an-
omalies, while our model allows arbitrary combination of dimensional categories. Where
they give a name to each distinct anomaly, we use the CRI-Model to describe it. In our
opinion, this makes it far more likely to cover any type of anomaly that can occur. Espe-
cially if other domains are considered.

In their Attack-Taxonomy, Mirkovic et al. describe anomalies by intent and trigger
only. Their dimensions can have subclasses, e.g. a classification by degree of automation
has a subclass scanning strategy. Contrary to Mazel’s taxonomy, their categories are not
exclusive. Some anomalies can be sorted under different combinations of classes: e.g.
Hitlist Scanning anomalies can be semi-automatic or automatic. The CRI-Model, on the
other hand, does not consider intention, but therefore considers the trigger. While it can be
helpful to understand an intentionally caused anomaly (e.g. for defence mechanisms), as
a more generic attempt to describe anomalies, this dimension of intent seems too detailed
for a generic classification usable for different objectives.

Torbergte et al. discuss two dimensions: the cause of a failure and the location of
the component where it happens [28]. They determine eight categories of cause (e.g.
operator error, node hardware, node software...) and four for location (front-end node,
back-end node, network, unknown) where the anomaly first appears. They also differen-
tiate between impact that leads to service failure (in our words impact on the upstream
client) and impact that makes only singular components fail. Finally, like us, they dis-
tinguish an underlying flaw (the root causes in our case), which can become active in
a certain system state, from the cause (our trigger). Just like us, they also create two-
dimensional mappings of dimensions (cause-location) but mention their trouble to cor-
rectly map network-problems (mapping to network and ’unknown’ as cause). In the CRI-
Model of cloud systems, the reaction would be ’connectivity’, and the trigger could be
labelled as hardware change (since the network could be seen as part of the underlying
hardware of a distributed software system) while the CRI-Model of cyber-physical pro-
duction systems considers hardware in different disciplines. Contrary to the CRI-Model,
their taxonomy might be most suited for mitigation strategies, not necessarily for anomaly
detection, since its focus is on the impact.

In their survey paper on anomaly detection techniques, Chandola et al. do define dif-
ferent types of anomaly types (point anomalies, contextual anomalies and collective an-
omalies) [5]. However, these only take on the numeric aspect of an anomaly, and leave
out the system and its components completely.

Avizienis et al.. finally, present the most detailed and simultaneously widespread tax-
onomy of anomalies we could find [1]. They distinguish three main components that are
part of an anomaly, a fault which causes an error which can lead to a failure. Accord-
ingly, they present a classification of faults and one of failures, the error itself, however,
is not further distinguished. From the anomaly detection perspective, the monitoring data
which the error (reaction) creates can be most essential. This lack of further distinction
makes the taxonomy from Avizienis et al. unsuitable for a classification of anomalies with
the purpose of automated detection and evolution. The CRI-Model, on the other hand,
provides the reaction and component dimensions, which can help narrow down what kind
and where from to collect data for detection.

In the domain of production system anomaly detection methods are published under
the terms fault-detection and fault-diagnosis. A general overview is given in [12] and for
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cyber-physical production systems specific in [21]. These approaches generally rely on
models of the specific production domain and do not target a domain independent tax-
onomy. An example is the taxonomy given by Maier et al. in which anomalies are similar
to our approach defined as differences between the observed system and a system model
within a timing modelling formalisms like state machines, petri nets or markov chains
[17]. However, the reaction category of the anomaly is generally not targeted in such ap-
proaches. At this point, our work can be compared to research that consider residuals to
determine the type and location of the anomaly in production system like done by Roth
et al. [26]. Such a residual approach could be used to determine the reaction and loca-
tion of the CRI-Model. Nonetheless, the only indirect given taxonomies used by these
approaches classify anomalies on a very low-level and do not combine fault types with
more abstracted views like non-functional requirements as done in the impact dimension
of the CRI-Model.

Further, in contrast to anomaly detection, this contribution also explicit considers co-
evolution as deviations of the specified behaviour due to changes. Approaches like the
one of Ladiges et al. explicit consider such deviations detected in domain-specific models
[13]. The taxonomy of changes used by Ladiges et al., further described in [14] and exten-
ded by Vogel-Heusser et al. in [30, 31], serves as a basis for categories of the CRI-Model
regarding deviations regarding Cyber-Physical Systems in this contribution. But in con-
trast the taxonomy of the CRI-Model focuses beside behaviour changes also on reactions
and impacts. Therefore, they differ to the change taxonomies which focus on classifying
changes with all artefacts involved in the development and evolution.

This difference holds also for general taxonomies of changes like the one of Buckley
et al. in which similar to this contribution the when, where, what and how are used as a
starting point [4]. Other examples are Fluri and Gall who focused on source code changes
[9], Lehnert et al. who are considering especially the field of impact analysis [16] or
Chapin et al. who are looking at more business related artefacts [6]. These taxonomies
consider all kinds of changes and often focus on code changes or other artefacts like
requirements and software tests. Instead, the CRI-Model focuses on the dependencies
between the specified behaviour and the observable behaviour which can be monitored by
considering (software) metrics. Nonetheless, our taxonomy should not be seen independ-
ent from change taxonomies, since the classification of the CRI-Model can be used to
describe specific topics of a change taxonomy, e.g. the granularity and impact of changes.
In [4] Buckley et al. these categories are for example just specified by small or severe
and with the CRI-Model the granularity can be precisely described in form of resulting
deviation.

