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Abstract. A Job Shop Scheduling Problem (JSSP), where p processes and n jobs 

should be processed on m machines so that the total completion time is minimal, 

is a well-known problem with many industrial applications. Many researchers 

focus on the JSSP classification and algorithms that address the different JSSP 

classes. In this research work, the production times, a very well-known theme 

covered in Industrial Engineering (IE), are integrated into an Evolutionary 

Algorithm (EA) to present a solution for real-world manufacturing JSSP problems 

solving. Since a drawback of classical IE is a manual determination of the 

technological times, an Internet of Things (IoT) architecture is proposed as a 

possible solution. 
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1. Introduction 

The production planning/scheduling problem has been known for a very long time. 

Very often, we can find it under the term "Job Shop Scheduling Problem" (JSSP). The 

term first appeared in the 1950s, more specifically around 1954 [1]. JSSPs are generally 

known to belong to the group of the so-called non-deterministic problems, bound by 

polynomial-time hardness (NP or non-deterministic polynomial-time hardness). In 

practice this means that the time to calculate the optimal solution increases 

exponentially with the problem's size. JSSP is still considered to be one of the most 

challenging problems in terms of computation complexity today.  

In the early research, several analytical techniques, like a branch and bound and 

heuristic approaches, have been proposed to solve the problem and deliver an optimal or 

near-optimal solution. With problem size growth (number of machines, jobs, processes), 

those approaches were not able to deliver the expected results anymore. Hence, more 

recently, the studies turned to other techniques, like simulation, Artificial Intelligence 

(AI) [38], and Evolutionary Algorithms (EAs) [26]. EAs are population-based search 

algorithms, which mimic concepts from biological evolution, such as survival of the 

fittest, crossover, and mutation. EAs are known to have a remarkable balance between 

exploration and exploitation [22] [51], which is needed to search an enormous space of 
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all possible solutions efficiently [29], [21] [32]. Early examples of EAs are Genetic 

Algorithms (GAs), Evolutionary Strategies (ES), and Genetic Programming (GP) [26]. 

While recently, state-of-the-art metaheuristics are variants of Differential Evolution 

(DE) (e.g., jDE [20], SHADE [39]), and CMA-ES (IPOP-CMA-ES [7]). Algorithms 

that mimic problem-solving from nature are nowadays flourishing, and belong to a 

wider group of Swarm Intelligence (e.g., ABC [31] [34] [25]), or Computational 

Intelligence (e.g., TLBO [36], [23]). They are suitable for solving complex real-world 

problems [28], [37], [30], where the search space is simply too big to check all possible 

solutions. 

Since 1985, when Davis [2] proposed the first GA based solution for the JSSP 

problem, a lot of research has been done to address the scheduling problem. The studies 

that followed developed different constraints, representations, and algorithms to 

classify, differentiate, and solve Shop Scheduling Problems (SSPs). In the recent review 

[9] fourteen classes of JSSP have been identified, based on their main characteristics: 

Job arrival process, inventory policy, duration time processing, and job attributes, as 

shown in Figure 1. We will explain the main characteristics of those 14 types in Section 

2.2. 

Although all of them are trying to solve the JSSP by arranging an optimal schedule 

with different goals (e.g., minimizing the makespan [4], completion time, the lateness of 

the due date, tardiness, throughput time), they still rely on a universal unit of 

measurement: Time. If we want to apply any JSSP solution in the real world, we need to 

clarify what kind of times should be used where and how to measure them successfully. 

Here, we rely on the relatively old knowledge from Industrial Engineering (IE) to 

define, measure and classify the production times precisely, as shown in Figure 1. That 

way, a "communication channel" between the real world and JSSP domain can be made. 

According to [8,10] three different approaches for production time determination exist: 

the actual data approach, the plan data approach, and the hybrid approach. In order to 

schedule production, any approach can be used, usually resulting in the implementation 

of a global standard methodology for time determination [8,10,11] (e.g. MTM, REFA, 

MOST, Work factor). If a manufacturing company product diversity is taken into 

account, the existence of a production time data database is a necessity and is usually 

covered by an "Enterprise Resource Planning" (ERP) System. Production management 

can access the data to schedule the production, but the traditional scheduling approaches 

(especially ad-hoc) very often don't achieve the desired results, possibly causing 

significant production efficiency decrease.  

In this paper, we want to take advantage of the principles and methods found in IE 

[8,10,11] and combine them with an Evolutionary Algorithm (EA) JSSP approach in 

order to optimize and simplify the manufacturing scheduling process for production 

management by introducing a solution in the form of a tool.  
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Fig. 1. Production time types and determination approaches, different JSSP classes 

The main contributions of this research work are: 

 Extending the JSSP with the time parameters found in manufacturing as defined by 

IE, 

 Introducing an EA solution for a static flexible deterministic JSSP in the form of a 

tool, 

 Proposing an IoT architecture to mitigate manual determination of technological 

times, 

 Providing a use case with real-world data. 

