
DOI: 10.2298/CSIS121114036H

Design and Implementation of an Efficient and

Programmable Future Internet Testbed in Taiwan

Jen-Wei Hu1, 2, Chu-Sing Yang1, and Te-Lung Liu2

1 Institute of Computer and Communication Engineering,
National Cheng Kung University, Tainan, Taiwan, R.O.C

{hujw, csyang}@ mail.ee.ncku.edu.tw
2 National Center for High-Performance Computing, Tainan, Taiwan, R.O.C

{hujw, tlliu}@nchc.narl.org.tw

Abstract. Internet has played an important part in the success of
information technologies. With the growing and changing demands,
there are many limitations faced by current Internet. A number of
network testbeds are created for solving a set of specific problems in
Internet. Traditionally, these testbeds are lacking of large scale network
and flexibility. Therefore, it is necessary to design and implement a
testbed which can support wide range of experiments and has the
ability of programmable network. Besides, there has been a big change
enabled by cloud computing in recent years. Although networking
technologies have lagged behind the advances in server virtualization,
the networking is still an importance component to interconnect among
virtual machines. There are also measurement issues with growing
number of virtual machines in the same host. Therefore, we also
propose integrating management functions of virtual network in our
testbed. In this paper, we design and create a Future Internet testbed in
Taiwan over TWAREN Research Network. This testbed evolves into an
environment for programmable network and cloud computing. This
paper also presents several finished and ongoing experiments on the
testbed for multiple aspects including topology discovery, multimedia
streaming, and virtual network integration. We will continue to extend
our testbed and propose innovative applications for the next generation
Internet.

Keywords: Future Internet, OpenFlow, Testbed, TWAREN.

1. Introduction

Internet has become the most important information exchange infrastructure
that provides business transaction, personal communication, information
sharing, etc. With wide range of applications and services applied to the
Internet, some challenges are issued beyond its original design including
scalability, security, mobility, flexibility, and so on [2], [10].

Jen-Wei Hu et al.

826 ComSIS Vol. 10, No. 2, Special Issue, April 2013

For resolving the increasing issues in current Internet, the U.S., E.U.,
Japan, and Korea have launched research projects for the Future Internet [5],
[7], [13], [14], [20]. There were many issues discussed in these projects,
especially on how to rethink and redesign decisions underlying current
network architecture. Each project has its different aspects for Future
Internet, but comes to the same conclusion, that is to provide an environment
for performing research. Therefore, an experimental infrastructure on real
networks is desirable to apply new protocols or develop new technologies.
However, running experiments on the production network may be risky [4],
and control-plane functions in most of network equipments are untouchable.
There are some research projects focusing on eliminating the barriers of
innovation, such as FEDERICA [8] and GENI [9]. The main goal is to develop
a programmable network and enable multiple researchers to obtain a slice of
resources by using network virtualization.

TaiWan Advanced Research & Education Network (TWAREN) [22] was
established and managed by NCHC, which has been operating since Jan,
2004. It was developed using the latest network technologies and can offer
users a variety of new services including IPv6, Multicast, and Light Path. The
goals of TWAREN network design are:

 Hybrid technology: IP (routing) over optical Light Path (dark fiber, SDH, or
Wavelength).

 Dual networks: production and research networks.

 Hierarchical topology: 3 tiers (cores, POPs, and end nodes).

 Multiple services.

 As shown in Fig. 1, TWAREN owns an island-wide network infrastructure in
Taiwan. It plays an important role like Internet2 in the U.S. and GEANT in
Europe. One mission of TWAREN is to continue developing and providing
new technologies and environment for researchers. To meet this goal, we
plan to deploy the Future Internet testbed in TWAREN and further extend
into universities or research institutes.

