
Computer Science and Information Systems 18(1):349–378 https://doi.org/10.2298/CSIS201009058S

A JSSP Solution for Production Planning Optimization

Combining Industrial Engineering and Evolutionary

Algorithms

Sašo Sršen and Marjan Mernik

University of Maribor

Faculty of Electrical Engineering and Computer Science

Koroška cesta 46, 2000 Maribor, Slovenia

saso.srsen@student.um.si, marjan.mernik@um.si

Abstract. A Job Shop Scheduling Problem (JSSP), where p processes and n jobs

should be processed on m machines so that the total completion time is minimal,

is a well-known problem with many industrial applications. Many researchers

focus on the JSSP classification and algorithms that address the different JSSP

classes. In this research work, the production times, a very well-known theme

covered in Industrial Engineering (IE), are integrated into an Evolutionary

Algorithm (EA) to present a solution for real-world manufacturing JSSP problems

solving. Since a drawback of classical IE is a manual determination of the

technological times, an Internet of Things (IoT) architecture is proposed as a

possible solution.

Keywords: JSSP, Genetic Algorithms, Evolutionary Algorithms, Industrial

Engineering, Internet of Things

1. Introduction

The production planning/scheduling problem has been known for a very long time.

Very often, we can find it under the term "Job Shop Scheduling Problem" (JSSP). The

term first appeared in the 1950s, more specifically around 1954 [1]. JSSPs are generally

known to belong to the group of the so-called non-deterministic problems, bound by

polynomial-time hardness (NP or non-deterministic polynomial-time hardness). In

practice this means that the time to calculate the optimal solution increases

exponentially with the problem's size. JSSP is still considered to be one of the most

challenging problems in terms of computation complexity today.

In the early research, several analytical techniques, like a branch and bound and

heuristic approaches, have been proposed to solve the problem and deliver an optimal or

near-optimal solution. With problem size growth (number of machines, jobs, processes),

those approaches were not able to deliver the expected results anymore. Hence, more

recently, the studies turned to other techniques, like simulation, Artificial Intelligence

(AI) [38], and Evolutionary Algorithms (EAs) [26]. EAs are population-based search

algorithms, which mimic concepts from biological evolution, such as survival of the

fittest, crossover, and mutation. EAs are known to have a remarkable balance between

exploration and exploitation [22] [51], which is needed to search an enormous space of

350 Sašo Sršen and Marjan Mernik

all possible solutions efficiently [29], [21] [32]. Early examples of EAs are Genetic

Algorithms (GAs), Evolutionary Strategies (ES), and Genetic Programming (GP) [26].

While recently, state-of-the-art metaheuristics are variants of Differential Evolution

(DE) (e.g., jDE [20], SHADE [39]), and CMA-ES (IPOP-CMA-ES [7]). Algorithms

that mimic problem-solving from nature are nowadays flourishing, and belong to a

wider group of Swarm Intelligence (e.g., ABC [31] [34] [25]), or Computational

Intelligence (e.g., TLBO [36], [23]). They are suitable for solving complex real-world

problems [28], [37], [30], where the search space is simply too big to check all possible

solutions.

Since 1985, when Davis [2] proposed the first GA based solution for the JSSP

problem, a lot of research has been done to address the scheduling problem. The studies

that followed developed different constraints, representations, and algorithms to

classify, differentiate, and solve Shop Scheduling Problems (SSPs). In the recent review

[9] fourteen classes of JSSP have been identified, based on their main characteristics:

Job arrival process, inventory policy, duration time processing, and job attributes, as

shown in Figure 1. We will explain the main characteristics of those 14 types in Section

2.2.

Although all of them are trying to solve the JSSP by arranging an optimal schedule

with different goals (e.g., minimizing the makespan [4], completion time, the lateness of

the due date, tardiness, throughput time), they still rely on a universal unit of

measurement: Time. If we want to apply any JSSP solution in the real world, we need to

clarify what kind of times should be used where and how to measure them successfully.

Here, we rely on the relatively old knowledge from Industrial Engineering (IE) to

define, measure and classify the production times precisely, as shown in Figure 1. That

way, a "communication channel" between the real world and JSSP domain can be made.

According to [8,10] three different approaches for production time determination exist:

the actual data approach, the plan data approach, and the hybrid approach. In order to

schedule production, any approach can be used, usually resulting in the implementation

of a global standard methodology for time determination [8,10,11] (e.g. MTM, REFA,

MOST, Work factor). If a manufacturing company product diversity is taken into

account, the existence of a production time data database is a necessity and is usually

covered by an "Enterprise Resource Planning" (ERP) System. Production management

can access the data to schedule the production, but the traditional scheduling approaches

(especially ad-hoc) very often don't achieve the desired results, possibly causing

significant production efficiency decrease.

In this paper, we want to take advantage of the principles and methods found in IE

[8,10,11] and combine them with an Evolutionary Algorithm (EA) JSSP approach in

order to optimize and simplify the manufacturing scheduling process for production

management by introducing a solution in the form of a tool.

 A JSSP Solution for Production Planning Optimization 351

Time study

Work sampling

IOT
Static JSSP

Dynamic JSSP

Deterministic JSSP

Flexible JSSP

Stochastic JSSP

Fuzzy JSSP

Periodic JSSP

Cyclic JSSP

Preemptive JSSP

No-wait JSSP

Just-in-time JSSP

Large-scale JSSP

Reentrant JSSP

Assembly JSSP

Predetermined time

standards

Hybrid methods

Total time

Setup time

Work time

Time per unit

Basic time

Personal allowance

Contingency allowance

Constant allowance

Recovery time

Fig. 1. Production time types and determination approaches, different JSSP classes

The main contributions of this research work are:

 Extending the JSSP with the time parameters found in manufacturing as defined by

IE,

 Introducing an EA solution for a static flexible deterministic JSSP in the form of a

tool,

 Proposing an IoT architecture to mitigate manual determination of technological

times,

 Providing a use case with real-world data.

The rest of the paper is organized as follows. Section 2 covers the problem

explanation and the time determination possibilities as per IE. In Section 3, we explain

the proposed approach. Section 4 displays the solution use case example, problems, and

results. Section 5 concludes with a summary of this work, adding some possible future

research possibilities.

352 Sašo Sršen and Marjan Mernik

2. The proposed approach

2.1. JSSP description

How can we explain what the basic JSSP is? Informally, the problem could be described

as follows: We have a set of jobs and a set of machines. Each job consists of a sequence

of continuously performed processes for a specific time on a particular machine. Each

machine can complete only one process at a time. The "schedule" represents the

occupancy of machines with processes at specific time intervals. The key problem for

this situation is creating a schedule where the finish time of the final process in the

schedule is minimal. In general, the problem could be described formally as follows. Let

the finite set M represent the set of all machines, and the finite set J represent the set of

all jobs:

 (1)

and

 (2)

If each job needs to be processed on all machines, but only once on each machine,

the set representing the job sequence per machine could be written as a matrix of size

 . For example:

 (3)

Each row in the matrix represents a job order for the machine . The

above matrix can therefore be read as: Machine processes on the machine will be

performed in the sequence: , processes, on the machine will be performed

in the sequence: , , and processes on the machine will be performed in the

sequence: . We can quickly conclude that the matrix is only one element of

a broader set (let's call it, for example, the set) of all possible combinatorial variants,

i.e., .