The rest of the paper is organized as follows. Section 2 covers the problem 

explanation and the time determination possibilities as per IE. In Section 3, we explain 

the proposed approach. Section 4 displays the solution use case example, problems, and 

results. Section 5 concludes with a summary of this work, adding some possible future 

research possibilities. 
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2. The proposed approach 

2.1. JSSP description  

How can we explain what the basic JSSP is? Informally, the problem could be described 

as follows: We have a set of jobs and a set of machines. Each job consists of a sequence 

of continuously performed processes for a specific time on a particular machine. Each 

machine can complete only one process at a time. The "schedule" represents the 

occupancy of machines with processes at specific time intervals. The key problem for 

this situation is creating a schedule where the finish time of the final process in the 

schedule is minimal. In general, the problem could be described formally as follows. Let 

the finite set M represent the set of all machines, and the finite set J represent the set of 

all jobs: 

                 (1) 

and 

                  (2) 

If each job needs to be processed on all machines, but only once on each machine, 

the set representing the job sequence per machine could be written as a matrix   of size 

     . For example: 

    
  
  
  

  
  
  

     (3) 

Each row in the matrix represents a job order for the machine             . The 

above matrix can therefore be read as: Machine processes on the machine    will be 

performed in the sequence:         ,    processes, on the machine    will be performed 

in the sequence:         ,  , and processes on the machine    will be performed in the 

sequence:             . We can quickly conclude that the matrix   is only one element of 

a broader set (let's call it, for example, the set  ) of all possible combinatorial variants, 

i.e.,      . 

If we want to search for an optimal schedule, we need a general estimation function   

that can calculate the exact "value" for each matrix      : 

                (4) 

or, if we look more precisely, for each element of the matrix: 

                    (5) 

Throughout the paper, we will use the index   for jobs and index   for machines. 

Because JSSP algorithms are used to optimize the time required, a common output of 

the estimation function represents the total execution time (also called timespan or 

makespan). Other possible function outputs include, and are not limited to, flow time 

(total weighted completion times) and lateness or tardiness (with a due date) [9]. The     

function, therefore, calculates the total execution time of the job    on the machine   . 

The JSSP solution is, therefore, a matrix      , where the makespan       for 

completing all the tasks (or jobs) is minimal, or that there is no known      where 

             . In other words, the solution of JSSP is to find a schedule where: 

- simultaneous processing of multiple jobs on the same machine is not possible, 

- the same job cannot be processed simultaneously on multiple machines, 
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- each operation for an individual job occupies each machine for a specific time  , and 

- the makespan is minimal. 

2.2. Related work, JSSP classes and types 

Although we have limited ourselves to the JSSP (Figure 1), we should first explain that, 

in general, three basic Shop Scheduling Problems (SSP) types exist [3]:  

- Flow Shop Scheduling Problem (FSSP), 

- Job Shop Scheduling Problem (JSSP), and 

- Open Shop Scheduling Problem (OSSP). 

The problem that needs to be solved for all the above-mentioned Shop Scheduling 

Problems is the same; the only difference is their limitations. In the case of FSSP, each 

job has exactly the same number of machine processes, and the sequence of machine 

processes for each job is predefined and the same, for example: 

   :              

   :              

   :             . 

(6) 

The possible sequences are usually limited by the technological process, and could be 

written for every job as:   :            , where       and      . 

As already explained, the solution to the problem lies in finding a machine sequence 

where the estimation function (makespan) for completing all jobs is minimal. 

In contrast to FSSP, the JSSP machine sequences are also limited by technology and 

known in advance, but they can vary, for instance: 

   :              

   :              

   :             . 

(7) 

Thus, for each job, we can write the technological machine sequence for a specific 

job     as                  , where       and      . It should be 

emphasized that, in the case of simple JSSPs, we assume that the number of processes 

for each job is equal to   or the number of machines (i.e., each job "travels" through all 

machines exactly once). In real life, however, often there is a situation where this 

number is less than  , meaning that each job does not need to be processed by all 

machines. Another case is where the number of processes exceeds  , resulting in 

repeating the machine process on an operation multiple times.  

In the case of OSSP, the sequences of machine processes aren't predefined. It is often 

assumed that the number of machine processes for a job is equal to  , meaning that all 

machine processes must be completed for each job. We have to emphasize that OSSP 

occurrence is extremely rare in the real world. 

If we look at JSSP, we can see many different types in Figure 1. We can classify 

them further by different criteria: job arrival criteria, time parameter criteria, and other 

criteria. 

Using job arrival criteria two types of JSSP can be defined: 

- Static JSSP, and 

- Dynamic JSSP. 

For static JSSPs, a finite number of jobs are ready for processing on a finite number 

of machines at the time zero [40]. An unexpected event occurrence is not possible.  
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Dynamic JSSPs are similar, except the job occurrence is random [3]. In both cases, the 

order of precedence of operations and processing times are predefined. 

Using time parameter criteria, several types of JSSP can be defined: 

- Deterministic JSSP, 

- Flexible JSSP, 

- Stochastic JSSP, and 

- Fuzzy JSSP. 

If the processing time for every operation of job   on every machine   is known in 

advance and the operation sequence order is predefined, we can classify it as a 

deterministic JSSP (also called a crisp JSSP) [42]. The flexible JSSP extends the 

deterministic JSSP by allowing a machine operation to be processed by one machine out 

of a set of machines, thereby adding the problem of assigning each operation to a 

specific machine (routing) [41]. Stochastic JSSPs introduce parameters dealing with 

probability conditions, for instance, machine breakdown or processing time [16]. Since 

real-world JSSP times often don't have deterministic value, fuzzy values (processing 

times, due date, ranking) have been incorporated into JSSP, hence the name fuzzy JSSP 

[43]. 

Using other criteria, further types of JSSP can be defined: 

- Periodic JSSP, 

- Cyclic JSSP, 

- Preemptive JSSP, 

- No-wait JSSP, 

- Just-in-time JSSP, 

- Large-scale JSSP, 

- Reentrant JSSP, and 

- Assembly JSSP. 