From a methodical point of view the taxonomy of Ciraci et al. [7] for classifying
software evolution is similar to our approach, because they also use a system model to
specify a taxonomy for changes. Our approach also uses the idea of abstracted system
models to allow domain-specific adaptation by defining categories based on the provided
models of cloud systems and production systems.

3. Approach

To develop a taxonomy of non-conformances, we considered both perspectives of research
and practice [25]. To narrow the wide range of literature and define the categories of the
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dimensions of our taxonomy we focus for anomalies on distributed (cloud) systems and
for deviations on Cyber-Physical Production Systems. In both areas, the authors of this
article have extensive expertise in research as well as practise and we think that both areas
cover the divergence of non-conformances rather well.

Our main focus is on anomaly detection. Thus, for anomaly detection we studied the
literature in distributed (cloud) systems to investigate which types of malicious anom-
alies the different studies mentioned and detected. Papers were selected based on their
focus on anomaly detection in distributed systems, cloud systems or micro-services (see
appendix A). They had to contain some description of the anomalies, the data used for
detection or any classification of anomalous system behaviour. We focused on how an-
omalies were described, what root causes were mentioned, what broke down or failed to
function, what kind of effect was determined and which names were chosen to describe
anomaly types. For example, some approaches differentiate between dimensions of root
causes (Intrusion Anomaly, Bottleneck Anomaly, Contention Anomaly, Flood-based An-
omaly and Execution Anomaly), other approaches between the effect (Performance Anom-
aly and Busy Loop Fault), or the location where they happen (Network Anomaly, System
Anomaly, Application-Anomaly, Physical Layer Anomaly, Utility Cloud Anomaly). For
the practice perspective, we explored reports on system outages as an example for anom-
alies from major online software companies. We analysed sixteen reported anomalies that
happened in companies such as Google, Amazon or Yahoo (see appendix B). In almost all
cases, these anomalies were full system outages (the impact needed to be intense enough
to merit public reporting). Nonetheless, these reports added valuable input for the design
of our taxonomy, particularly with regard to the different types of root causes (if they were
reported), their manifoldness, and the possible failures they induced.

To extend the taxonomy to deviations due to changes we considered reports, literature
and practical experience for a commonly accepted case study for cyber-physical produc-
tion systems. We investigate common taxonomies of evolution as the one of Ladiges et
al. [14] and Vogel-Heuser et al. [30, 31] as well as general change taxonomies of Buckley
et al. [4] and Chapin et al. [6]. Therefore, we extent and refine our taxonomy to provide
a combined taxonomy for non-conformances and investigate how evolution can be de-
scribed with the taxonomy. To evaluate the combined taxonomy in practice we use imple-
mentations of evolution scenarios established in the domain literature that are described
based on a real laboratory plant production of the Technical University Munich4 that
serves as a benchmark for evolution related research studies.

4. The CRI-Model

We condensed our findings from research and practice into a taxonomy, called CRI-Model
(see figure 2). It captures what happened, where it happened and when it happened for one
individual non-conformance of behaviour and specification. Regarding when, we identi-
fied three phases: Cause, Reaction, and Impact, accounting for the name (CRI). The what
describes the types of cause, reaction or impact, whereas the where identifies the compon-
ents or stakeholders, where the cause, reaction or impact occurred. Following this model,
a non-conformance is described as one or multiple causes in or outside the system, which

4 see https://www.ais.mw.tum.de/en/research/equipment/ppu/
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Figure 2. The domain-independent dimensions of the CRI-Model

trigger a chain of reactions at one (or multiple) components in the system, followed by
one or multiple impacts of the system.

The resulting CRI-Model provides six dimensions for characterising an observed non-
conformance. The first three dimensions express how the type of each of the three phases
can be characterised. The dimensions express the trigger that initialised the cause, the type
of the reaction that occurred and the effect which the impact has. Further for each phase
one location dimension is specified which expresses where the cause is triggered from, at
which component a reaction is performed and on which component the effect can be seen.
The dimensions are domain independent, whereas additional domain-specific categories
for each dimension must be added. The categories describe which concrete manifestations
of each dimension are present in the specific system. Categories must be adapted to each
system or at least system class and are shown for distributed cloud systems in section 4.1
and cyber-physical production systems in 4.2. In the following, first the six dimensions
are described in more detail:

Cause Trigger is determined by the cause(s) that trigger the non-conformance. The cause
must be the reason why the behaviour is triggered. Identifying and classifying the
trigger of a observed behaviour often a necessary step in identifying the underlying
problems because nonconforming behaviour might be determined using different in-
formation sources like metrics of system load, error-messages or text-logs.

Triggered From captures where the cause comes from (or who triggered it). It gives ad-
ditional indications of how to handle an non-conformance. For instance, if noncon-
forming behaviour is triggered from outside of the system by a client call, it makes
sense to apply detection on client-related metrics combined with metrics from com-
ponents were the reaction usually happens. Also, it can be important to remedy the
nonconforming behaviour or find a short-term fix as other parties might be neces-
sary to solve the underlying problem. The location can further be used to classify
non-conformances by sorting them regarding their trigger location.

Reaction Type describes how the system or engineer reacts to the cause. The reaction can
have different characteristics. In case of a malicious anomaly this is often a rupture
(often also named failure or error in the literature) of the system itself. The rupture is
a reaction of the system due to a cause (deviation with anomaly) of e.g. the code and
has normally a negative effect on the system. In case of an evolution the reaction can
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also be beneficial by having a positive effect. For example, due to an change of the
system logic a optimised behaviour is shown as a reaction. Such a reaction is desired.
A Reaction(s) does not have to happen on the same component as the trigger(s). Be-
cause often, the trigger(s) set off a chain of events that eventually lead to a reaction(s)
somewhere else in the system. For example in terms of Cyber-physical Production
Systems a change in the production process of a processing machine might not be de-
tected in the machine itself, instead the reaction is needed in the continued production
process like the packaging of the product.