If we want to search for an optimal schedule, we need a general estimation function

that can calculate the exact "value" for each matrix :

 (4)

or, if we look more precisely, for each element of the matrix:

 (5)

Throughout the paper, we will use the index for jobs and index for machines.

Because JSSP algorithms are used to optimize the time required, a common output of

the estimation function represents the total execution time (also called timespan or

makespan). Other possible function outputs include, and are not limited to, flow time

(total weighted completion times) and lateness or tardiness (with a due date) [9]. The

function, therefore, calculates the total execution time of the job on the machine .

The JSSP solution is, therefore, a matrix , where the makespan for

completing all the tasks (or jobs) is minimal, or that there is no known where

 . In other words, the solution of JSSP is to find a schedule where:

- simultaneous processing of multiple jobs on the same machine is not possible,

- the same job cannot be processed simultaneously on multiple machines,

 A JSSP Solution for Production Planning Optimization 353

- each operation for an individual job occupies each machine for a specific time , and

- the makespan is minimal.

2.2. Related work, JSSP classes and types

Although we have limited ourselves to the JSSP (Figure 1), we should first explain that,

in general, three basic Shop Scheduling Problems (SSP) types exist [3]:

- Flow Shop Scheduling Problem (FSSP),

- Job Shop Scheduling Problem (JSSP), and

- Open Shop Scheduling Problem (OSSP).

The problem that needs to be solved for all the above-mentioned Shop Scheduling

Problems is the same; the only difference is their limitations. In the case of FSSP, each

job has exactly the same number of machine processes, and the sequence of machine

processes for each job is predefined and the same, for example:

 :

 :

 : .

(6)

The possible sequences are usually limited by the technological process, and could be

written for every job as: : , where and .

As already explained, the solution to the problem lies in finding a machine sequence

where the estimation function (makespan) for completing all jobs is minimal.

In contrast to FSSP, the JSSP machine sequences are also limited by technology and

known in advance, but they can vary, for instance:

 :

 :

 : .

(7)

Thus, for each job, we can write the technological machine sequence for a specific

job as , where and . It should be

emphasized that, in the case of simple JSSPs, we assume that the number of processes

for each job is equal to or the number of machines (i.e., each job "travels" through all

machines exactly once). In real life, however, often there is a situation where this

number is less than , meaning that each job does not need to be processed by all

machines. Another case is where the number of processes exceeds , resulting in

repeating the machine process on an operation multiple times.

In the case of OSSP, the sequences of machine processes aren't predefined. It is often

assumed that the number of machine processes for a job is equal to , meaning that all

machine processes must be completed for each job. We have to emphasize that OSSP

occurrence is extremely rare in the real world.

If we look at JSSP, we can see many different types in Figure 1. We can classify

them further by different criteria: job arrival criteria, time parameter criteria, and other

criteria.

Using job arrival criteria two types of JSSP can be defined:

- Static JSSP, and

- Dynamic JSSP.

For static JSSPs, a finite number of jobs are ready for processing on a finite number

of machines at the time zero [40]. An unexpected event occurrence is not possible.

354 Sašo Sršen and Marjan Mernik

Dynamic JSSPs are similar, except the job occurrence is random [3]. In both cases, the

order of precedence of operations and processing times are predefined.

Using time parameter criteria, several types of JSSP can be defined:

- Deterministic JSSP,

- Flexible JSSP,

- Stochastic JSSP, and

- Fuzzy JSSP.

If the processing time for every operation of job on every machine is known in

advance and the operation sequence order is predefined, we can classify it as a

deterministic JSSP (also called a crisp JSSP) [42]. The flexible JSSP extends the

deterministic JSSP by allowing a machine operation to be processed by one machine out

of a set of machines, thereby adding the problem of assigning each operation to a

specific machine (routing) [41]. Stochastic JSSPs introduce parameters dealing with

probability conditions, for instance, machine breakdown or processing time [16]. Since

real-world JSSP times often don't have deterministic value, fuzzy values (processing

times, due date, ranking) have been incorporated into JSSP, hence the name fuzzy JSSP

[43].

Using other criteria, further types of JSSP can be defined:

- Periodic JSSP,

- Cyclic JSSP,

- Preemptive JSSP,

- No-wait JSSP,

- Just-in-time JSSP,

- Large-scale JSSP,

- Reentrant JSSP, and

- Assembly JSSP.

The periodic JSSP is an iterative version of the JSSP where a batch of size of each

job is processed iteratively [44]. The cyclic JSSP deals with a set of process operations

that cycle an indefinite number of times by minimizing the period length [45]. In case

the algorithm allows the interruption of an operation during processing on a specific

machine and to continue at a later time, we're talking about pre-emptive JSSP [46]. The

no-wait JSSP introduces the no-wait constraint between two sequential operations by

delaying the job starting time at the first machine operation [47]. The just-in-time JSSP

is solving the earliness-tardiness problem of jobs by penalizing both options [48]. The

large-scale JSSP approach can be used when huge numbers of machines and jobs are

required [49]. The Reentrant JSSP extends a deterministic JSSP, where a job operation

may be repeated multiple times [50]. The assembly JSSP extends the JSSP by

appending an assembly stage and introducing lot streaming (LS) thereby splitting the

job into smaller batches and taking away job independence.

Many other subtypes exist, many of them extending the basic types with different

constraints and Objective Functions, for instance, machine blocking constraints [17].

Recent research even covers the so-called "low-carbon" JSSPs by pursuing the goal to

minimize the sum of completion time cost and energy consumption cost [18].

 A JSSP Solution for Production Planning Optimization 355

2.3. Time in Industrial Engineering (IE)

Since we'll be using production time as a parameter for the JSSP solution, we must take

a look at how IE is determining and structuring production time. According to REFA

[8], similar to Seifermann [10], when we need to determine a time for specific work or

work part on an operational level, different approaches exist, as shown in Figure 2:

Fig. 2. Overview of different IE methods for time determination

The actual data approach requires the presence of an analyst in the workplace for

work observation and measurement. In contrast, the plan data approach just requires a

detailed work process analysis for work time determination. The hybrid approach

combines techniques from the mentioned ones.

We should emphasize that the times that need to be determined for JSSP use are

usually called "target times" ("Sollzeit") [8] or norm times. They often represent the

foundation for different manufacturing divisions, like production planning and

management, costing, controlling, and remuneration. Some of the mentioned divisions

require another type of time called "actual time" ("Istzeit") [8] for their work, that

represents the actual spent amount of time that has been used to complete a specific job.

According to REFA [8][14], the following applies:

 . (8)

Work

measurement

Actual data

Observation

methods

Time study
Multi-moment

analysis

Self-recording

by a process

element

Hybrid

methods

Inquiry
Comparison

and estimation

Plan data

Calculated

analytical

methods

Predetermined

time standards

MTM Work-Factor

MOST

Simulation

356 Sašo Sršen and Marjan Mernik

The total target time is divided into setup time (, "Rüstzeit") and work time (,

"Arbeitszeit"). The setup (also called changeover) times are quantity independent, and

can be defined as:

- Fixed, for a specific job/machine, and

- Variable or sequence-dependent, for a specific job/machine.