The periodic JSSP is an iterative version of the JSSP where a batch of size   of each 

job is processed iteratively [44]. The cyclic JSSP deals with a set of process operations 

that cycle an indefinite number of times by minimizing the period length [45]. In case 

the algorithm allows the interruption of an operation during processing on a specific 

machine and to continue at a later time, we're talking about pre-emptive JSSP [46]. The 

no-wait JSSP introduces the no-wait constraint between two sequential operations by 

delaying the job starting time at the first machine operation [47]. The just-in-time JSSP 

is solving the earliness-tardiness problem of jobs by penalizing both options [48]. The 

large-scale JSSP approach can be used when huge numbers of machines and jobs are 

required [49]. The Reentrant JSSP extends a deterministic JSSP, where a job operation 

may be repeated multiple times [50]. The assembly JSSP extends the JSSP by 

appending an assembly stage and introducing lot streaming (LS) thereby splitting the 

job into smaller batches and taking away job independence. 

Many other subtypes exist, many of them extending the basic types with different 

constraints and Objective Functions, for instance, machine blocking constraints [17]. 

Recent research even covers the so-called "low-carbon" JSSPs by pursuing the goal to 

minimize the sum of completion time cost and energy consumption cost [18]. 
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2.3. Time in Industrial Engineering (IE) 

Since we'll be using production time as a parameter for the JSSP solution, we must take 

a look at how IE is determining and structuring production time. According to REFA 

[8], similar to Seifermann [10], when we need to determine a time for specific work or 

work part on an operational level, different approaches exist, as shown in Figure 2:  

 

Fig. 2. Overview of different IE methods for time determination 

The actual data approach requires the presence of an analyst in the workplace for 

work observation and measurement. In contrast, the plan data approach just requires a 

detailed work process analysis for work time determination. The hybrid approach 

combines techniques from the mentioned ones. 

We should emphasize that the times that need to be determined for JSSP use are 

usually called "target times" ("Sollzeit") [8] or norm times. They often represent the 

foundation for different manufacturing divisions, like production planning and 

management, costing, controlling, and remuneration. Some of the mentioned divisions 

require another type of time called "actual time" ("Istzeit") [8] for their work, that 

represents the actual spent amount of time that has been used to complete a specific job.  

According to REFA [8][14], the following applies: 

        . (8) 
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The total target time   is divided into setup time (  , "Rüstzeit") and work time (  , 

"Arbeitszeit"). The setup (also called changeover) times are quantity independent, and 

can be defined as: 

- Fixed, for a specific job/machine, and 

- Variable or sequence-dependent, for a specific job/machine. 

In serial production, work time    can be written as: 

          . (9) 

Whereas quantity   ("Menge") stands for the total quantity of products required for a 

specific operation and/or job, depending on the level being used. The variable called    

("Einzelzeit") stands for time per unit, and defines the target time required to 

manufacture/process one unit of the product (liter, kg, meter, piece). The setup time is 

not quantity dependent, as displayed in Figure 3: 

 

Fig. 3. Production timeline example 

Each time we swap the product (or change the job) on a machine, the setup time 

usually occurs at the beginning and/or at the end of the process. The processes that 

require setup times can start before the previous process step in the job has finished. As 

shown in the example in Figure 4, the setup time    is one unit long. The total time T for 

job 3 on machine 3 is actually two units, but since machine 3 is IDLE before job 3 on 

machine 4 is finished, the setup on machine 3 can start.  

 

Fig. 4. Setup time 

Time per unit    gets divided further into three parts, namely: 

                   . (10) 

The first variable in the equation, basic time    ("Grundzeit") represents the time of a 
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the basic time [15]. Those disturbances can be divided further into contingency 

allowances     , personal allowances     and special/constant allowances     . 

Contingency allowances cover short stochastic process delays like machine breakdown 

or raw material shortage, for example. Personal allowances cover personal needs like 

toilets or drinking fluids. Special or constant allowances are usually given per work 

period, and cover the time needed for work that isn't bound directly to any work order, 

like cleaning at the end of the shift or tooling at the beginning of the work. Allowances 

can be defined per product/process/machine, but, usually, they are defined on a higher 

level, for example, a group of workplaces or a sector, or even for the entire production 

plant. The third variable,     ("Erholungszeit") or relaxation allowances, occur only in 

harsh work conditions (heat, radioactive environment, etc.) and, similar to the 

allowances, raise the basic time by a certain percent to compensate for the delegated 

breaks. 

A specific approach for determination can be used for every time component 

mentioned. To determine basic times, usually an observation methodology is used, like 

time study, or a predetermined time system (MTM, Work factor or MOST).  

Time study  

A time study approach requires the use of a chronometer, and is completed by an 

analyst, who is present while the work is being executed. The process can be divided 

into four phases: 

- Work (place) analysis and phases definition, 

- On-site work measurement (using a chronometer), performance rating, 

- Time study analysis, and 

- Reporting and data updating. 

The measurement usually requires multiple cycles (or samples) to get reliable data. 

Predetermined time systems 

In contrast, predetermined time systems instead use motion study as the foundation 

[11]. There is no need for on-site presence if you are able to break down the work into 

single standardized motion elements, the building blocks of a predetermined time 

system.  

Only basic time is determined by summing times for all identified motion elements 

using matrices on cards, as defined by the Standard (MTM, MOST or Work factor). 