Reaction At distinguishes the types of components which are targeted by the reaction.
This dimension is useful to identify bottlenecks, problems, and respective metrics on
which the reaction occur.

Impact Effect is determined by the effect that the nonconforming behaviour has on the
system itself or its stakeholders. This dimension allows distinguishing between the
kind of effect by applying categories to the dimension, e.g., financial impact or repu-
tation.

Impact On determines who or what is impacted.

When using the CRI-Model each of these dimensions can be filled repeatedly. Thereby,
any observed non-conformance can sometimes be related to multiple categories or can
affect multiple places at once, even if that should be avoided for a better categorization.
For example, if multiple triggers are known which cumulatively require a reaction, they
should all be listed under trigger. However, in many cases, only parts of the reaction chain
are known. They can nonetheless be used to describe the non-conformance in the CRI-
Model. For instance, in cloud systems an increased request count which triggers a rupture
as its reaction at the load balancer is known, but the original root cause is a change in the
public API, which provoked the users to request a service more often. Even if the original
root cause is never detected, filing the increased request count as a trigger can still be
useful to determine metrics for future detection or discuss resilience strategies.

4.1. CRI-Model of anomalies in Distributed Cloud Systems

The options to fill the dimensions are given by categories that are domain-specific. As
a first domain for validation, we consider distributed cloud systems. Distributed cloud
systems compute and store information geographically distributed over many locations
in order to increase availability and reduce latency to the massive amount of users. To
derive categories we modelled a generic distributed cloud system (see figure 3) based on
a software system which provided the validation dataset of a big software company used
in section 5. It consists of three types of components. The first components are workers
that are in charge of executing the application logic. As the second components, flows
transport information between workers. Persistence is the third part that implements any
kind of data storage. The model has an upstream, which consist of cloud clients that
execute calls on the cloud infrastructure. Further within a downstream other systems can
serve as providers for external functionalities which are called by workers. The individual
categories were derived from the literature and the practical reports.

The objective of this characterization of the CRI-Model are malicious anomalies (as
non-conformances) that are observed within the back-end of a the highly distributed sys-
tem. Following this objective the next section shows the derived categories for each di-
mension:
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Figure 3. An abstract view on the different components of a distributed cloud system

Cause Trigger:

Software change: Any change which affects the logic of the application(s) to cause the
observed anomaly. For instance, a developer deploying new code to the sys-
tem or a downstream dependency changing its interface.

Hardware change: Changes regarding the underlying hardware of the system, including
unplanned changes like corrupt disk writes, but also planned changes like
scaling down a worker component.

Usage pattern: Any cause that is triggered by the amount or type of data flowing through
the system, including, e.g., unusually large files, or a flash crowd event.

Triggered From:

Upstream: Any cause that is triggered from a client system or user of the cloud sys-
tem’s capability, e.g., intentional DoS-attacks, wrong usage of an interface
(increased load, increased trigger of error-responses) or unnecessary retries
from an impatient user.

Within: A cause triggered by a change in the cloud systems itself, including a changed
worker configuration (e.g. scaling, expired keys), a crash of a persistence
component, or an update to routing tables for one of the load-balancers con-
trolling the flow in the system.

Downstream: Causes which are triggered by dependencies of the system, e.g., an outage
of a cloud provider’s queue system or a change to a public HTTP-API.

Reaction Type:5

Resource saturation: Any reaction caused by limitations of one or more resources, in-
cluding lack of memory, disk space or CPU-bottlenecks.

Connectivity issue: A component becomes dysfunctional, because something else can-
not be reached, e.g., a 3rd party dependency is not available (outage) or can’t
be accessed (wrong credentials).

Wrong logic: Dysfunctional behaviour of a component regarding the purpose of the ap-
plication. This category fits if the flow through the system works just fine
(connectivity and resource saturation), but there is a flaw in the handling of
the data content, for example, due to a bad commit that was deployed.

5 Since the CRI-Model focuses malicious anomalies only ruptures are considered as reactions.
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Figure 4. CRI-Model of a distributed cloud system

Reaction At:

Worker: Any affected component with application logic, which is hit by the anomaly,
i.e. basically all components that transform data.

Flow: Components that deal with the flow of the system, forwarding, collecting
requests or messages, such as load balancers, queues or event buses. Typical
anomalies would be loss of events, bad throttling or overloading of queues.

Persistence: Any persistence component, like databases, system files or caches, typically
concerning wrong storage of data, or bottleneck problems.

Impact Effect: 6

Monetary costs: This includes anomalies which lead to broken SLA-agreements, or re-
quire an upscaling of resources, which costs more money.

Time costs: Often an anomaly leads to decreased response time, which can lead to un-
satisfied users.

Data integrity: This category covers anomalies which trigger system states that make
the system vulnerable to attacks.

Impact On:

Upstream: An anomaly can have negative impacts for upstream clients. Increased error-
rate or loss of data that impact the client directly.

Distributed System: An anomaly can also negatively impact the distributed cloud sys-
tems itself like any decrease in the response time to clients.

Downstream: Any downstream provider of the cloud systems could be impacted, e.g., if
an anomaly leads to an increase in requests sent to the downstream client.