In serial production, work time can be written as:

 . (9)

Whereas quantity ("Menge") stands for the total quantity of products required for a

specific operation and/or job, depending on the level being used. The variable called

("Einzelzeit") stands for time per unit, and defines the target time required to

manufacture/process one unit of the product (liter, kg, meter, piece). The setup time is

not quantity dependent, as displayed in Figure 3:

Fig. 3. Production timeline example

Each time we swap the product (or change the job) on a machine, the setup time

usually occurs at the beginning and/or at the end of the process. The processes that

require setup times can start before the previous process step in the job has finished. As

shown in the example in Figure 4, the setup time is one unit long. The total time T for

job 3 on machine 3 is actually two units, but since machine 3 is IDLE before job 3 on

machine 4 is finished, the setup on machine 3 can start.

Fig. 4. Setup time

Time per unit gets divided further into three parts, namely:

 . (10)

The first variable in the equation, basic time ("Grundzeit") represents the time of a

bare machine or manual work or a combination of them. The second variable,

("Verteilzeit") or allowances represent a percentage of smaller

interruptions/disturbances in the work process that occur randomly that gets added to

...

tr1 tr2 tr2

JOB 2JOB 1

m2 X te2tr1 m1 X te1

time unit

Machine 1

Machine 2 J3

Machine 3 J1 tr J3

Machine 4 J2

J2

J1

J3

J2

Makespan 1

J1

J2

J1 J3

15

 A JSSP Solution for Production Planning Optimization 357

the basic time [15]. Those disturbances can be divided further into contingency

allowances , personal allowances and special/constant allowances .

Contingency allowances cover short stochastic process delays like machine breakdown

or raw material shortage, for example. Personal allowances cover personal needs like

toilets or drinking fluids. Special or constant allowances are usually given per work

period, and cover the time needed for work that isn't bound directly to any work order,

like cleaning at the end of the shift or tooling at the beginning of the work. Allowances

can be defined per product/process/machine, but, usually, they are defined on a higher

level, for example, a group of workplaces or a sector, or even for the entire production

plant. The third variable, ("Erholungszeit") or relaxation allowances, occur only in

harsh work conditions (heat, radioactive environment, etc.) and, similar to the

allowances, raise the basic time by a certain percent to compensate for the delegated

breaks.

A specific approach for determination can be used for every time component

mentioned. To determine basic times, usually an observation methodology is used, like

time study, or a predetermined time system (MTM, Work factor or MOST).

Time study

A time study approach requires the use of a chronometer, and is completed by an

analyst, who is present while the work is being executed. The process can be divided

into four phases:

- Work (place) analysis and phases definition,

- On-site work measurement (using a chronometer), performance rating,

- Time study analysis, and

- Reporting and data updating.

The measurement usually requires multiple cycles (or samples) to get reliable data.

Predetermined time systems

In contrast, predetermined time systems instead use motion study as the foundation

[11]. There is no need for on-site presence if you are able to break down the work into

single standardized motion elements, the building blocks of a predetermined time

system.

Only basic time is determined by summing times for all identified motion elements

using matrices on cards, as defined by the Standard (MTM, MOST or Work factor).

Table 1 displays the standard MTM-1 motions. By combining basic motion elements

(MTM-1, for example), higher-level motion elements can be defined (MTM-UAS or

MTM-MEK, for example).

358 Sašo Sršen and Marjan Mernik

Table 1. MTM-1 standard motion elements [13]

Hand/arm motion

elements

Eye motion

elements

Body, leg and foot motions

Reach (R) Eye travel (ET) Foot motion (FM)

Grasp (G) Eye focus (EF) Leg motion (LM)

Release (RL) Sidestep (SS)

Move (M) Turn body (TB)

Position (P) Walk (W)

Apply pressure (AP) Bend (B), Arise from bend (AB)

Disengage (D) Stoop (S), Arise from stoop (AS)

Turn (T) Kneel on one knee (KOK), Arise from

kneeling on one knee (AKOK)

 Kneel on both knees (KBK),

Arise from kneeling on both knees

(AKBK)

 Sit (SIT), Stand (STD)

Allowances

Work sampling (Multimoment analysis) or long-term time study (LTTS) can be used

for determining allowances. Since we're determining stochastic events` frequency and

duration, a much larger sample size is required compared to the classical time study.

If we want to extend the technology matrix (e.g. from Tables 3 or 4) with the time

definitions, as explained earlier in this Section, we should define the time for each cell

in the technology matrix as:

 . (11)

where and .

3. Solution implementation

According to Section 2.2, the presented approach could be classified as a static flexible

JSSP solution, meaning that we have all the jobs ready at time zero. All the processing

times are predefined and for each operation, and the solution can choose a machine out

of a set of machines. The number of processes is not necessarily equal to machines,

with the meaning:

- If : The job doesn't have to visit every machine, and

- If : The job re-enters a specific machine as defined by the technology matrix.

Chromosome representation

When implementing an EA solution, the first problem is the representation of an

individual in the form of a chromosome [26]. We chose to use the unpartitioned

permutation with m-repetitions representation [5][12]. Every job (out of jobs)

consists of processes that we have to schedule on machines, thus giving us a two-

row chromosome with the size of elements , as shown in Figure 5:

 A JSSP Solution for Production Planning Optimization 359

Fig. 5. Chromosome representation

In this formulation, each job appears exactly times (number of defined

processes) in the first row of the chromosome, while the second row specifies the

process sequence for a specific job, consisting of elements (machines). When

scanning the job order from left to right, each job iteration increases the machine

operation index for that job by 1 (Figure 5). Permutation, in this case, only means a

change in the order in which the job processes will be performed, as shown in Figure 6:

Fig. 6. Schedule permutation example

Table 2. Predefined machine order with times` example

Operation
1. 2. 3. 4.

Job

J1 M1, 2 M2, 4 M3, 1 M4, 2

J2 M2, 3 M1, 2 M4, 1 M3, 2

J3 M1, 3 M2, 1 M4, 2 M3, 1

Usually, gene J1 with occurrence index 1 in the chromosome means that the

processing (if possible) must begin on machine 1, the next occurrence of this index

implies that the processing must begin on machine 2, the next occurrence on machine 3,

etc. as defined by the Job 1 machine order.

A job/machine is usually defined as a fixed Table value (Table 2), meaning that the

processing for job 1 on machine 1 lasts two units, on machine 2 four units, etc. Since we

classified the solution as flexible, rather than using Table 2, we defined another Table,

named the technology matrix, for each job consisting of processes on machines.

Table 3 shows an example of a technology matrix filled with times for job J1 from

Table 2. The Table itself introduces the flexibility by letting the solution choose

between different machines for the same process, in case we have multiple machines

available, as shown in Table 4. Process 1 for Job 1 can be completed on machine 1

lasting two units, or on machine 3 lasting three units, and process 2 can be completed on

machine 2 or 3 (4 and 5 time units). In table 3, we also demonstrated the option where

the number of processes exceeds the number of machines (). If for any

job, the chromosome size raises to . In case the number of processes for a

specific job is lower than the number of machines (), the unused processes

simply get a value of 0 for any machine.