Table 1 displays the standard MTM-1 motions. By combining basic motion elements 

(MTM-1, for example), higher-level motion elements can be defined (MTM-UAS or 

MTM-MEK, for example). 
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Table 1. MTM-1 standard motion elements [13] 

Hand/arm motion 

elements 

Eye motion 

elements 

Body, leg and foot motions 

Reach (R) Eye travel (ET) Foot motion (FM) 

Grasp (G) Eye focus (EF) Leg motion (LM) 

Release (RL)  Sidestep (SS) 

Move (M)  Turn body (TB) 

Position (P)  Walk (W) 

Apply pressure (AP)  Bend (B), Arise from bend (AB) 

Disengage (D)  Stoop (S), Arise from stoop (AS) 

Turn (T)  Kneel on one knee (KOK), Arise from 

kneeling on one knee (AKOK) 

  Kneel on both knees (KBK), 

Arise from kneeling on both knees 

(AKBK) 

  Sit (SIT), Stand (STD) 

Allowances 

Work sampling (Multimoment analysis) or long-term time study (LTTS) can be used 

for determining allowances. Since we're determining stochastic events` frequency and 

duration, a much larger sample size is required compared to the classical time study. 

If we want to extend the technology matrix (e.g. from Tables 3 or 4) with the time 

definitions, as explained earlier in this Section, we should define the time for each cell 

in the technology matrix as: 

        
        

     
      

  . (11) 

where       and      . 

3. Solution implementation 

According to Section 2.2, the presented approach could be classified as a static flexible 

JSSP solution, meaning that we have all the jobs ready at time zero. All the processing 

times are predefined and for each operation, and the solution can choose a machine out 

of a set of machines. The number of processes   is not necessarily equal to   machines, 

with the meaning: 

- If     : The job doesn't have to visit every machine, and 

- If     : The job re-enters a specific machine as defined by the technology matrix. 

Chromosome representation 

When implementing an EA solution, the first problem is the representation of an 

individual in the form of a chromosome [26]. We chose to use the unpartitioned 

permutation with m-repetitions representation [5][12]. Every job   (out of   jobs) 

consists of   processes that we have to schedule on   machines, thus giving us a two-

row chromosome with the size of      elements  , as shown in Figure 5: 
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Fig. 5. Chromosome representation 

In this formulation, each job    appears exactly   times (number of defined 

processes) in the first row of the chromosome, while the second row specifies the 

process sequence for a specific job, consisting of   elements (machines). When 

scanning the job order from left to right, each job iteration increases the machine 

operation index for that job by 1 (Figure 5). Permutation, in this case, only means a 

change in the order in which the job processes will be performed, as shown in Figure 6: 

 

Fig. 6. Schedule permutation example 

Table 2. Predefined machine order with times` example 

Operation 
1. 2. 3. 4. 

Job 

J1 M1, 2 M2, 4 M3, 1 M4, 2 

J2 M2, 3 M1, 2 M4, 1 M3, 2 

J3 M1, 3 M2, 1 M4, 2 M3, 1 

Usually, gene J1 with occurrence index 1 in the chromosome means that the 

processing (if possible) must begin on machine 1, the next occurrence of this index 

implies that the processing must begin on machine 2, the next occurrence on machine 3, 

etc. as defined by the Job 1 machine order.  

A job/machine is usually defined as a fixed Table value (Table 2), meaning that the 

processing for job 1 on machine 1 lasts two units, on machine 2 four units, etc. Since we 

classified the solution as flexible, rather than using Table 2, we defined another Table, 

named the technology matrix, for each job   consisting of   processes on   machines. 

Table 3 shows an example of a technology matrix filled with times for job J1 from 

Table 2. The Table itself introduces the flexibility by letting the solution choose 

between different machines for the same process, in case we have multiple machines 

available, as shown in Table 4. Process 1 for Job 1 can be completed on machine 1 

lasting two units, or on machine 3 lasting three units, and process 2 can be completed on 

machine 2 or 3 (4 and 5 time units). In table 3, we also demonstrated the option where 

the number of processes exceeds the number of machines (   ). If     for any 

job, the chromosome size raises to           . In case the number of processes for a 

specific job is lower than the number of machines (   ), the unused processes 

simply get a value of 0 for any machine.  

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order
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Table 3. Technology matrix for job J1 with fixed machines and times as per the example 

 
M1 M2 M3 M4 

P1 2 X X X 

P2 X 4 X X 

P3 X X 1 X 

P4 X X X 2 

Table 4: Technology matrix for job J1 with machine options and    : 

 M1 M2 M3 M4 

P1 2 X 3 X 

P2 X 4 5 X 

P3 X X 1 X 

P4 X X X 2 

P5 X 3 X X 

 

Because the 2
nd

 row of the chromosome representation from Figure 5 still can't 

change (static JSSP), we can calculate the search space for the chromosome upper part 

for the JSSP representation as: 
        

     
   (12) 

Formula (12) is based on permutations with repetition and because the number of 

processes is the same for all jobs, the denominator has the exponent  . 

If we use the formula in our example from Table 1, the search space is limited by 

34,650 different chromosomes. If we extend the static JSSP to flexible JSSP, where we 

define a matrix with different machine options (routing) for each job process, we can 

extend formula (12) to: 
        

     
                                 

 

   

 

   
  (13) 

meaning that the number of feasible chromosomes will grow because now even the 

2
nd

 row of the chromosome (machine sequence) can change accordingly. By using 

formula (13), our example search space (let's presume the technology matrix from Table 

4 is the same for all 3 jobs) grows to 2,217,600 different chromosomes. If we presume 

that all technology matrices are full (worst-case scenario, there are no infeasible 

solutions, every process can be completed on every machine), we can define the search 

space as: 
        

     
            (14) 

This gives us a search space of 581,330,534,400 different chromosomes for our 

example.  