The resulting CRI-Model with the categories is shown in figure 4. Regarding time all
three phases cause, reaction and impact of anomalies are modelled based on the given
generic distributed cloud model. Following the model, anomalies arising in a distributed

6 The impact effect can be very broad and could, for example, include other QoS metrics or security aspects like
vulnerability. But in this categorization we focus on the named three business relevant categories, because
they can be derived from the investigated dataset of reports.
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cloud system can be categorised by identifying the change that triggers in result of the
system itself or its surrounding up- and downstream, describe the typical type of ruptures
(reactions) that occur in one of the cloud elements and name the cost of the impact which
is observed in or outside of the considered cloud.

4.2. CRI-Model of deviations in Cyber-Physical Production Systems

Production systems are typically long living and as a result undergo many changes and
unforeseen incidents. Therefore, they are constantly modified and adapted which res-
ults in a continuous evolution process that is often, due to time and cost restrictions,
not documented [14]. This lack of knowledge about the system results in deviations (as
non-conformances) between the system’s behaviour and its specification, because an un-
documented change is generally not reflected in metrics used for the runtime detection
and testing. This is why in these long-living production system detection of deviations
between the system and its specification are of high interest [21]. These detection ap-
proaches do not assume faulty behaviour directly, but rather initialise a decision process
to decide if an unexpected deviation is an anomaly or a deviation due to old specifica-
tions [13]. Therefore, detection of anomalies and deviations have a strong overlap which
is why the following section shows how the CRI-Model can be applied also for detection
of deviations.

Cyber-physical production systems are, due to there strong need for evolution, chosen
as the domain. Cyber-physical production systems are characterized by interconnected
physical and cyber components in the domain of production plants. Figure 5 shows the
generic model we use for the categories of the CRI-Model in this domain. Production
systems are characterized by processing the input (e.g. a physical raw product) with its
mechanical parts that are connected by sensors and actuators. Both the mechanical as well
as the automation hardware of the production systems is organized in plant components.
Each component fulfils a specific capability of the production system. Both sensors and
actuators exchange signals via a bus system. The system is controlled by a Programmable
Logical Controller (PLC) which works in real-time and reads and writes binary signals of
sensors and actuators. The behaviour is specified in software code that is normally written
in a domain-specific language. Because the evolution of such interconnected systems is
the objective of this categorization, beside the resulting output (e.g. a finished product)
the system model also considers the context. The context is in terms of cyber-physical
production systems mainly other connected interacting systems, the human operator and
the implemented electrical, mechanical and software environment the production systems
is situated in. In the following, categories based on this generic model designed for the
manufacturing industry are presented:

Cause Trigger 7:

Maintenance: Any deviation that is triggered by a change resulting from maintenance
activities. These changes are done to maintain the original capability of the
production system. This would, for example, be an exchange of an old sensor
or a mechanical ramp because of wear and tear effects.

7 The categories follow the view that maintenance is a cause or part of evolution (as, for example, presented in
[27]).
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Figure 5. An abstract view on the different components of a cyber-physical production system

Improvement: A deviation with this trigger describes a cause based on a change that im-
proves the production system. The objective and requirements of the produc-
tion system remain the same, but the requirements are fulfilled better with the
change. Within the production systems this could be an optimization of the
structured hardware layout or an improvement of the precision of a product
identification.

Requirement: These deviations go along modified requirements the production system
must fulfil. For example, products must now be labelled by an additional
machine or the characteristics of the product(s) are changed.

Triggered From:

Input: A cause arised by a product coming into the cyber-physical production sys-
tem. This could be that the raw product is heavier than before or has another
character.

Within: Any cause that is within the boundaries of the production system. This could
be an individual mechanical, automation or software part or a plant compon-
ent like a crane which consists of multiple of these individual parts.

Output: A deviation which is triggered from the needed (finished) product. For in-
stance, the product requires a drill hole in the product which was not required
before.

Context: A cause could also come be from the context of a production system. For
example, the environment of the production system requires a specific change
or, especially relevant in the world of cyber-physical systems the connection
to another connected system or the human operator is changed.

Reaction Type:

Structure: This includes deviations which require a reaction in the hardware structure
of the plant. For instance following an increase of the production volume, the
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system must improve the capacity of a storage place in which the products
are transferred.

System logic: The reaction affects the system logic, so that the system is afterwards op-
erated differently. For example, when products need to be sorted, the system
software logic must be changed because finished products are now transpor-
ted to the existing ramps differently.

Production environment: Deviations of this type cause a reaction at elements of the en-
vironment that allow the production machine to be operated e.g. when the
supplier or the automation hardware is modified or the logistic process fol-
lowing the production system is adapted.

Reaction At:8

Mechanical part: The reaction targets the mechanical part (yellow in figure 5) like a
hardware ramp.

Automation hardware: Any deviation which requires a modification of the automation
hardware as its reaction (green in figure 5) like a conflict in the bus system.

Software: The deviation requires a reaction that is done on the software code (orange in
figure 5) , e.g. that the software execution is stuck.

Impact Effect:9

Timing properties: The impact of the deviation is observed on metrics for timing like
the total production time or length of occupancy of the system.

Production volume: The deviation has an effect on the quantity which is, e.g., the pro-
duction volume of a specific or all products.

Topology: The structure of the system is impaired by the deviation, e.g. if the connection
or the routing between machines is affected.

Capability: Any deviation that has an effect that increases or reduces the capability (or
functionality) of the production system. For example, a finished product has
a different property or less product types can be stored in the system.

Impact On:

Input: A deviation can have impacts on the input product, e.g. less products can be
processed in parallel.