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

360 Sašo Sršen and Marjan Mernik

Table 3. Technology matrix for job J1 with fixed machines and times as per the example

M1 M2 M3 M4

P1 2 X X X

P2 X 4 X X

P3 X X 1 X

P4 X X X 2

Table 4: Technology matrix for job J1 with machine options and :

 M1 M2 M3 M4

P1 2 X 3 X

P2 X 4 5 X

P3 X X 1 X

P4 X X X 2

P5 X 3 X X

Because the 2
nd

 row of the chromosome representation from Figure 5 still can't

change (static JSSP), we can calculate the search space for the chromosome upper part

for the JSSP representation as:

 (12)

Formula (12) is based on permutations with repetition and because the number of

processes is the same for all jobs, the denominator has the exponent .

If we use the formula in our example from Table 1, the search space is limited by

34,650 different chromosomes. If we extend the static JSSP to flexible JSSP, where we

define a matrix with different machine options (routing) for each job process, we can

extend formula (12) to:

 (13)

meaning that the number of feasible chromosomes will grow because now even the

2
nd

 row of the chromosome (machine sequence) can change accordingly. By using

formula (13), our example search space (let's presume the technology matrix from Table

4 is the same for all 3 jobs) grows to 2,217,600 different chromosomes. If we presume

that all technology matrices are full (worst-case scenario, there are no infeasible

solutions, every process can be completed on every machine), we can define the search

space as:

 (14)

This gives us a search space of 581,330,534,400 different chromosomes for our

example.

The chromosome phenotype [26] can be represented by using a Gantt chart (Figure

7):

 A JSSP Solution for Production Planning Optimization 361

Fig. 7. Phenotype representations of Table 2 using a Gantt diagram (machine/job) and

(job/machine) representation

Or, if we want to use the matrix representation (3), we could write:

 . (15)

If a job needs fewer processes than to finish, the excessive processes get machine

processing times with a duration of 0. If a process can not be completed on a specific

machine as per the technology matrix (that chromosome represents an infeasible

solution), that individual gets a "bad" fitness value which may, possibly, drive it out of

the population.

Initial population

In the current solution a random schedule population is generated with defined

parameters: Number of jobs, number of machines, number of processes. A technology

matrix with the size of is required for each job .

Selection operator(s)

Two selection operators have been implemented: Tournament selection and roulette

wheel selection [26]. The tournament selection picks a group of a specific size randomly

out of the population and orders the group according to the chromosomes' fitness

values. The best individual is selected as one of the parents. The roulette wheel uses the

individual fitness value (makespan) and normalizes it to 1 by dividing it by the total

fitness of all individuals in the group, thus defining the probability of selection.

Machine 1

Machine 2 J3

Machine 3 J1 J3

Machine 4 J2 J3

15

J2

J1

J3

J2

Makespan 1

J1

J2

J1

Job 1 M3

Job 2 M4

Job 3 M2 M3

Makespan 1 15

M1 M4

M2 M1

M1

M2

M3

M4

362 Sašo Sršen and Marjan Mernik

Crossover operators

Four different crossover operators have been implemented: Single point, two point,

uniform, and ordered crossover operators [26]. For single point crossover, a random

index is selected between 1/4 and 3/4 of the chromosome size . Then the first

genes are copied from parent 1 and the rest from parent 2, starting at gene ,

considering every job can only occur times in every chromosome, skipping the gene

otherwise. When the copy index reaches , we continue at the beginning of the 2
nd

parent chromosome (Figure 8).

The two-point genetic operator defines two indexes, the starting index and ending

index . They both get selected randomly, then the genes between index and get

copied from parent 2. The next step is to copy the genes from parent 1, where the

occurrence count of a specific job in the gene of the chromosome doesn't exceed the

number of processes . Finally, the empty spaces are filled with copies of genes from

the second parent, but in an order in which they appear in the second parent after the

ending index (Figure 9).

The uniform operator works very simply; it's flipping a coin for every gene, to decide

whether the offspring will contain the gene from parent 1 or 2, starting at the beginning

of the chromosome and counting the occurrence of each job in the gene. When the job

occurrence count for the chosen job reaches , we try to insert the gene from the other

parent, and if the occurrence count of that gene hasn't reached , we copy it to the

offspring. Otherwise, we skip the gene. After the index reaches the chromosome size ,

we copy the remaining missing genes from parent 2, starting with the first gene.

 A JSSP Solution for Production Planning Optimization 363

Fig. 8. Single point crossover operator (Random position k = 4, chromosome size N = 12)

Fig. 9. Two-point crossover operator (Random position k = 4, l = 9, chromosome size N = 12)

The ordered crossover operator (OX, Figure 10) is very similar to the two-point

genetic operator, except that, after copying the genes between the starting index and

ending index , the rest is copied from the first parent, starting at the index and

skipping values where the occurrence count of a specific gene exceeds the number of

processes .

Parent 1

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Parent 2

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Offspring

Job order J1 J2 J2 J1 J3 J1 J2 J3 J1 J3 J2 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Parent 1

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Parent 2

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Offspring

Job order J1 J2 J2 J1 J3 J1 J2 J3 J1 J3 J3 J2

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M4

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

364 Sašo Sršen and Marjan Mernik

Fig. 10. Ordered crossover operator (OX)

Mutation operators

Two widespread mutation operators have been implemented: Exchange values and

change values (Figure 11). The change value operator first selects a gene in the

chromosome randomly, then changes the machine in the gene to a random machine ,

where

Fig. 11. Change value mutation operator

The change value operator cannot affect the job order because of the occurrence

limitation. The exchange value operator selects two random genes and switches the job

order and machine values (Figure 12).

Parent 1

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Parent 2

Job order J2 J1 J3 J2 J3 J1 J2 J3 J1 J3 J2 J1

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Offspring

Job order J2 J2 J1 J2 J3 J1 J2 J3 J1 J3 J3 J1

Machine

operation
M2 M3 M4 M1 M2 M1 M4 M3 M1 M2 M4 M1

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

Original

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Mutated chromosome

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M1 M4 M2 M1 M4 M3 M1 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

 A JSSP Solution for Production Planning Optimization 365

Fig. 12. Exchange values mutation operator

Fitness function

While building the solution, we focused on a static deterministic production, meaning

that the process times are known, and the jobs are ready at time zero. As already

mentioned, we chose makespan as the fitness function for the implementation.

Makespan can be written as and represents the time when the last operation

process is completed [6]:

 (16)

where:

 (17)

Variable stands for job completion time, stands for waiting (or IDLE) time

of job at sequence and stands for the processing time for job on machine

at sequence .

Algorithm

The pseudocode of the proposed GA is shown in Figure 13. At first, a random

population of a predefined size is generated and makespans are calculated, the best one

noted. Then, in a predefined loop of size MaxIterations, we use the chosen selection to

select a group of chromosomes and perform a crossover with the two best parents in the

group. Afterward, we apply the mutation operator to the two children. The two worst

individuals in the group get substituted by the two children, the best makespan gets

checked. We apply another mutation on a random chromosome in the population and

recheck if the best makespan changed. If 1/3 of the population went through the loop

and the best makespan hasn't changed, we inject a % of fresh random chromosomes into

the population.