 Besides, cloud computing has become a common word in IT industry. One
key technology of cloud computing is hardware virtualization. A well-known
of hardware virtualization techniques is the hypervisor (e.g., VMware, Xen,
and KVM etc.) which allows multiple operating systems, called virtual
machines (VMs), running concurrently on a same host machine. However,
virtual networking technologies have lagged behind the advances in
hardware virtualization [17]. The main reason is that cloud computing
considers the service interaction more than network infrastructure. Each
virtual machine shares same physical resources including network
connection. Currently, most hypervisors use the existed network bridge to
provide virtual machines connectivity [18]. As everything is virtualized in
cloud environment, it gets even harder to manage. There still remains
many research topics and open problems (e.g., traffic visibility, isolation,
and security among VMs) in current cloud networking. In addition to
supporting programmable network, we also expect our architecture to

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 827

provide a small cloud environment in which virtual switching services are
enabled.

Fig. 1. TWAREN network structure [22]

The rest of this paper is organized as follows, In Section 2, we discuss
related work in existing Future Internet testbed. In Section 3, we outline the
implementation of our testbed and present current deployment status. Also,
we briefly describe useful management modules that have been run on the
testbed in Section 4. We present some performance results of our testbed in
Section 5. Finally, we conclude this paper with a summary of this work in
Section 6.

2. Background and Related Work

In this section, we present background information relevant to our work. We
also survey related work and point out their relationship to our work. To
design a future-proof testbed, there are some conditions that need to be
considered. The network on this testbed should be programmable and
isolable. Therefore, we first discuss Software defined network (SDN) and
OpenFlow [15]. Then we introduce two famous testbeds based on the SDN
architecture and discuss some similarities and differences between these
existing testbeds and ours.

Jen-Wei Hu et al.

828 ComSIS Vol. 10, No. 2, Special Issue, April 2013

2.1. SDN and OpenFlow

The current Internet architecture is not sufficient to support the emerging
applications in the future. One of the main reasons why new ideas cannot be
tested on production networks is the closed support from the vendors. Legacy
network devices, such as IP routers or Ethernet switches, run both data
planes and control planes. All control functions are implemented by vendors
and cannot be modified or touchable. To overcome these obstacles to testing
innovative ideas and redesigning the Internet architecture, SDN approach
was proposed. SDN separates data and control planes with well-defined
protocol. The control functionalities are taken out of the equipment and given
to a centralized or distributed system, while retaining only data plane
functionality on the equipment.

OpenFlow is one of SDN implementations, which is an initiative by a group
of people at Stanford University as part of their clean-slate program to
redefine the Internet architecture. Processing packets decisions are moved to
the OpenFlow controller. That means the network is programmable in
OpenFlow. Each OpenFlow-enabled switch performs packets forwarding
based on the flow table. The flow table contains a set of entries with packet
header fields, an action, and flow statistics. Each flow entry is associated with
actions that dictate how switch handles matching packets. Thus, OpenFlow
uses distinct entries of flow tables to achieve isolation among experiments.

2.2. Future Internet Testbeds

Global Environment for Network Innovation (GENI) [3], [8] is a US program
funded by the National Science Foundation (NSF). It is an experimental
facility designed to form a federated environment to allow networking
researchers to experiment on a wide variety of problems in communications,
networking, distributed systems, cyber-security, and networked services and
applications with emphasis on new ideas. GENI will provide an environment
for evaluating new architectures and protocols, over fiber-optic networks
equipped with optical switches, novel high-speed routers, radio networks and
computational clusters [3].

The GENI architecture can be divided into three levels, Physical substrate,
User services, and GENI Management Core (GMC). Physical substrate
represents the set of physical resources, such as routers, switches; User
services represent the set of services that are available for the users in order
to fulfill their research goals; GMC defines a framework in order to bind user
services with underlying physical substrate. In order to implement this, it
includes a set of abstractions, interfaces and name spaces and provides an
underlying messaging and remote operation invocation framework.

For constructing a topology of multiple substrates, GENI proposed the
Aggregate Manager to control its own domain. Each Aggregate Manager has
a unique RSpec which defines its Substrate resources. These RSpecs are

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 829

represented as a topology description of the individual substrate. However,
how to automatically discover a global perspective of substrate topology is
not mentioned.