Within (plant components): As it is mostly the case, any deviation of this category has
an impact on the production system itself. Since the impact category focuses
on non-functional properties the category is further expanded by consider-
ing each plant component separately. For instance, a crane occupancy is in-
creased or a crane now can detect the weight of a product.

Output: Any impact which impairs the finished product as an output of the production
system. For instance, a finished product is now labelled.

Context: The context is effected by an deviation. For example, when different monit-
oring values are provided to the connected systems or the human operator.
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Figure 6. CRI-Model of a cyber-physical production system

The resulting CRI-Model for cyber-physical production systems is shown in figure 6.
The CRI-Model is capable of describing malicious and evolutionary anomalies based on
the generic production system model which includes the three involved disciplines, the
in- and output as well as its context.

5. Applicability to Different Environments

In the following a mapping of practical data is done for the two considered domains with
a focus on different objectives. The mapping shows that the CRI-Model is independent in
terms of the focused domain and also in a high degree in terms of the targeted goal for
with the CRI-Model is used.

5.1. Mapping of an Anomaly Dataset of Distributed Cloud Systems to the
Taxonomy

As Cohen et al. state, the complexity of distributed cloud systems simply surpasses the
ability of a human engineer to diagnose and correctly respond to every malicious be-
haviour [8]. To explore the applicability of the taxonomy to such complex systems, we
decided to map anomaly reports from a large software company against the different cat-
egories of the CRI-Model. The reports consist of incident summaries and their impacts.

The objective of the mapping was to gain insight into which types of anomalies exist
in the system, which would merit more thorough attention and which components are
most often affected by a particular anomaly type. Under this objective the following three
benefits of the anomaly categorisation arise:

1. Identifying common causes of anomalies and outages.
2. Finding areas where the monitoring of the system does not catch issues before a

human does.
8 The categories follows the commonly accepted classification of production system (as, for example, presen-

ted in [30]).
9 The impact category focuses on non-functional properties of production systems as one of the main research

points of the investigated evolution scenarios. The categories are built following an extension of the properties
classification presented by Ladiges et al. [14].
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3. A better understanding of the reaction chain that common anomalies experience.

Based on these identified fields, actions can be derived to improve quality as well as
monitoring.

Data Foundations: The anomaly dataset consists of 51 reports that contain incident
summaries with regard to root causes, problem descriptions, impact estimations, duration
and type of detection (manual or by monitoring). The reports are Critical System Outage
which implies that they only contain anomalies which had a very large impact on the
clients of the cloud system, to merit reporting.

Mapping Example: Due to space limitations, we present two exemplary mappings:

1. The root cause was a bug which was introduced by a third-party vendor of a persist-
ence component. This bug influenced how the queries were handled when a cluster
of persistence nodes is not able to communicate with the primary node. A network
issue was the trigger which is a hardware change within the system according to the
CRI-Model, that forced all nodes to determine a new primary node. This procedure in
turn triggered the bug and led to the CRI-Model reaction in the system that was con-
nectivity issue on persistence components, since the individual nodes could no longer
contact each other. The resulting impact was a delayed response time combined with
an increase in error messages for the users (upstream) and required a temporary fix
of upscaling the node cluster (costs for within).

2. The root cause for this issue was a feedback loop in the cloud system. Before the an-
omaly happened, the workers were under high load. In the CRI-Model the trigger can
be sorted as usage pattern change, from upstream. The engineering team maintains a
controlling system which stops and restarts workers that are operating under abnor-
mal conditions. Before the incident the controlling system began rebooting worker
instances which is a second trigger, in this case hardware change from the distrib-
uted system itself. Subsequently, other instances started getting a similarly high load
(the reaction was therefore resource saturation) and were stopped and rebooted too
(and connectivity issues), as were most instances that were brought up through the
auto-scaling. The impact was an increased latency for the clients.

Applicability of Categories: To further verify the soundness of our categories, table 1
presents an overview on how many anomalies of the reports10 could be mapped to which
categories within our six dimensions. As previously explained any anomaly can consist of
multiple triggers, reactions or impacts. However, in order to keep the mapping concise, for
the validation regarding malicious anomalies we always only chose the most prominent
category. For instance, when multiple triggers could be determined, we chose the category
of the trigger with the strongest influence or the reaction category where most reactions
of the report fit into. Of course for this kind of study only a small number of reports are
available. Due to the low sample size for the usage analysis no significance level of the

10 One report can contain more than one anomaly
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CHANGE REACTION IMPACT
Trigger 65 Type 65 Effect 65

Hardware 22 Connectivity Issue 24 Data Integrity 37
Software 21 System Logic 23 Time Costs 27

Usage Pattern 22 Resource Saturation 18 Money Costs 1
Triggered From 65 Reaction At 65 Impact On 65

Upstream 22 Flow 4 Downstream 0
Downstream 7 Persistence 18 Upstream 54

Within 36 Worker 43 Within 11
Table 1. Count of anomalies mapped to the categories of the CRI-Model for distributed cloud
systems

Trigger x Reaction Type Software Hardware Usage Pattern Sum
Connectivity Issue 1 / 2 11 / 17 3 / 3 22

System Logic 7 / 7 2 / 2 2 / 3 12
Resource Saturation 2 / 2 0 / 1 12 / 14 17

Sum 11 20 20 51
Table 2. Mapping of reported anomalies to the dimensions trigger and reaction. The first numbers
indicate how many of the anomalies were detected by a human, while the other numbers indicate
the total number of anomalies.

data can be achieved, but indications for validations can be derived which are given in the
following.