The algorithm can be improved further using Long Term Memory Assistance

(LTMA) [24], where duplicate solutions are identified. As such, time-consuming fitness

evaluation is spared.

All the algorithm parameters can be changed by the user directly in the tool, like

population size, selection group size, mutation probability pm, terminal condition

MaxIteration, selection type, crossover-type, mutation type, and % of random

chromosome injection if the fitness function didn't evaluate any better solution for 1/3

of the MaxIteration. The crossover probability pc is set to 1.

Original

Job order J1 J2 J2 J1 J1 J2 J3 J2 J1 J3 J3 J3

Machine

operation
M1 M2 M3 M4 M2 M1 M4 M3 M1 M2 M4 M3

Mutated chromosome

Job order J1 J2 J1 J1 J1 J2 J3 J2 J2 J3 J3 J3

Machine

operation
M1 M2 M1 M4 M2 M1 M4 M3 M3 M2 M4 M3

Job 1 machine order Job 2 machine order Job 3 machine order

Job 1 machine order Job 2 machine order Job 3 machine order

366 Sašo Sršen and Marjan Mernik

createInitialPopulation(population size)

calculateMakeSpans()

while (I < MaxIteration)

{

 doSelection(group size)

 doCrossover(best parent1, best parent2)

 doMutation(best child1, best child2)

 replace(worst parent1, worst parent2) with (best

 child1, best child2)

 checkBestMakeSpanChanged(best child1, best child2)

 doMutation(random chromosome)

 checkBestMakeSpanChanged(mutated chromosome)

 if (bestMakeSpan has not changed after 1/3 of

 MaxIteration)

 {

 injectNewRandomChromosomes(a % of population size)

 reset MakeSpanChanged counter

 }

}

Fig. 13. Genetic algorithm pseudocode

3.1. IoT

A potential approach in determining production times could also be by implementing a

solution based on the Internet of Things (IoT) technology [35][19]. The goal of using

IoT is to minimize or completely eliminate the need for human intervention in actual

and target time data gathering, e.g., using IR scanners or terminals.

A sample IoT architecture for such purpose can be seen in Figure 14. Because the use

case in the next Section was completed in a shoe factory, we will explain the working

principle for the latter. The workers are using trolleys to transport upper shoes from one

machine to another. Currently, each trolley receives a unique job (work order) barcode,

so the worker can scan this barcode and a barcode on the machine to signal the

beginning or end of a work process. This way, the ERP system can track the job

completion status at the process level. However, tracking time and status in the

explained way requires a high amount of discipline among the workers, meaning that

any delay or mistake (e.g., forgetting to register at the beginning, or at the end of the

process) in the registration can potentially produce unexplainable errors in the data

interpretation. IoT use minimizes the registration mistake possibility.

Figure 14 explains a different approach proposal. The trolley must "know" which job

it is carrying, so the Production Manager must somehow provide the ERP system with

that information before the trolley is launched (e.g. by using a barcode or Radio-

Frequency Identification (RFID) technology). The trolley must be equipped with a

small computer, System on Chip (SoC), ESP8266 used in the example, and different

sensors. In our case, the trolley is also equipped with two load cells, an RFID scanner,

an accelerometer, and a gyroscope. When the worker drives the trolley around the shop,

the accelerometer and gyroscope sensors detect movement and send the movement time

data across WiFi to the Message Queueing Telemetry Transport (MQTT) broker using

the MQTT protocol. The time resolution and data amount require the use of a No-SQL

 A JSSP Solution for Production Planning Optimization 367

Database (e.g., MongoDB) to store the streamed data. When the worker stops in front

of a specific machine to start working on a job, the trolley has to stand still in a specific

place for a certain amount of time. RFID tags on the reserved trolley position should be

used to bind the machine ID to the current job ID. Again, the time data should be sent to

the broker as soon as the sensor recognizes the RFID tag, and also when it leaves the

reserved position. While the worker is completing the job on the machine, the two load

cells stream the trolley weight data to the MQTT broker. Because only streaming the

time data to a database still wouldn't provide input to the JSSP solution, an intelligent

service is required to match and identify production events described above and allocate

the time data to a specific process and define the type of time.

Using IoT as a means of determining production times opens a new perspective, not

only for the JSSP solutions:

- Automatic target times` actualization based on chronological time data: Basic

times, setup times and allowances in the ERP and/or other services like a JSSP tool,

- Delegation of short-term delayable allowance events (e.g., filling containers with

very fine material, non-urgent cutting tool change, personal needs, etc.),

- Scheduling progress monitoring & dynamic re-launch of the JSSP search in case of

unforeseen schedule deviations (e.g. longer machine breakdowns, unexplainable long

delays, etc.).

368 Sašo Sršen and Marjan Mernik

Windows Virtual Server

MongoDB

NoSQL

Load cell

Load cell

Accelerometer

Gyroscope

RFID sensor

WiFi

AP
MQTT

Broker

ESP8266

Node.js

DB-Broker
bridge

publish JSSP tool

Production

times ID

service

ERP systemCLOUD

Fig. 14. An IoT production time determination architecture proposal

4. Use case

The implementation was made with a specific goal in mind, to optimize daily

production scheduling/job launch for a shoe company. The shoe company has many

production sectors, but for the use case, we focused on only a specific one, the upper

shoe production sector. The problem that occurred is that the company was not able to

define a daily job schedule with a predictable outcome. Additionally, the information

about jobs and quantities for the upcoming day are usually defined at the end of the

shift. Usually, the Production Managers were the ones delegating the work according to

their past experience.

Papers and journals often use the term "machines" in JSSP, but, in practice, we can

generalize the meaning of "resource." This small alteration is beneficial, since, in

general, the term is a useful definition for manual workplaces as well as machines or

machine types or groups; the principles described in Section 3.3 are valid for all. If we

look at the parameters in Table 5 for a specific production request at the beginning of

the week we got from the company:

 A JSSP Solution for Production Planning Optimization 369

Table 5. JSSP / time parameters

No. of different resources … 38

Max. no. of processes … 20

No. of jobs/shift… 7

Basic times … defined per resource /

process / job

Setup times … fixed per resource,

only M1 and M38 needing 5 minutes

Allowances … 7% (fixed for all

resources / jobs)

Relaxation allowances … 0%

(normal working conditions)

Job m (pcs required)

1 20

2 280

3 140

4 140

5 150

6 50

7 100

sum 880

Immediately, we can see the dimensions of the real-world problem. The total number

of pieces (pairs) of shoes was 880, the task was split into seven jobs. Each job

technology matrix contained 760 different matrix cells (possible process times) per job,

meaning that each job contained a maximum of twenty processes that could be

performed on 38 resources, as shown in Figure 15:

Fig. 15. Job 1 technology matrix for the first 20 machines as defined by the product technology

For each row (or process), we calculated the time that is needed for a specific

resource, in order to complete the job quantity . Figure 15 displays the technology

matrix containing the required time data: and , where the times are delimited

with a semi-column. If multiple cells are filled in the same row, the process can be

completed with either of the resources, as explained in Section 2. For manual work, the

times were usually the same, or very similar, for every possible resource, because the

resource location is not very time relevant. The letter X in a cell means that it is

impossible for the process to be completed on this resource. Since Job 1 in Figure 15

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14 ...