The chromosome phenotype [26] can be represented by using a Gantt chart (Figure 

7): 
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Fig. 7. Phenotype representations of Table 2 using a Gantt diagram (machine/job) and 

(job/machine) representation 

Or, if we want to use the matrix representation (3), we could write: 

    

   
   
   
   

   . (15) 

If a job needs fewer processes than   to finish, the excessive processes get machine 

processing times with a duration of 0. If a process can not be completed on a specific 

machine as per the technology matrix (that chromosome represents an infeasible 

solution), that individual gets a "bad" fitness value which may, possibly, drive it out of 

the population. 

Initial population 

In the current solution a random schedule population is generated with defined 

parameters: Number of jobs, number of machines, number of processes. A technology 

matrix with the size of       is required for each job   . 

Selection operator(s) 

Two selection operators have been implemented: Tournament selection and roulette 

wheel selection [26]. The tournament selection picks a group of a specific size randomly 

out of the population and orders the group according to the chromosomes' fitness 

values. The best individual is selected as one of the parents. The roulette wheel uses the 

individual fitness value (makespan) and normalizes it to 1 by dividing it by the total 

fitness of all individuals in the group, thus defining the probability of selection. 
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Crossover operators 

Four different crossover operators have been implemented: Single point, two point, 

uniform, and ordered crossover operators [26]. For single point crossover, a random 

index   is selected between 1/4 and 3/4 of the chromosome size  . Then the first   

genes are copied from parent 1 and the rest from parent 2, starting at gene      , 

considering every job can only occur   times in every chromosome, skipping the gene 

otherwise. When the copy index reaches  , we continue at the beginning of the 2
nd

 

parent chromosome (Figure 8). 

The two-point genetic operator defines two indexes, the starting index   and ending 

index  . They both get selected randomly, then the genes between index   and   get 

copied from parent 2. The next step is to copy the genes from parent 1, where the 

occurrence count of a specific job in the gene of the chromosome doesn't exceed the 

number of processes  . Finally, the empty spaces are filled with copies of genes from 

the second parent, but in an order in which they appear in the second parent after the 

ending index   (Figure 9). 

The uniform operator works very simply; it's flipping a coin for every gene, to decide 

whether the offspring will contain the gene from parent 1 or 2, starting at the beginning 

of the chromosome and counting the occurrence of each job in the gene. When the job 

occurrence count for the chosen job reaches  , we try to insert the gene from the other 

parent, and if the occurrence count of that gene hasn't reached  , we copy it to the 

offspring. Otherwise, we skip the gene. After the index reaches the chromosome size  , 

we copy the remaining missing genes from parent 2, starting with the first gene. 
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Fig. 8. Single point crossover operator (Random position k = 4, chromosome size N = 12) 

 

Fig. 9. Two-point crossover operator (Random position k = 4, l = 9, chromosome size N = 12) 

The ordered crossover operator (OX, Figure 10) is very similar to the two-point 

genetic operator, except that, after copying the genes between the starting index   and 

ending index  , the rest is copied from the first parent, starting at the index    and 

skipping values where the occurrence count of a specific gene exceeds the number of 

processes  . 

Parent 1

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Parent 2

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Offspring

Job order J1 J2 J2 J1 J3 J1 J2 J3 J1 J3 J2 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Parent 1

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Parent 2

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Offspring

Job order J1 J2 J2 J1 J3 J1 J2 J3 J1 J3 J3 J2

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M4

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order
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Fig. 10. Ordered crossover operator (OX) 

Mutation operators 

Two widespread mutation operators have been implemented: Exchange values and 

change values (Figure 11). The change value operator first selects a gene in the 

chromosome randomly, then changes the machine in the gene to a random machine  , 

where        

 

Fig. 11. Change value mutation operator 

The change value operator cannot affect the job order because of the occurrence 

limitation. The exchange value operator selects two random genes and switches the job 

order and machine values (Figure 12). 

Parent 1

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Parent 2

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Offspring

Job order J2 J2 J1 J2 J3 J1 J2 J3 J1 J3 J3 J1

Machine 

operation
M2 M3 M4 M1 M2 M1 M4 M3 M1 M2 M4 M1

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Original

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Mutated chromosome

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M1 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order
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Fig. 12. Exchange values mutation operator 

Fitness function 

While building the solution, we focused on a static deterministic production, meaning 

that the process times are known, and the jobs are ready at time zero. As already 

mentioned, we chose makespan as the fitness function for the implementation. 

Makespan can be written as      and represents the time when the last operation 

process is completed [6]: 

                     (16) 

where: 

                   
 

   
 (17) 

Variable    stands for job   completion time,     stands for waiting (or IDLE) time 

of job   at sequence    and        stands for the processing time for job   on machine   

at sequence  . 

Algorithm 

The pseudocode of the proposed GA is shown in Figure 13. At first, a random 

population of a predefined size is generated and makespans are calculated, the best one 

noted. Then, in a predefined loop of size MaxIterations, we use the chosen selection to 

select a group of chromosomes and perform a crossover with the two best parents in the 

group. Afterward, we apply the mutation operator to the two children. The two worst 

individuals in the group get substituted by the two children, the best makespan gets 

checked. We apply another mutation on a random chromosome in the population and 

recheck if the best makespan changed. If 1/3 of the population went through the loop 

and the best makespan hasn't changed, we inject a % of fresh random chromosomes into 

the population. 

The algorithm can be improved further using Long Term Memory Assistance 

(LTMA) [24], where duplicate solutions are identified. As such, time-consuming fitness 

evaluation is spared. 