According to the data in table 1 trigger and reaction seem to be both sensible. As
expected for a distributed cloud system most changes are triggered by the system itself
or the upstream. Reactions mostly happen on the workers which also held the most logic.
As a consequence the CRI-Model shows that it is inescapable that metrics of workers
fitting the most common anomalies are used for anomaly detection. Flows seem to be not
affected that much or do not cause major breakdowns that are reflected in the reports.
Regarding the impact, monetary costs and downstream are lacking mappings. However,
the monetary impact of anomalies was usually not noted in the reports, and the impact on
downstream services was also not communicated. In a different company this information
might be available and very interesting to analyse.

Taxonomy Usage: In order to determine which types of anomalies might be particularly
relevant to the system in question, and where anomaly detection should be implemented
first, we picked two dimensions from the taxonomy (change trigger and reaction type), and
sorted the reported anomalies into a cross-matrix (see table 2). We further distinguished
which of these anomalies were detected manually (this means by an engineer or client)
and which had been detected by monitoring. The first numbers indicate how many cases
were detected by a human which ideally should never happen, if the human is a client or
user.

Looking at table 2, it becomes clear that this system has most reactions concerning
connectivity issues and resource saturation. Based on system operator knowledge, we
know that most connectivity issues are triggered by sudden network problems, making
it difficult to detect and mitigate. The resource saturation anomalies, on the other hand,



The CRI-Model for Anomalies 721

could be investigated further. This could indicate to the engineer, that anomaly detection
should be implemented with a focus on hardware-level metrics, rather than error-logs,
application-level metrics.

The analysis shows that beyond the vocabulary which the taxonomy provided, the
CRI-Model can be used as a post-mortem analysis tool on an existing anomaly report
dataset, and identify those types of anomalies most urgently needing attention. Based
on this analysis, the CRI-Model can be employed to select and then cluster metrics and
anomaly detection mechanism based on which anomalies are tackled.

5.2. Mapping of Evolution Scenarios of Cyber-Physical Production Systems to the
Taxonomy

Due to its inherent interdisciplinary nature, detection of nonconforming behaviour is in
cyber-physical production systems mostly model-based, which means that deviations are
often identified by comparing the actual behaviour not just by metrics, but by specific be-
haviour models [13]. Here, domain-specific detection methods which observe the system
behaviour on the software interface and comparing it with a model representation of the
last known behaviour are used in order to support failure detection or evolution of the
production systems [13]. To tackle the problem of deviations as well as deviation with
anomalies, we divide evolution according to Vogel-Heusser et al. in long-term planned
evolution and short time ad-hoc evolution [30]. Following both categories two different
benefits of the CRI-Model become clear:

1. The CRI-Model provides a method to specify planned evolution a-priori as expected
deviation to the previously correct specification. Classified deviations help to identify
which adaptations in the system are needed and to better identify how and in which
areas the system is affected.

2. When the adaption of the specification is omitted in ad-hoc changes, a classification
of nonconforming behaviour with the CRI-Model serves as a documentation tool by
describing the stage of the evolution process.

Data Foundation: The evolution scenario dataset is based on a Pick-and-Place-Unit
that serves as a demonstrator for evolution of manufacturing systems. Detailed descrip-
tions are available in [31] and in over 50 related publications (see e.g. [13, 15, 30]). The
demonstrator includes 23 common evolution scenarios with 15 sequential and 8 parallel
evolution steps which typically happen in production systems. The demonstrator as shown
in figure 7 consists of five subsystems which are sequentially added by the evolution scen-
arios. The production system can handle three different products at its last evolution stage.
The subsystems are:

1. A stack as a storage for products. The products are released in the system as its input.
2. A crane transporting the products from and to the other subsystems by picking them

up with a vacuum rotary crane.
3. A stamp processing products by stamping them. The products are transported and

released to the crane.
4. A conveyor belt which transports the products on a moving belt from the crane to

output storage places.
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Figure 7. Case Study based on evolution scenarios (from [15])

5. Three output ramps as storage places which are filled by pushing products from the
conveyor belt into the ramps.

To observe deviations between the specification and observed behaviour this article uses a
self-documentation approach that rest on generating signal-based behaviour models (see
[13]). The approach automatically learns and analyses the behaviour based on externally
observable signal events. The learned models are specifically defined for automatic re-
cognition of deviation (the machine state and material flow is learned) and their analysis
regarding non-functional properties to evaluate evolution (see [14]).

Mapping Example: In the following two scenarios are exemplarily mapped to the CRI-
Model:

1. Scenario 5 (according to [31]): The root cause of this evolution scenario is a planned
change to improve the performance. The goal is to increase the workload of the pro-
duction system because it is the bottleneck in the involved supply chain which means
other systems like the disposal and logistic system require a higher production volume
(requirement change from the context). To satisfy the requirement change, it was dis-
covered that the behaviour of the crane is not optimal and therefore the software
implementation needs to be changed which is a reaction in the system logic on the
software code in the CRI-Model. The solution is an optimised crane behaviour which
now checks during the stamping process if another product is available in the stack
that does not need stamping. When this is the case, the crane transports this product
to the conveyor belt first, instead of waiting for the stamping process to finish. The
resulting deviation is according to the CRI-Model an increase in the performance
(timing properties) and production volume on the crane component.