The OpenFlow in Europe: Linking Infrastructure and Applications (OFELIA)
is another famous testbed, which is funded by the European Union as part of
its FP7 ICT work program. The OFELIA project consortium is made up
several academic partners, commercial organizations, and telecom
operators. Its infrastructure facility consists of five different islands spread
across the Europe. Each island will host different capabilities to offer different
functionalities to the researchers.

OFELIA architecture is still under development. However the architecture
will be based on OpenFlow technology [3]. Currently, OpenFlow switches
topology can be discovered when these reside in the single controller. With
the growing OpenFlow domains, the environment of multiple controllers is
needed for load balance. However, there does not have any mechanism
which automatically retrieves the topology among OpenFlow switches
controlled by multiple controllers.

3. Design and Implement Future Internet Testbed on

TWAREN

We explain how to design and implement the future-proof testbed with
OpenFlow in this section. As mentioned in Section 1, we expect the proposed
architecture not only supporting OpenFlow but also providing virtual switching
services for cloud networking research. To accomplish these goals, we
propose the architecture as shown in Fig. 2. There are three parts in our
design: Services layer, Networking layer, and Resources manager.

A number of controllers comprise the controller pool in the Services layer
[1]. We provide different types of controllers (e.g., standalone, virtual
machines) for researchers to request. If researchers would like to use their
own host machine as a controller, binding a public IP is the only constrain.
We use FlowVisor [19], a network virtualization layer of OpenFlow, to support
these external controllers. Because FlowVisor contains a mapping table, we
can maintain the relation between controllers from external users and our
OpenFlow switches. There are several servers in the Services layer, some of
them are classified as Virtualized Servers for concurrently running multiple
virtual machines and the other are categorized into Bare-metal Servers for
performance-concerned experiments.

Jen-Wei Hu et al.

830 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Fig. 2. Future Internet testbed architecture

For the Networking layer, we deploy legacy network equipments (e.g.,
switches, routers) and OpenFlow switches from different vendors including
HP, Extreme, and PC with NetFPGA card. Since OpenFlow switches have to
be operated at Layer 2 network, in this layer we provide hybrid solutions for
extending our testbed smoothly. First, we use one of many TWAREN
services, VPLS/VPN, which can connect multiple sites in the same local area
network. This service is very useful for creating Layer 2 networks
dynamically. However, there are some OpenFlow sites that cannot be applied
directly to VPLS. For resolving this problem, we reserve several servers in
the Service layer as tunneling servers in which software-based tunneling
tools are installed (e.g., Capsulator [6]). About Resources manager, we use
existing tools (e.g., OpenNebula, libvirt, virt-manager) to manage and control
VMs in servers. It also maintains several services configurations, such as
FlowVisor, tunneling, etc. We plan to develop a user interface for centralized
management.

However, there are some OpenFlow sites that cannot be applied directly to
VPLS. For resolving this problem, we reserve several servers in the Service
layer as tunneling servers in which software-based tunneling tools are
installed (e.g., Capsulator [6]). About Resources manager, we use existing
tools (e.g., OpenNebula, libvirt, virt-manager) to manage and control VMs in
servers. It also maintains several services configurations, such as FlowVisor,
tunneling, etc. We plan to develop a user interface for centralized
management.

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 831

Fig. 3. Current OpenFlow connection in TWAREN research network

At the beginning of our project, two universities in Taiwan (e.g., NCKU,
KUAS) participate in this Future Internet tesbed. Each site, including NCHC,
is connected by Capsulator for operating at Layer 2 network. To deal with
poor performance, we leverage VPLS service in TWAREN to provide a
hardware-based tunneling. Many institutes that have interests in Future
Internet research join our testbed, the current status is shown in Fig. 3.

Fig. 4. Participating institutes of iGENI project [12].