All the algorithm parameters can be changed by the user directly in the tool, like 

population size, selection group size, mutation probability pm, terminal condition 

MaxIteration, selection type, crossover-type, mutation type, and % of random 

chromosome injection if the fitness function didn't evaluate any better solution for 1/3 

of the MaxIteration. The crossover probability pc is set to 1.  

Original

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine 

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Mutated chromosome

Job order J1 J2 J1 J1 J1 J2 J3 J2 J2 J3 J3 J3

Machine 

operation
M1 M2 M1 M4 M2 M1 M4 M3 M3 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order
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createInitialPopulation(population size) 

calculateMakeSpans() 

while (I < MaxIteration) 

{ 

 doSelection(group size) 

 doCrossover(best parent1, best parent2) 

 doMutation(best child1, best child2) 

 replace(worst parent1, worst parent2) with (best 

 child1, best child2) 

 checkBestMakeSpanChanged(best child1, best child2) 

 doMutation(random chromosome) 

 checkBestMakeSpanChanged(mutated chromosome) 

 if (bestMakeSpan has not changed after 1/3 of   

 MaxIteration) 

 { 

    injectNewRandomChromosomes(a % of population size) 

    reset MakeSpanChanged counter 

 } 

} 

Fig. 13. Genetic algorithm pseudocode 

3.1. IoT 

A potential approach in determining production times could also be by implementing a 

solution based on the Internet of Things (IoT) technology [35][19]. The goal of using 

IoT is to minimize or completely eliminate the need for human intervention in actual 

and target time data gathering, e.g., using IR scanners or terminals.  

A sample IoT architecture for such purpose can be seen in Figure 14. Because the use 

case in the next Section was completed in a shoe factory, we will explain the working 

principle for the latter. The workers are using trolleys to transport upper shoes from one  

machine to another. Currently, each trolley receives a unique job (work order) barcode, 

so the worker can scan this barcode and a barcode on the machine to signal the 

beginning or end of a work process. This way, the ERP system can track the job 

completion status at the process level. However, tracking time and status in the 

explained way requires a high amount of discipline among the workers, meaning that 

any delay or mistake (e.g., forgetting to register at the beginning, or at the end of the 

process) in the registration can potentially produce unexplainable errors in the data 

interpretation. IoT use minimizes the registration mistake possibility. 

Figure 14 explains a different approach proposal. The trolley must "know" which job 

it is carrying, so the Production Manager must somehow provide the ERP system with 

that information before the trolley is launched (e.g. by using a barcode or Radio-

Frequency Identification (RFID) technology). The trolley must be equipped with a 

small computer, System on Chip (SoC), ESP8266 used in the example, and different 

sensors. In our case, the trolley is also equipped with two load cells, an RFID scanner, 

an accelerometer, and a gyroscope. When the worker drives the trolley around the shop, 

the accelerometer and gyroscope sensors detect movement and send the movement time 

data across WiFi to the Message Queueing Telemetry Transport (MQTT) broker using 

the MQTT protocol. The time resolution and data amount require the use of a No-SQL 



 A JSSP Solution for Production Planning Optimization           367 

Database (e.g., MongoDB) to store the streamed data.  When the worker stops in front 

of a specific machine to start working on a job, the trolley has to stand still in a specific 

place for a certain amount of time. RFID tags on the reserved trolley position should be 

used to bind the machine ID to the current job ID. Again, the time data should be sent to 

the broker as soon as the sensor recognizes the RFID tag, and also when it leaves the 

reserved position. While the worker is completing the job on the machine, the two load 

cells stream the trolley weight data to the MQTT broker. Because only streaming the 

time data to a database still wouldn't provide input to the JSSP solution, an intelligent 

service is required to match and identify production events described above and allocate 

the time data to a specific process and define the type of time. 

Using IoT as a means of determining production times opens a new perspective, not 

only for the JSSP solutions: 

- Automatic target times` actualization based on chronological time data: Basic 

times, setup times and allowances in the ERP and/or other services like a JSSP tool,  

- Delegation of short-term delayable allowance events (e.g., filling containers with 

very fine material, non-urgent cutting tool change, personal needs, etc.), 

- Scheduling progress monitoring & dynamic re-launch of the JSSP search in case of 

unforeseen schedule deviations (e.g. longer machine breakdowns, unexplainable long 

delays, etc.). 
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Fig. 14. An IoT production time determination architecture proposal 

4. Use case 

The implementation was made with a specific goal in mind, to optimize daily 

production scheduling/job launch for a shoe company. The shoe company has many 

production sectors, but for the use case, we focused on only a specific one, the upper 

shoe production sector. The problem that occurred is that the company was not able to 

define a daily job schedule with a predictable outcome. Additionally, the information 

about jobs and quantities for the upcoming day are usually defined at the end of the 

shift. Usually, the Production Managers were the ones delegating the work according to 

their past experience.  