2. Scenario 7 (according to [31]): Due to market requirements the production system
has the new demand to process a changed type of product. As a result the raw input,
which are plastic tanks, are no longer only black, but also can be white which is a
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CHANGE REACTION IMPACT
Trigger 23 Type 37 Effect 41

Maintenance 2 Structure 13 Timing Properties 8
Improvement 8 System Logic 14 Production Volume 8
Requirements 13 Production Environment 10 Topology 10

Capability 19
Triggered From 23 Reaction At 52 Impact On 40

Input 3 Mechanical Part 16 Input 3
Within 9 Automation Hardware 17 Stack 3
Output 2 Software Code 19 Crane 8
Context 9 Stamp 2

Slide 3
Conveyor Belt 11

Output 5
Context 5

Table 3. Count of scenarios mapped to the categories of the CRI-Model for cyber-physical produc-
tion systems

requirement change of the input in the CRI-Model. Each input must be processed
individually, but no sensor for detecting the colour is installed. The deviation is there-
fore a reaction in the production plant sensor topology, because neither the mechanic
nor the automation hardware or software is capable of detecting the colour of the
input. As a reaction an additional optical (infrared) digital sensor is installed at the
stack to allow the system to detect the brightness of the input. Therefore, an increased
capability of the stack and the input is the effect of the deviation in the CRI-Model.

Applicability of Categories: Table 1 presents an overview of how many scenarios could
be mapped to which categories within our six dimensions. Whereas the change is al-
ways based on one trigger in this case study, due to the versatility of the non-conformance
model the reaction and impact can have multiple types, effects and locations. It can be seen
that most deviations are improvements or requirement changes and are mostly triggered
by the system itself or its surrounding context. This is the result of the focused objective
of the evolution scenarios, in which the normal maintenance activities as well as greater
rewinds of the products are not directly targeted. Reaction and the involved different dis-
ciplines are quite well distributed along the scenarios. Here, the CRI-Model reveals that
the scenarios are well chosen, because the balanced distribution is a good result regard-
ing the demonstrator which explicitly tries to provide a wide range of different evolution
steps. The impact on the non-functional properties has a peak for capabilities which res-
ults in the fact that most scenarios extend the production system with new elements that
are mostly situated at the more complex plant components (crane and conveyor belt).
Therefore, the CRI-Model shows that maintainability and changeability of the crane and
conveyor belt should have the highest priority. These are deviations with anomalies which
are detected by metrics of non-functional properties of the different plant components (see
Ladiges et al. [13, 14] for the used approach).
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Trigger x From / Effect Maintenance Improvement Requirement
n = 2 n = 8 n = 13

Input 0 (0%) 0 (0%) 3 (23%)
Within 2 (100%) 6 (75%) 1 (8%)

Output 0 (0%) 0 (0%) 2 (15%)
Context 0 (0%) 2 (25%) 7 (54%)

Timing Properties 0 (0%) 5 (63%) 2 (15%)
Production Volume 1 (50%) 4 (50%) 2 (15%)

Topology 0 (0%) 4 (50%) 5 (38%)
Capability 2 (100%) 5 (63%) 11 (85%)

Table 4. Top: number (and percentage) of triggers within the given category of the column that are
triggered from the given location of the row. Bottom: number (and percentage) of triggers that have
an impact with the given effect.

Taxonomy Usage: To investigate the evolution scenarios and provide insights based on
the CRI-Model we exemplary want to determine what kind of causes and reactions result
in which impact on the system. Therefore, we first sort the deviations into a cross-matrix
of the trigger with its from dimension and the effect. (see table 4). Improvements are
mostly triggered by the system itself and equally affect non-functional properties which
means that metrics of timing, production volume, topology as well as capability should be
covered by the evolution detection method. In contrast, deviations triggered by changes
that are caused by modified requirements are much more often initialized by a new need
of the context of the production system and also sometimes by the product itself. Con-
sequently, also most of the time (85%) only the capability of the system is enriched. Based
on the CRI-Model deviations that are triggered by a requirement change have therefore
less effects on metrics of the timing or production volume. Such an information can, for
example, be used if the root change of a negative effect needs to be found.

Secondly, we analyse the deviations regarding the reactions, where the reactions happened
at and what impact they had (see table 5). First, the interdisciplinary of the targeted do-
main of cyber-physical production system can be shown in the results, because most re-
actions happen currently at the mechanical parts, the automation hardware as well as the
software. Only some reactions, for example, at the system logic impact just the software
as one isolated category. The reactions which affect the structure and production environ-
ment often lead to a wider capability of the system while a reaction at the system logic can
more often have an impact on other properties of the system. Therefore, when such a reac-
tion is performed by an engineer, she should much more closely look if her modification
does not lead to deviations on other components.

In general, mapping of evolution scenarios to the CRI-Model helps engineers to clas-
sify evolution, to analyse the evolution process and give indications which classes of
evolution steps the production system undergoes during its life cycle. Compared to just
using change requests, documenting the evolution along the CRI-Model provides an ad-
ded value, due to an increased semantic meaning. Beside the reaction as the adaptation
also the reason of the adaptation is documented in the trigger as well as the desired impact.
These are valuable information, when, for example, a malicious timing on one component
is detected. With the deviations ordered along the CRI-Model, evolution steps affecting
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Reaction x At / Effect Structure System Logic Production Environment
n = 13 n = 14 n = 10

Mechanical Part 11 (85%) 11 (79%) 7 (70%)
Automation Hardware 10 (77%) 9 (64%) 9 (90%)

Software Code 11 (85%) 14 (100%) 8 (80%)
Timing Properties 6 (46%) 7 (50%) 4 (40%)

Production Volume 6 (46%) 6 (43%) 4 (40%)
Topology 6 (54%) 7 (50%) 4 (40%)

Capability 12 (92%) 10 (71%) 10 (100%)
Table 5. Top: number (and percentage) of reaction with the characteristic of column on the given
location in the row. Bottom: number (and percentage) of reactions that have an impact with the
given effect.

the malicious timing of the component can be easily found as well as why this adaptation
was done.