Jen-Wei Hu et al.

832 ComSIS Vol. 10, No. 2, Special Issue, April 2013

In 2011, we joined iGENI [12] project by TWAREN international
connection, as illustrated in Fig. 4. This will provide more real experiment
network for our testbed.

4. Management Functionalities on TWAREN Testbed

In this section, we briefly describe some network management modules
running on our testbed, which developed and resided in different aspects
including inter-domain topology and virtual machines management.

4.1. Management of Inter-domain Connection

As mentioned previously, OpenFlow separates data and control plane. The
only responsibility of OpenFlow switch is to forwarding received packets
according to its flow table. Other complex works (e.g., routing decisions) are
taken by controllers. Each OpenFlow switch has its own controller, so directly
connected switches can be easily perceived by controllers. In addition, LLDP
(Link Layer Discovery Protocol) packets are exchanged between any two
OpenFlow switches to figure out neighbor switches. With these links
information, controller can discover the topology in its controlled domain. As
Fig. 5 shows, there are four OpenFlow switches (e.g., OFA, OFB, OFC, and
OFD) residing in two different domains. Controller1 for Domain1 is responsible
for OFA and OFB while OFC, and OFD are taken by Controller2 in Domain2.
These two domains are directly connected by the link between OFB and OFC
in Fig. 5. However, two controllers do not specify these links in their
discovered object lists. That may cause the complexity of management and
link provisioning.

Fig. 5. Original inter-domain topology

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 833

For solving this problem, we proposed a mechanism to insert additional
information into LLDP messages. In addition, we modify some applications in
NOX for retrieving links among inter-domains. The full links information of
our proposed solution is illustrated in Fig. 6.

Fig. 6. Inter-domain information after applying proposed mechanism.

In general, LLDP information is sent by network devices from each of their
interfaces periodically. A LLDP frame, as shown in Fig. 7, is composed by a
series of LLDP Data Units (LLDPDUs). Each LLDPDU is a type-length-value
(TLV) structure. There are four mandatory TLVs and zero or more optional
TLVs in every LLDPDU.

Fig. 7. LLDPDU format

As mentioned above, we can obtain topology information from devices but
they must be resided in the same controller’s domain. Hence, our main goal
is to combine all topology information from different controllers. Through our
experiments and observations, we found LLDP packets are also exchanged
between any two directly connected devices. However, LLDP packets across
different domains will be eventually dropped by receiving controller because
they come from another domain. Since LLDP frame reserves optional TLVs
to be extended by vendors or users, we add an optional TLV which contains
controller information (e.g., IP and port) into generating application in NOX
controller. Then, we modify the dropping policy and stored the received LLDP
packets from different controller domains. Therefore, we aggregate all
received information to build an overall topology. Fig. 8 shows the operations
and relationship in modules of our mechanism.

Jen-Wei Hu et al.

834 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Fig. 8. Modules relationship in our mechanism

To verify the proposed mechanism in real OpenFlow network, we deploy it
in three different domains including NCHC in Taiwan, NWU (Northwestern
University) in the U.S., and CRC (Communications Research Centre) in
Canada. Fig. 9 shows the links topologies of this experiment [11].

Fig. 9. Auto-discovery applies in a real multi-controller environment.

Since our proposed mechanism adds extra domain information in original
LLDP packets, we quantified its processing overheads including CPU usage,

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 835

allocated memory, packet size, and processing time. We compare our
proposal results against the original NOX controller. We setup two Linux
hosts (Quad-code 2.53GHz, Xeon CPU, 4GB RAM, 1Gbps NIC), one to be an
OpenFlow controller and the other uses Mininet to create the network
topology which has 4 linear-connected OpenFlow switches.