Papers and journals often use the term "machines" in JSSP, but, in practice, we can 

generalize the meaning of "resource." This small alteration is beneficial, since, in 

general, the term is a useful definition for manual workplaces as well as machines or 

machine types or groups; the principles described in Section 3.3 are valid for all. If we 

look at the parameters in Table 5 for a specific production request at the beginning of 

the week we got from the company:  
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Table 5. JSSP / time parameters 

No. of different resources   … 38  

Max. no. of processes      … 20 

No. of jobs/shift… 7 

Basic times    … defined per resource / 

process / job  

Setup times    … fixed per resource, 

only M1 and M38 needing 5 minutes 

Allowances    … 7% (fixed for all 

resources / jobs) 

Relaxation allowances     … 0% 

(normal working conditions) 

 
 

Job m (pcs required) 

1 20 

2 280 

3 140 

4 140 

5 150 

6 50 

7 100 

sum 880 

Immediately, we can see the dimensions of the real-world problem. The total number 

of pieces (pairs) of shoes was 880, the task was split into seven jobs. Each job 

technology matrix contained 760 different matrix cells (possible process times) per job, 

meaning that each job contained a maximum of twenty processes that could be 

performed on 38 resources, as shown in Figure 15: 

 

Fig. 15. Job 1 technology matrix for the first 20 machines as defined by the product technology 

For each row (or process), we calculated the time      that is needed for a specific 

resource, in order to complete the job quantity  . Figure 15 displays the technology 

matrix containing the required time data:       and   , where the times are delimited 

with a semi-column. If multiple cells are filled in the same row, the process can be 

completed with either of the resources, as explained in Section 2. For manual work, the 

times were usually the same, or very similar, for every possible resource, because the 

resource location is  not very time relevant. The letter X in a cell means that it is 

impossible for the process to be completed on this resource. Since Job 1 in Figure 15 

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 ...

P1 5;0,7;7% X X X X X X X X X X X X X ...

P2 X X X X X 0;0,75;7% 0;0,75;7% X X X X X X X ...

P3 X X 0;0,79;7% X 0;0,79;7% X X 0;0,79;7% X X X X X X ...

P4 X X X X X 0;0,61;7% 0;0,61;7% X X X X X X X ...

P5 X X X X X X X X 0;0,61;7% X X X X X ...

P6 X X X X X X X X X 0;0,33;7% X X X X ...

P7 X X X X X X X X X X X X 0;0,56;7% X ...

P8 X X X X X X X X X X X X X X ...

P9 X X X X X X X X X X X X X X ...

P10 X X X X X X X X X X X X X X ...

P11 X X X X X X X X X X X 0;0,93;7% X X ...

P12 X X X X X X X X X X X X X 0;1,31;7% ...

P13 X X X X X X X X X X X X X X ...

P14 X X X X X X X X X X X X X X ...

P15 X X X X X X X X X X X X X X ...

P16 X X X X X X X X X X X X X X ...

P17 X X X X X X X X X X X X X X ...

P18 X X X X X X X X X X X X X X ...

P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...
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only needs 18 processes to finish, processes 19 and 20 get a value 0 for every machine. 

The company used LTTS for allowances` determination, and used a fixed value for all 

resources. Figures 16 and 17 display the actual tool window where all the parameters 

can be set, and the obtained solution is visualized [33]. 

To calculate the search space, we used the formula (12), so the upper chromosome 

part can be evaluated as: 
        

     
  

         

      
             

and the lower part to (without infeasible solutions): 

                
 

   

 

   
 

meaning a  search space size without any infeasible solutions is roughly around 

             different chromosomes, or around              including the infeasible 

solutions. 

The settings we used for GA were chosen experimentally in order to find the optimal 

solution as fast as possible: 

Table 6. Used genetic parameters and their settings 

Iteration count 500,000 

Population size 5,000 

Crossover type Uniform (pc = 0.5) 

Selection type Tournament 

Tournament size 10 

Mutation type Exchange values 

Mutation probability 5% 

The algorithm has been run 20 times in sequence using the parameters from Table 6. 

95% (19/20) of the time, the algorithm was able to find the optimal makespan (3,503 

minutes) in around 30-35 seconds on the I7-7800X 6 core computer (12 logical 

processors) with 16GB of RAM.  
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Fig. 16. App window example without lot streaming 

 

Fig. 17. App window example using lot streaming  

Table 7 shows the data gathered across the 20 runs. Figure 18 shows a 3d histogram 

displaying the discrete IDLE time occurrence per machine. 
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Table 7. Results of running the algorithm 20 times 

 Best 

found at 

[s] 

Elapsed 

time [s] 

Total 

IDLE 

time 

[min] 

Makespan 

[min] 

Run 1 7,367 30,707 120369 3503 

Run 2 4,532 30,979 120384 3503 

Run 3 6,311 30,694 120379 3503 

Run 4 6,91 31,228 120305 3503 

Run 5 4,425 30,874 120305 3503 

Run 6 25,999 30,84 120379 3506 

Run 7 5,987 35,819 120196 3503 

Run 8 6,469 35,394 120308 3503 

Run 9 7,946 35,564 120389 3503 

Run 10 8,427 35,429 120379 3503 

Run 11 9,1 34,821 120359 3503 

Run 12 7,852 34,854 120374 3503 

Run 13 4,72 34,581 120318 3503 

Run 14 10,76 34,057 120342 3503 

Run 15 8,272 34,643 120364 3503 

Run 16 5,286 34,831 120285 3503 

Run 17 10,051 34,49 120152 3503 

Run 18 7,093 34,797 120374 3503 

Run 19 4,017 34,763 120374 3503 

Run 20 8,819 35,921 120384 3503 
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Fig. 18. IDLE time histogram per resource 

The IDLE interval for all resources lay between [2583,3586] so the histogram IDLE 

intervals are defined between [2600,3550], with a step of 50. The graph shows that the 

machine IDLE times` occurrences are mainly concentrated in the upper bound of the 

IDLE interval, closer to the makespan (3000 < IDLE < makespan), except for maybe 

M33 and M34, meaning all the other resources are badly utilized. Ideally, the IDLE 

time occurrence count should be as close to 0 as possible. 