Applying the CRI-Model to cyber-physical production system for planned changes as
well as ad-hoc changes has shown that the core aspects of the model can remain stable and
the tailoring of categorization is simple and sufficient. The presented CRI-Model allows to
classify deviations that are specified and planned in the same way as deviations resulting
from ad-hoc changes on-side which are detected by an the detection approach of [13].
Further it allows to combine these deviations of specification and behaviour in a shared
taxonomy with anomalies resulting as a malicious side-effect of changes or anomalies
resulting from a rupture in the system.

6. Conclusion and Future Work

Based on research in anomaly detection and software evolution as well as publicly avail-
able outage reports of system failures and evolution scenarios, we introduce the CRI-
Model, a taxonomy that maps non-conformances between behaviour and specification to
six dimensions. Non-conformances are classified based on their cause, reaction and im-
pact. This general mapping gives a good overview of different types of non-conformances
for both anomalies resulting from raputres as well as deviations resulting from changes.

The model offers extensibility by specifying categories based on a model-based spe-
cification of component types. This allows users of the model to adjust it to their needs,
while keeping a common understanding and language. The tailoring was shown and eval-
uated in two dimensions. First, the article distinguishes between different objectives by
considering malicious anomalies and desired deviations as well as their overlap. Second,
two domains are considered by tailoring the CRI-Model to distributed cloud systems and
cyber-physical production systems. It was shown how the dimensions and domain specific
categories provide a common taxonomy of these different but related areas of research.
Further we outlined benefits of using the taxonomy like the selection of anatomy detection
approaches and metrics or the documentation of an evolution process containing different
kinds of scenarios in a shared taxonomy.

Further research could augment the model by adding a common set of metrics or
detection techniques to each category of the taxonomy, easing the detection of specific
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classes and studying which classes are notoriously hard to detect or have big impact to
the company running the system. Further, a mapping of different metric types (system-
level vs. application-level metrics for instance) and their contribution to effective detec-
tion with different types could create new insights and be a valuable tool. This could also
include to formalise the abstract models to derive a formal representation of nonconform-
ing behaviour that could be used to describe anomalies or changes in a system Finally,
Tobergte et al. mention the need for an industry-wide repository of anomaly descriptions
[28] and Ibidunmoye et al. request a publicly available datastore for performance data-
sets similar to the scenarios evaluated for evolution of production system [11]. Creating
such databases with standardized formats (and dimensions, such as those from the CRI-
Model) could foster a better understanding of anomaly types, confirm choices of anomaly
detection approaches and allow a wider evaluation and comparison of those approaches.

To conclude, the taxonomy can be used for building and improving monitoring of
anomalies, improving processes to remedy anomalies in case of system outages and is
already been used to represent changes as evolution steps during runtime based on mod-
els shown in [13]. While a general purpose monitoring is desired, it may be hard to catch
all kinds of nonconforming behaviour. Retroactively the CRI-Model helps in identify-
ing areas that demand changes with the goal to improve quality of distributed systems.
The CRI-Model lays the ground-work for a future mapping of different behaviour classes
against existing detection and evolution approaches and creates a vocabulary and research
tool for further work in the field of anomaly detection and software evolution.
Acknowledgments. This work was partially supported by the DFG (German Research Foundation)
under the Priority Programme SPP1593: Design For Future Managed Software Evolution.
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Appendix B: Reports of System Outages

Company Date Source

HealthCare.gov 01.10.2013
https://www.theguardian.com/world/2013/oct/30/
health-secretary-sebelius-healthcare-website-hearing-live

Motorola 02.12.2013 https://www.cnet.com/news/motorola-delays-moto-x-cyber-monday-deal-after-site-crash
Bank of America 01.02.2013 http://www.cbsnews.com/news/bank-of-america-web-portal-back-online-after-outage
Yahoo 09.12.2013 http://www.theverge.com/2013/12/11/5201146/yahoo-apologizes-for-email-outage
AWS 13.09.2013 http://www.usatoday.com/story/tech/2013/09/13/amazon-cloud-outage/2810257/
Google
Amazon
Microsoft

19.08.2013
http://blog.smartbear.com/performance-testing/
any-given-monday-google-microsoft-and-amazon-all-experience-outages/

Nasdaq 22.08.2013
http://www.networkcomputing.com/government/
nasdaq-outage-explored-7-facts/276050510

LinkedIn 23.10.2013
http://www.onlinesocialmedia.net/20131023/
linkedin-outage-today-follows-facebook-going-down/

LinkedIn 18.06.2013 https://techcrunch.com/2013/06/19/linkedin-outage-due-to-possible-dns-hijacking/
Verizon 18.06.2013 http://www.datacenterdynamics.com/content-tracks/security-risk/95538.fullarticle

Twitter 19.01.2016
http://www.techradar.com/news/world-of-tech/
twitter-is-down-for-most-people-right-now-1313338

Microsoft 18.01.2016 https://www.theregister.co.uk/2016/01/25/office

Salesforce 03.03.2016
http://www.v3.co.uk/v3-uk/news/2449449/
salesforce-suffers-cloud-outage-and-service-disruption-in-europe

Salesforce 09.05.2016
http://www.zdnet.com/article/
circuit-breaker-failure-was-initial-cause-of-salesforce-service-outage/

Table 6. The List of system outages reports from (software) companies
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