Table 1. Comparison between original discovery application and our proposal

Mechanisms CPU
(%)

Memory
(MBytes)

Packet size
(Bytes)

Proc. Time
(sec)

Original application 1% 23 60 1.5974

Our proposal
(persistence version)

1% 23 60 7.5101

Our proposal
(on the fly version)

1% 23 60 1.6102

Each application in OpenFlow controller is event-driven. When an
OpenFlow switch receives packets, it will pass through all started applications
and trigger their Packet_In event. For each mechanism, we generate 100
LLDP packets to measure the performance results shown in Table 1. There
are no differences in CPU usage and allocated memory. The format of LLDP
has only 14 bytes, but most network equipments will send it in 60-byte packet
by padding the last few bytes. Although our mechanisms add extra
information in original LLDP packet (e.g., Optional TLV), the size of modified
LLDP packet is still less than 60 bytes. Therefore, the LLDP packet size is
also no different from the original one. In order to discover multi-domain
topology, we add a procedure to combine topology information received from
each neighbor domain. For measuring overhead of our proposals, we define
the processing time which represents a period starts from processing an
incoming LLDP packet to storing its recognized information in controller. In
our first proposal – persistence version, we had a poor performance than
origin because it stored the topology information into persistent file for
interoperating with multiple program languages application and recording
current topology in our system. Furthermore, we developed another version
(e.g., on the fly version) to solve this performance issue. It uses a compatible
data structure instead of file and creates a thread to periodically write the
topology information into file. There reduces much time when processing
LLDP packets.

Considering scalability, in [21] they mentioned on an eight-core machine
with 2GHz CPUs, NOX controller handles 1.6 million requests per second
with an average response time of 2ms. We add additional topology
information without affecting the original LLDP packet size and the time of
processing LLDP packets is nearly same as the origin. Therefore, our
proposals can have the same performance in real environment.

Jen-Wei Hu et al.

836 ComSIS Vol. 10, No. 2, Special Issue, April 2013

4.2. Management of Inter-domain Connection

In the past, standalone servers connect to physical switches directly. Many
management functions, such as access control, port mirroring, and so on, are
provided by network equipments. When moving to cloud, servers are
replaced by VMs and reside in host machines. The network connections
between servers and network devices have transferred to VMs and virtual
switches. In this management module, we focus on integrating packet
monitoring and network virtualization into our testbed, we call it VM manager
module.

Fig. 10. VM Manager module

The common way for separating various users is to assign distinct ranges
of private IP addresses. This mechanism can work properly in network
connectivity, but all users will be resided in the same broadcast domain. That
means users can access any virtual machines if they modify their own VM IP
address to specific IP ranges. With increasing the number of VMs per host,
this issue causes the difficulties of network management and security in cloud
environment. Open vSwitch [16] is an open source tool fitting our
requirements to resolve this problem. It implements 802.1q VLAN that can
isolate different broadcast domain to keep inter-VM security. In addition to
VLAN features, it also supports NetFlow, sFlow, and RSPAN for network
visibility.

VM Manager module is shown in Fig. 10. It crosses the three layers of our
testbed. In Resource Manager Layer, we use WebOS for our user interface
and OpenNebula for hypervisor manager respectively. For Services Layer,

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 837

we set up several servers for deploying VMs. Each of them is installed Open
vSwitch for virtual network and managed by OpenNebula. We implement
some integrated programs to bind OpenNebula and Open vSwitch smoothly.
Besides, we use Layer 2 technology, VLAN, to separate different VM users.
But the valid VLAN range is from 1 to 4095, it is the limitation of our VM
users in this status. We still develop and integrate other approaches to solve
this limitation. Each of virtualized servers contains a management port which
is connected to external analysis system for monitoring abnormal traffic
among VMs. This integrated mechanism provides security capabilities in our
VM users.