P1 5;0,7;7% X X X X X X X X X X X X X ...

P2 X X X X X 0;0,75;7% 0;0,75;7% X X X X X X X ...

P3 X X 0;0,79;7% X 0;0,79;7% X X 0;0,79;7% X X X X X X ...

P4 X X X X X 0;0,61;7% 0;0,61;7% X X X X X X X ...

P5 X X X X X X X X 0;0,61;7% X X X X X ...

P6 X X X X X X X X X 0;0,33;7% X X X X ...

P7 X X X X X X X X X X X X 0;0,56;7% X ...

P8 X X X X X X X X X X X X X X ...

P9 X X X X X X X X X X X X X X ...

P10 X X X X X X X X X X X X X X ...

P11 X X X X X X X X X X X 0;0,93;7% X X ...

P12 X X X X X X X X X X X X X 0;1,31;7% ...

P13 X X X X X X X X X X X X X X ...

P14 X X X X X X X X X X X X X X ...

P15 X X X X X X X X X X X X X X ...

P16 X X X X X X X X X X X X X X ...

P17 X X X X X X X X X X X X X X ...

P18 X X X X X X X X X X X X X X ...

P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ...

370 Sašo Sršen and Marjan Mernik

only needs 18 processes to finish, processes 19 and 20 get a value 0 for every machine.

The company used LTTS for allowances` determination, and used a fixed value for all

resources. Figures 16 and 17 display the actual tool window where all the parameters

can be set, and the obtained solution is visualized [33].

To calculate the search space, we used the formula (12), so the upper chromosome

part can be evaluated as:

and the lower part to (without infeasible solutions):

meaning a search space size without any infeasible solutions is roughly around

 different chromosomes, or around including the infeasible

solutions.

The settings we used for GA were chosen experimentally in order to find the optimal

solution as fast as possible:

Table 6. Used genetic parameters and their settings

Iteration count 500,000

Population size 5,000

Crossover type Uniform (pc = 0.5)

Selection type Tournament

Tournament size 10

Mutation type Exchange values

Mutation probability 5%

The algorithm has been run 20 times in sequence using the parameters from Table 6.

95% (19/20) of the time, the algorithm was able to find the optimal makespan (3,503

minutes) in around 30-35 seconds on the I7-7800X 6 core computer (12 logical

processors) with 16GB of RAM.

 A JSSP Solution for Production Planning Optimization 371

Fig. 16. App window example without lot streaming

Fig. 17. App window example using lot streaming

Table 7 shows the data gathered across the 20 runs. Figure 18 shows a 3d histogram

displaying the discrete IDLE time occurrence per machine.

372 Sašo Sršen and Marjan Mernik

Table 7. Results of running the algorithm 20 times

 Best

found at

[s]

Elapsed

time [s]

Total

IDLE

time

[min]

Makespan

[min]

Run 1 7,367 30,707 120369 3503

Run 2 4,532 30,979 120384 3503

Run 3 6,311 30,694 120379 3503

Run 4 6,91 31,228 120305 3503

Run 5 4,425 30,874 120305 3503

Run 6 25,999 30,84 120379 3506

Run 7 5,987 35,819 120196 3503

Run 8 6,469 35,394 120308 3503

Run 9 7,946 35,564 120389 3503

Run 10 8,427 35,429 120379 3503

Run 11 9,1 34,821 120359 3503

Run 12 7,852 34,854 120374 3503

Run 13 4,72 34,581 120318 3503

Run 14 10,76 34,057 120342 3503

Run 15 8,272 34,643 120364 3503

Run 16 5,286 34,831 120285 3503

Run 17 10,051 34,49 120152 3503

Run 18 7,093 34,797 120374 3503

Run 19 4,017 34,763 120374 3503

Run 20 8,819 35,921 120384 3503

 A JSSP Solution for Production Planning Optimization 373

Fig. 18. IDLE time histogram per resource

The IDLE interval for all resources lay between [2583,3586] so the histogram IDLE

intervals are defined between [2600,3550], with a step of 50. The graph shows that the

machine IDLE times` occurrences are mainly concentrated in the upper bound of the

IDLE interval, closer to the makespan (3000 < IDLE < makespan), except for maybe

M33 and M34, meaning all the other resources are badly utilized. Ideally, the IDLE

time occurrence count should be as close to 0 as possible.

Because the shoe company production was lot-organized, they split the entire job

(order) quantity into smaller lots. The lot size was standardized and consisted of 10

pairs. This kind of approach is called lot streaming [4]. By splitting each job into sub-

jobs of 10, the EA job parameter stretches from 7 to 88, remarkably increasing the

search space (formula 12):

meaning we have around different chromosomes without infeasible

solutions, or including all the infeasible solutions. Because of the

increase the algorithm wasn't able to find the optimal solution with the EA parameters

described in the use case. Even by doubling the initial population and quadrupling the

iteration count, the algorithm success rate dropped significantly. The best-found

makespan was 1,504, reducing the result found with the non-lot approach by 57%.

3500-3550
3400-3450
3300-3350
3200-3250
3100-3150
3000-3050
2900-2950
2800-2850
2700-2750
2600-2650

0

2

4

6

8

10

12

14

16

18

20

M
1

M
3

M
5

M
7

M
9

M
11

M
13

M
15

M
17

M
19

M
2
1

M
2
3

M
2
5

M
2
7

M
2
9

M
3
1

M
3
3

M
3
5

M
3
7

Machine IDLE histogram, 20 runs

374 Sašo Sršen and Marjan Mernik

Table 8. Comparison of IDLE time/utilization between lot streaming and conventional scheduling

 Utilization IDLE time

8 jobs 88 jobs 8 jobs 88 jobs

M1 20,75% 75,04% 79,25% 24,96%

M2 0,00% 0,00% 100,00% 100,00%

M3 10,76% 26,86% 89,24% 73,14%

M4 18,01% 41,94% 81,99% 58,06%

M5 12,15% 26,78% 87,85% 73,22%

M6 9,89% 22,72% 90,11% 77,28%

M7 10,78% 25,40% 89,23% 74,60%

M8 22,36% 51,78% 77,64% 48,22%

M9 18,84% 43,87% 81,16% 56,13%

M10 0,20% 0,47% 99,80% 99,53%

M11 10,31% 21,74% 89,70% 78,26%

M12 10,90% 25,92% 89,10% 74,08%

M13 9,11% 21,20% 90,90% 78,80%

M14 11,37% 27,39% 88,63% 72,61%

M15 9,17% 21,71% 90,84% 78,29%

M16 12,18% 29,73% 87,82% 70,27%

M17 10,45% 22,98% 89,55% 77,02%

M18 5,40% 8,28% 94,60% 91,72%

M19 3,61% 7,72% 96,39% 92,28%

M20 3,49% 8,79% 96,51% 91,21%

M21 4,11% 12,08% 95,90% 87,92%

M22 7,71% 20,39% 92,29% 79,61%

M23 7,00% 17,25% 93,00% 82,75%

M24 8,60% 17,88% 91,40% 82,12%

M25 7,99% 15,16% 92,01% 84,84%

M26 9,73% 24,28% 90,27% 75,72%

M27 8,48% 18,13% 91,52% 81,87%

M28 9,61% 21,09% 90,40% 78,91%

M29 4,65% 12,56% 95,35% 87,44%

M30 0,61% 4,63% 99,40% 95,37%

M31 1,15% 8,20% 98,86% 91,80%

M32 1,94% 4,34% 98,06% 95,66%

M33 17,31% 48,08% 82,69% 51,92%

M34 19,03% 36,54% 80,98% 63,46%

M35 19,01% 44,27% 80,99% 55,73%

M36 12,25% 28,52% 87,76% 71,48%

M37 8,26% 23,84% 91,74% 76,16%

M38 7,75% 22,76% 92,26% 77,24%

AVG 9,60% 23,43% 90,40% 76,57%

Table 8 displays the utilization data comparison between using the lot streaming

(best found) and not using the lot streaming (conventional scheduling). The average

machine utilization rate rose from 9,60% to 23,43%.