Because the shoe company production was lot-organized, they split the entire job 

(order) quantity into smaller lots. The lot size was standardized and consisted of 10 

pairs. This kind of approach is called lot streaming [4]. By splitting each job into sub-

jobs of 10, the EA job parameter stretches from 7 to 88, remarkably increasing the 

search space (formula 12): 
        

     
  

          

       
              

                                             
 

   

 

   
 

meaning we have around               different chromosomes without infeasible 

solutions, or               including all the infeasible solutions. Because of the 

increase the algorithm wasn't able to find the optimal solution with the EA parameters 

described in the use case. Even by doubling the initial population and quadrupling the 

iteration count, the algorithm success rate dropped significantly. The best-found 

makespan was 1,504, reducing the result found with the non-lot approach by 57%.  
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Table 8. Comparison of IDLE time/utilization between lot streaming and conventional scheduling 

 Utilization IDLE time 

8 jobs 88 jobs 8 jobs 88 jobs 

M1 20,75% 75,04% 79,25% 24,96% 

M2 0,00% 0,00% 100,00% 100,00% 

M3 10,76% 26,86% 89,24% 73,14% 

M4 18,01% 41,94% 81,99% 58,06% 

M5 12,15% 26,78% 87,85% 73,22% 

M6 9,89% 22,72% 90,11% 77,28% 

M7 10,78% 25,40% 89,23% 74,60% 

M8 22,36% 51,78% 77,64% 48,22% 

M9 18,84% 43,87% 81,16% 56,13% 

M10 0,20% 0,47% 99,80% 99,53% 

M11 10,31% 21,74% 89,70% 78,26% 

M12 10,90% 25,92% 89,10% 74,08% 

M13 9,11% 21,20% 90,90% 78,80% 

M14 11,37% 27,39% 88,63% 72,61% 

M15 9,17% 21,71% 90,84% 78,29% 

M16 12,18% 29,73% 87,82% 70,27% 

M17 10,45% 22,98% 89,55% 77,02% 

M18 5,40% 8,28% 94,60% 91,72% 

M19 3,61% 7,72% 96,39% 92,28% 

M20 3,49% 8,79% 96,51% 91,21% 

M21 4,11% 12,08% 95,90% 87,92% 

M22 7,71% 20,39% 92,29% 79,61% 

M23 7,00% 17,25% 93,00% 82,75% 

M24 8,60% 17,88% 91,40% 82,12% 

M25 7,99% 15,16% 92,01% 84,84% 

M26 9,73% 24,28% 90,27% 75,72% 

M27 8,48% 18,13% 91,52% 81,87% 

M28 9,61% 21,09% 90,40% 78,91% 

M29 4,65% 12,56% 95,35% 87,44% 

M30 0,61% 4,63% 99,40% 95,37% 

M31 1,15% 8,20% 98,86% 91,80% 

M32 1,94% 4,34% 98,06% 95,66% 

M33 17,31% 48,08% 82,69% 51,92% 

M34 19,03% 36,54% 80,98% 63,46% 

M35 19,01% 44,27% 80,99% 55,73% 

M36 12,25% 28,52% 87,76% 71,48% 

M37 8,26% 23,84% 91,74% 76,16% 

M38 7,75% 22,76% 92,26% 77,24% 

AVG 9,60% 23,43% 90,40% 76,57% 

Table 8 displays the utilization data comparison between using the lot streaming 

(best found) and not using the lot streaming (conventional scheduling). The average 

machine utilization rate rose from 9,60% to 23,43%.  
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We must emphasize the importance of setup times    when using lot streaming. They 

play a significant role when searching for the optimal schedule. If they occur a 

maximum of   times per job   in conventional planning, the number of occurrences 

multiplies by              when using lot streaming. This can cause the utilization rate to 

rise, but can also cause the makespan to increase.  

Since the production was using lot streaming, we must compare the computed 

makespan of 1504 minutes with real-world data. The 88 carts were finished in around 

3,5 shifts, resulting in 1680 minutes, meaning an efficiency increase of around 10,5% 

could be achieved by scheduling alone, confirming that using JSSP solutions in real-

work can prove beneficial. Currently, daily scheduling is still left to the product 

engineers. Because of the size and complexity of the scheduling problem, no traditional 

tool can be used, so they launch the products daily simply by experience alone.  

5. Conclusion 

Implementing an EA solution for a specific Job Shop Scheduling Problem and 

combining it with Industrial Engineering knowledge proved to deliver good results. 

Many issues found in other types of JSSP were addressed, like shorter stochastic events 

and setup times, for example. Using the typical time components found in 

manufacturing brought the user domain and the science domain closer together. 

However, any schedule provided by a schedule optimization system like the one 

proposed can only be used as a guideline. The tool introduced in the article can be used 

at the end of the day for next-day scheduling by product engineers to search for the best 

option on how and when to launch the planned products but still must be extended by 

experience parameters that aren't included in the algorithm like specific worker skills or 

machine experience, for instance. Any longer stochastic event that can occur (and is not 

covered by allowances) would render the provided schedule unusable. The user can still 

rerun the optimization with the current situation parameters, but that could prove time-

consuming. The proposed schedule could require rerouting the resources in a 

completely different way. Another drawback of classical Industrial Engineering is that 

all the time components necessary still demand a lot of work from a time analyst before 

all the technological times are determined. On the plus side of Industrial Engineering, 

we can find many manufacturing companies and even ERP systems using the time 

definitions mentioned. Another plus side is that any company target times should be as 

accurate as possible, otherwise causing inaccurate planning and cost calculations, 

providing an excellent fundament for JSSP. Future work should extend the solution with 

the proposed IoT architecture to measure and classify production times in real-time, and 

deliver the required data for the JSSP solution that would be run dynamically 

automatically.  
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