The VM resource allocation is an important issue for performance
transmissions. In general, users require multiple VMs which are often
arranged on the same host. Our VM manager module has different policies
(e.g., Round-robin, Keep-in-one-host, and Random) to allocate multiple VMs
requested from a single user. For suiting different types of VM services and
allocating efficiency, we measure the performance by different packet sizes
to provide allocating policy in our manager module. We setup two hosts
(Quad-code 2.53GHz, Xeon CPU, 16GB RAM, 1Gbps NIC), each of them
running 8 VMs and the measurement tool is “iperf”. Random choosing two
VMs on each hosts (e.g., one is server and the other is client) to be the same
host group. Then, we random choose one VM from other six VMs on each
host respectively, and assign these two VMs as the different hosts group.
Other VMs (e.g., five VMs in each host) run the same application which has
ten megabytes in memory usage and one percent of CPU time. Our
experiment results are shown in Fig. 11, larger packet size increases
throughput because it generates less number of packets when transferring
the same data frame. Each packet has fixed header, thus fewer packets will
have less overhead (e.g., the source and destination addresses). We can
also observe that the throughput for assigning two or more VMs on the
different hosts is exceeds than arranging them on the same host as the
packet size exceeds 32K. In this situation we find two hosts need using more
memory to buffer and process packets when these two VMs on the same
host. However, the memory usage will be shared and reduced if these two
VMs are on different hosts. Therefore, we think packet size will be a factor in
allocating VM resources. According to this experiment result, we extend the
default VM allocation with a network-oriented policy which considers network
factors (in currently, we just define default transferring packet size) to assign
VM resources in our manager module.

Jen-Wei Hu et al.

838 ComSIS Vol. 10, No. 2, Special Issue, April 2013

Fig. 11. Throughput of different VM assignment approaches.

5. Testbed Performance Result

As described the Networking layer of our testbed architecture in Section 3, we
built two different mechanisms for network connection. In this section, we will
do some performance experiments to measure the overhead of these two
mechanisms in our testbed. In addition, VM Manager is also an important
module in our testbed. We will compare its performance against original
OpenNebula in this section.

In Table 2, NCHC-TN and NCHC-HC are the southern and the northern
departments of our center respectively. The distance between NCHC-HC and
NCHC-TN is around 230 km. Another site of our experiment, NCKU, is a
university in southern Taiwan. The distance to NCKU from NCHC-TN is
around 20 km while.

Our latency experiments used 100 64-byte packets. The first row in Table
2 shows the result. We also measured one-direction TCP throughput by
different sizes of packets. For each case, we ran 20 30-second trials. The
results show that VPLS technology is significantly faster and more efficient
than the mechanism with tunneling software.

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 839

Table 2. Micro-benchmarks for TWAREN Future Internet testbed overheads

Cases VPLS Tunneling Software

NCHC-TN
to NCHC-
HC

NCHC-TN to
NCKU

NCHC-TN to
NCHC-HC

NCHC-TN to
NCKU

RTT (ms) 3.512 0.895 5.822 2.873

Throughput
(1M packet)
(Mbps)

461 815 75.7 89.2

Throughput
(10M packet)
(Mbps)

473 831 76.5 89.3

Throughput
(100M packet)
(Mbps)

472 838 75.5 87.6

For comparing network throughput between VM Manager and original

OpenNebula, we set up two Linux hosts which create four VMs in each host.
Each VM has one-core 2.53GHz CPU, 512MB memory, and 1Gbps NIC. For
the first trial, we compared the VM TCP throughput of VM Manager and
original OpenNebula on the same host. We chose one host and divided its
VMs into two groups. One VM of each group is running iperf server and the
other is client. In this experiment, each group received a result and we chose
minimum one of them to be TCP throughput. The Fig. 12 shows the first trial
result. Clearly, VM Manager outperforms original OpenNebula at any sizes of
transferring packets.

Fig. 12. Throughput with VMs on the same host

Jen-Wei Hu et al.

840 ComSIS Vol. 10, No. 2, Special Issue, April 2013

The second trial, we consider the network performance when VMs are
arranged on different hosts. We classified two hosts into two groups, one host
make its all VMs be iperf servers and all VMs of the other host are iperf
clients. The experiment result is shown in Fig. 13, which appears VM
Manager outperforms original OpenNebula by 19% in average.