 A JSSP Solution for Production Planning Optimization 375

We must emphasize the importance of setup times when using lot streaming. They

play a significant role when searching for the optimal schedule. If they occur a

maximum of times per job in conventional planning, the number of occurrences

multiplies by when using lot streaming. This can cause the utilization rate to

rise, but can also cause the makespan to increase.

Since the production was using lot streaming, we must compare the computed

makespan of 1504 minutes with real-world data. The 88 carts were finished in around

3,5 shifts, resulting in 1680 minutes, meaning an efficiency increase of around 10,5%

could be achieved by scheduling alone, confirming that using JSSP solutions in real-

work can prove beneficial. Currently, daily scheduling is still left to the product

engineers. Because of the size and complexity of the scheduling problem, no traditional

tool can be used, so they launch the products daily simply by experience alone.

5. Conclusion

Implementing an EA solution for a specific Job Shop Scheduling Problem and

combining it with Industrial Engineering knowledge proved to deliver good results.

Many issues found in other types of JSSP were addressed, like shorter stochastic events

and setup times, for example. Using the typical time components found in

manufacturing brought the user domain and the science domain closer together.

However, any schedule provided by a schedule optimization system like the one

proposed can only be used as a guideline. The tool introduced in the article can be used

at the end of the day for next-day scheduling by product engineers to search for the best

option on how and when to launch the planned products but still must be extended by

experience parameters that aren't included in the algorithm like specific worker skills or

machine experience, for instance. Any longer stochastic event that can occur (and is not

covered by allowances) would render the provided schedule unusable. The user can still

rerun the optimization with the current situation parameters, but that could prove time-

consuming. The proposed schedule could require rerouting the resources in a

completely different way. Another drawback of classical Industrial Engineering is that

all the time components necessary still demand a lot of work from a time analyst before

all the technological times are determined. On the plus side of Industrial Engineering,

we can find many manufacturing companies and even ERP systems using the time

definitions mentioned. Another plus side is that any company target times should be as

accurate as possible, otherwise causing inaccurate planning and cost calculations,

providing an excellent fundament for JSSP. Future work should extend the solution with

the proposed IoT architecture to measure and classify production times in real-time, and

deliver the required data for the JSSP solution that would be run dynamically

automatically.

References

1. Johnson, S. M: Optimal Two and Three-Stage Production Schedules with Setup Times

Included. Naval Research Logistic Quarterly, Vol. 1, No. 1. (1954)

376 Sašo Sršen and Marjan Mernik

2. Davis, L.: Job Shop Scheduling with Genetic Algorithms., Proc. of 1st Int. Conf. on Genetic

Algorithms, Lawrence Erlbaus Associates, p. 136-140. (1985)

3. Werner, F.: Genetic algorithms for shop scheduling problems: a survey. Preprint Series. 11.

1-66. (2011)

4. Yigit, T., Birogul, S., Elmas, C.: Lot streaming based job-shop scheduling problem using

hybrid genetic algorithm. Scientific research and essays. 6. 2873-2887. 10.5897/SRE10.152.

(2011)

5. Bierwirth C.: A generalized permutation approach to job shop scheduling with genetic

algorithms. Operations-Research-Spektrum, June 1995, Volume 17, Issue 2-3, pp 87-92.

(1995)

6. Omar, M., Baharum, A., Hasan, A. Y.: A job-shop scheduling problem (JSSP) using genetic

algorithm (GA). Proceedings of the 2nd IMT-GT Regional Conference on Mathematics,

Statistics and Applications Universiti Sains Malaysia, Pennang, June 13-15. (2006)

7. Auger, A., Hansen, N.: A restart CMA evolution strategy with increasing population size.

IEEE Congress on Evolutionary Computation, 1769-1776. (2005)

8. REFA Verband für Arbeitsgestaltung: REFA Methodenlehre der Betriebsorganisation:

Datenermittlung. München: Carl Hanser Verlag. (1997)

9. Abdolrazzagh-Nezhad, M., Abdullah, S.: Job Shop Scheduling: Classification, Constraints

and Objective Functions. World Academy of Science, Engineering and Technology

International Journal of Computer and Information Engineering Vol:11, No:4, p. 423-428.

(2017)

10. Seifermann S., Böllhoff J., Metternich J., Bellaghnach A.: Evaluation of Work Measurement

Concepts for a Cellular Manufacturing Reference Line to enable Low Cost Automation for

Lean Machining, Procedia CIRP 17 p. 588 – 593. (2014)

11. Maynard H, Stegemerten G, Schwab J.: Methods-Time Measurement. New York: McGraw-

Hill. (1948)

12. Bierwirth C., Mattfeld D.C., Kopfer H.: On permutation representations for scheduling

problems. In: Voigt HM., Ebeling W., Rechenberg I., Schwefel HP. (eds) Parallel Problem

Solving from Nature — PPSN IV. PPSN 1996. Lecture Notes in Computer Science, vol

1141. Springer, Berlin, Heidelberg. (1996)

13. Bokranz R, Landau K. Produktivitätsmanagement von Arbeitssystemen. MTM-Handbuch

(Productivity Management of Work Systems. MTMHandbook). Stuttgart: Schäffer-Poeschel.

(2006)

14. Bundesministerium des Innern/Bundesverwaltungsamt (Hrsg.): Handbuch für

Organisationsuntersuchungen und Personalbedarfsermittlung. (2018)

15. Poeschel, F.: Verteilzeit. In: Landau, Kurt (Hrsg.): Lexikon Arbeitsgestaltung : Best Practise

im Arbeitsprozess. Stuttgart: Genter. (2007)

16. Sotskov, Y.N.; Matsveichuk, N.M.; Hatsura,V.D.: Schedule Execution for Two-Machine

Job-Shop to Minimize Makespan with Uncertain Processing Times. Mathematics 2020, 8,

1314. (2020)

17. Sauvey, C.; Trabelsi, W.; Sauer, N. Mathematical Model and Evaluation Function for

Conflict-Free Warranted Makespan Minimization of Mixed Blocking Constraint Job-Shop

Problems. Mathematics 2020, 8, 121. (2020)

18. Luan, F.; Cai, Z.; Wu, S.; Liu, S.Q.; He, Y. Optimizing the Low-Carbon Flexible Job Shop

Scheduling Problem with Discrete Whale Optimization Algorithm. Mathematics 2019, 7,

688. (2019)

19. Bak, N., Chang, B-M., N., Choi, K.: Smart Block: A visual block language and its

programming environment for IoT. Journal of Computer Languages 60, 100999. (2020)

20. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-Adapting Control

Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark

Problems. IEEE Transactions on Evolutionary Computation 10(6), 646-657. (2006)

21. Črepinšek, M., Mernik, M., Žumer, V.: Extracting grammar from programs: brute force

approach. ACM SIGPLAN Notices 40(4), 29-38. (2005)

 A JSSP Solution for Production Planning Optimization 377

22. Črepinšek, M., Liu, S.-H., Mernik, M.: Exploration and exploitation in evolutionary

algorithms: A survey. ACM Computing Surveys 45(3): 35:1-35:33. (2013)

23. Črepinšek, M., Liu, S.-H., Mernik, L., Mernik, M.: Is a comparison of results meaningful

from the inexact replications of computational experiments? Soft Computing 20, 223-235.

(2016)

24. Črepinšek, M., Liu, S.-H., Mernik, M., Ravber, M.: Long term memory assistance for

evolutionary algorithms, Mathematics 7 (11). (2019)

25. Du, Z., Chen, K.: Enhanced Artificial Bee Colony with Novel Search Strategy and Dynamic

Parameter. Computer Science and Information Systems 16(3), 939–957. (2019)

26. Eiben, A,.E., Smith, J.E.: Introduction to Evolutionary Computing. Springer, Heidelberg.

(2003)

28. Hrnčič, D., Mernik, M., Bryant, B. R., Javed, F.: A memetic grammar inference algorithm

for language learning. Applied Soft Computing 12 (3), 1006-1020. (2012)

29. Javed, F., Bryant, B. R., Črepinšek, M., Mernik, M., Sprague, A.: Context-free grammar

induction using genetic programming, in: Proceedings of the 42nd Annual Southeast

Regional Conference, ACM-SE 42, 404-405. (2004)

30. Jesenik, M., Mernik, M., Trlep, M.: Determination of a hysteresis model parameters with the

use of different evolutionary methods for an innovative hysteresis model. Mathematics 8 (2).

(2020)

31. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (ABC) algorithm.

Applied Soft Computing 8(1), 687-697. (2008)

32. Kovačević, Ž., Mernik, M., Ravber, M., Črepinšek, M.: From grammar inference to

semantic inference-an evolutionary approach. Mathematics 8 (5). (2020)

33. Mei, H., Ma, Y., Wei, Y., Chen, W.: The design space of construction tools for information

visualization: A survey. Journal of Visual Languages & Computing 44, 120 – 132. (2018)

34. Mernik, M., Liu, S.-H., Karaboga, D., Črepinšek, M.: On clarifying misconceptions when

comparing variants of the artificial bee colony algorithm by offering a new implementation.

Information Sciences 291, 115-127. (2015)

35. Grammatikis, P.I.R, Sarigiannidis, P.G., Moscholios, I.D.: Securing the Internet of Things:

Challenges, threats and solutions. Internet of Things 5, 41-70. (2019)

36. Rao, V. R., Savsani, V., Vakharia, P. D.: Teaching-learning-based optimization: An

optimization method for continuous non-linear large scale problems. Information Sciences

183, 1-15. (2012)

37. Rathee, A., Chhabra, J. K.: A multi-objective search based approach to identify reusable

software components. Journal of Computer Languages 52, 26-43. (2019)

38. Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Prentice Hall. (2002)

39. Tanabe, R., Fukunaga, A.: Success-history based parameter adaptation for differential

evolution. In: IEEE Congress on Evolutionary Computation, pp. 71–78. (2013)

40. Qiu, X., & Lau, H. Y.. An AIS-based hybrid algorithm for static job shop scheduling

problem. Journal of Intelligent Manufacturing, 25(3), 489-503. (2014)

41. Zhang, G., Gao, L., & Shi, Y.: An effective genetic algorithm for the flexible job-shop

scheduling problem. Expert Systems with Applications, 38(4), 3563-3573. (2011)

42. Pinedo, M. L. (Ed.).: Scheduling, Theory, Algorithm and Systems. New York: Springer.

(2012)

43. Kuroda, M., & Wang, Z.: Fuzzy job shop scheduling. International Journal of Production

Economics, 44(1), 45-51. (1996)

44. Ahmad, F., & Khan, S. A.:Module-based architecture for a periodic job-shop scheduling

problem. Computers & Mathematics with Applications, 64(1), 1-10. (2012)

45. Brucker, P., Burke, E. K., & Groenemeyer, S.:A mixed integer programming model for the

cyclic job-shop problem with transportation. Discrete applied mathematics, 160(13-14),

1924-1935. (2012)

46. Ebadi, A., & Moslehi, G.: Mathematical models for preemptive shop scheduling problems.

Computers & Operations Research, 39(7), 1605-1614. (2012)

378 Sašo Sršen and Marjan Mernik

47. Schuster, C. J., & Framinan, J. M.: Approximative procedures for no-wait job shop

scheduling. Operations Research Letters, 31(4), 308-318. (2003)

48. Baptiste, P., Flamini, M., & Sourd, F.: Lagrangian bounds for just-in-time job-shop

scheduling. Computers & Operations Research, 35(3), 906-915. (2008)

49. Zhang, R., & Wu, C.: A hybrid approach to large-scale job shop scheduling. Applied

intelligence, 32(1), 47-59. (2010)

50. Topaloglu, S., & Kilincli, G.: A modified shifting bottleneck heuristic for the reentrant job

shop scheduling problem with makespan minimization. The International Journal of

Advanced Manufacturing Technology, 44(7), 781-794. (2009)

51. Jerebic, J., Mernik, M., Liu, S-H., Ravber M., Baketarić, M., Mernik, L., Črepinšek, M.: A

novel direct measure of exploration and exploitation based on attraction basins. Expert

Systems with Applications, Volume 167, 114353. (2021)

Sašo Sršen has graduated from the Faculty of Electrical Engineering and Computer

Science, University of Maribor, in 2014. Currently, he is a Ph.D. student and co-owner

of the company PISK, a licensed REFA/MTM company. He is working as a

consultant/teacher for production companies. His research interests include domain-

specific languages, evolutionary algorithms, Industry 4.0, predictive analytics, IOT, and

simulation.

Marjan Mernik received the M.Sc. and Ph.D. degrees in computer science from the

University of Maribor in 1994 and 1998, respectively. He is currently a professor at the

University of Maribor, Faculty of Electrical Engineering and Computer Science. He was

a visiting professor at the University of Alabama at Birmingham, Department of

Computer and Information Sciences. His research interests include programming

languages, compilers, domain-specific (modeling) languages, grammar-based systems,

grammatical inference, and evolutionary computations. He is a member of the IEEE,

ACM, and EAPLS. Dr. Mernik is the Editor-In-Chief of the Journal of Computer

Languages, as well as Associate Editors of the Applied Soft Computing journal,

Information Sciences journal, and Swarm and Evolutionary Computation journal. He is

being named a Highly Cited Researcher for years 2017 and 2018. More information

about his work is available at https://lpm.feri.um.si/en/members/mernik/

Received: October 09, 2020; Accepted: December 30, 2020