Fig. 13. Throughput with VMs on the different hosts

6. Conclusion

In this paper, we propose and create a Future Internet testbed which has the
capabilities for programmable network and cloud. This testbed is deployed
over TWAREN Research Network. We experiment and verify different
research activities on this tesbed, including Future Internet and cloud. In our
future work, we will keep developing more innovative functions for Future
Internet. It will be useful to build and maintain a cross organization and a
large scale multinational Future Internet platform. We believe the TWAREN
Future Internet testbed opens up a new environment in Taiwan for network
research. It enables us not only to design new thoughts, but also to solve and
verify current issues in real network.

References

1. Bădică, C., Budimac, Z., Burkhard, H., Ivanović, M.: Software Agents:
languages, tools, platforms. Computer Science and Information Systems, Vol. 8,
No. 2, 255-296. (2011).

Design and Implementation of an Efficient and Programmable Future Internet
Testbed in Taiwan

ComSIS Vol. 10, No. 2, Special Issue, April 2013 841

2. Bellovin, S. M., Clark, D. D., Perrig, A., and Song, D.: A Clean-Slate Design for
the Next-Generation Secure Internet. GENI Design Document 05-05. (2005).

3. Belter, B., Campanella, M., Farina, F., Garcia-Espin, J., Jofre, J., Kaufman, P.,
Krzywania, R., Lechert, L., Loui, F., Nejabati, R., Reijs, V., Tziouvaras, C.,
Vlachogiannis, T., and Wilson, D.: Virtualisation Services and Framework –
Study. Formal report from European Commission. (2012).

4. Bianco, A., Birke, R., Giraudo, L., and Palacin, M.: OpenFlow Switching: Data
Plane Performance. Communications (ICC), 2010 IEEE International
Conference, pp. 1-5. (2010).

5. Cameron, D.: Internet2: The Future of the Internet and Next-Generation
Initiatives. Computer Technology Research Corp. (1999).

6. Capsulator, http://www.openflow.org/wk/index.php/Capsulator.
7. Fairhurst, G., Collini-Nocker, B., and Caviglione, L.: FIRST: Future Internet: A

Role for Satellite Technology. IEEE International Workshop on Satellite and
Space Communications (IWSSC). (2008).

8. FEDERICA: Federated E-infrastructure Dedicated to European Researchers
Innovating in Computing network Architectures, http://www.fp7-federica.eu/.

9. GENI: Global Environment for Network Innovations, http://geni.net.
10. Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J., Xie, G.,

Yan, H., Zhan, J., and Zhang, H.: A Clean Slate 4D Approach to Network Control
and Management. ACM SIGCOMM Computer Communication Review, Vol. 35,
Issue 5. (2005).

11. Huang, W. Y., Hu, J. W., Lin, S. C., Liu, T. L., Tsai, P. W., Yang, C. S., Yeh, F.
I., Mambretti, J. J., and Chen, J. H.: The Implement of Automatic Network
Topology Discovery System in Future Internet across Different Domains. 26th
International Conference on Advanced Information Networking and Applications
Workshops (WAINA). (2012).

12. iGENI: International Global Environment for. Network Innovations,
http://groups.geni.net/geni/wiki/IGENI.

13. Kim, D. Y., Mathy, L., Campanella, M., Summerhill, R., Williams, J., Shimojo,
S., Kitamura, Y., and Otsuki, H.: Future Internet: Challenges in Virtualization and
Federation. Fifth Advanced International Conference on Telecommunications,
(AICT), pp.1-8. (2009).

14. Lee, J., Kang, S., Lee, Y., and Lee, J.: A Study on the Future Internet
Requirement and Strategy in Korea. 10th International Conference on Advanced
Communication Technology (ICACT), Vol. 1, pp. 627-629. (2008).

15. McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L.,
Rexford, J., Shenker, S., and Turner, J.: Openflow: enabling innovation in
campus networks. SIGCOMM CCR, Vol. 38, no. 2, pp. 69-74. (2008).

16. Open vSwitch, http://www.openvswitch.org/.
17. Pettit, J., Gross, J., Pfaff, B., and Casado, M.: Virtual Switching in an Era of

Advanced Edges. 2nd Workshop on Data Center – Converged and Virtual
Ethernet Switching (DC-CAVES), ITC 22. (2010).

18. Pfaff, B., Pettit, J., Koponen, K.A.T., Casado, M., and Shenker, S.: Extending
networking into the virtualization layer. Proceedings of the ACM SIGCOMM
HotNets. (2009).

19. Sherwood, R., Gibb, G., Yap, K. K., Apenzeller, G., Casado, M., McKeown, N.,
and Parulkar, G.: FlowVisor: A Network Virtualization Layer. Tech. Rep.
OPENFLOWTR- 2009-1, OpenFlowSwitch.org. (2009).

20. Stuckmann, P. and Zimmermann, R.: European research on future Internet
design. IEEE Wireless Communications, Vol. 16, Issue 5, pp. 14-22. (2009).

Jen-Wei Hu et al.

842 ComSIS Vol. 10, No. 2, Special Issue, April 2013

21. Tootoonchian, A., Gorbunov, S., Ganjali, Y., Casado, and M., Sherwood, R.: On
Controller Performance in Software-Defined Networks. 2nd USENIX Workshop
on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and
Services (Hot-ICE). (2012).

22. TWAREN Research Network, http://www.twaren.net/.

Jen-Wei Hu received the B.S. degree in Applied Mathematics from National
Chung Hsing University, Taiwan, in 2001, and the M.S. degree in Computer
Science and Engineering from National Sun Yat-sen University, Taiwan, in
2003. Currently, he works as an Assistant Engineer in the Network and
Security Division of National Center for High-Performance Computing,
Taiwan. His current research interests include Software-Defined Networking,
Networking in data centers, and Multipath transmission.

Chu-Sing Yang is a Professor of Electrical Engineering in the Institute of
Computer and Communication Engineering at National Cheng Kung
University, Tainan, Taiwan. He received the B.Sc. degree in Engineering
Science from National Cheng Kung University in 1976 and the M.Sc. and
Ph.D. degrees in Electrical Engineering from National Cheng Kung University
in 1984 and 1987, respectively. He joined the faculty of the Department of
Electrical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan,
as an Associate Professor in 1988. Since 1993, he has been a Professor in
the Department of Computer Science and Engineering, National Sun Yat-sen
University. He was the chair of the Department of Computer Science and
Engineering, National Sun Yat-sen University from August 1995 to July 1999,
and the director of the Computer Center, National Sun Yat-sen University
from August 1998 to October 2002. He was the Program Chair of ICS-96 and
Program Co-Chair of ICPP-2003 and MTPP-2010. He joined the faculty of
the Department of Electrical Engineering, National Cheng Kung University,
Tainan, Taiwan, as a Professor in 2006. He participated in the design and
deployment of Taiwan Advanced Research and Education Network and
served as the deputy director of National Center for High-performance
Computing, Taiwan from January 2007 to December 2008. His research
interests include future classroom/meeting room, intelligent computing,
network virtualization.

Te-Lung Liu received the B.S. and Ph.D. degrees in computer science from
the National Tsing Hua University, Hsinchu, Taiwan, R.O.C., in 1995 and
2002, respecively. He is currently a Research Scientist in National Center for
High-Performance Computing, Tainan, Taiwan, R.O.C. He is also a Team
Member of the Taiwan Advanced Research and Education Network
(TWAREN) and now working on OpenFlow Testbed in Taiwan. His current
research interests include Software-Defined Networking, Future Internet,
optical networks, and network design.

Received: November 14, 2012; Accepted: April 05, 2013

http://www.twaren.net/

