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Abstract. Connectivity is one of the most important parameters in network 

monitoring. The connectivity model of Opportunistic Sensor Networks (OSN) can 

hardly be established by traditional graph models due to the fact that its 

connectivity is timing correlative and evolutionary, which makes it extremely 

difficult to monitor an OSN. In order to solve the monitoring problem, this paper 

builds an evolving graph model based on the theory of evolving graph as a 

description of an OSN. It defines a series of parameters to measure the 

connectivity of the OSN and establishes an monitoring model. Meanwhile, this 

paper gives the key algorithms in building the model, the 

Evolving-Graph-Modeling (EGM) algorithm and the Connected-Journey (CJ) 

algorithm. The rationality of the monitoring model has been proven by a prototype 

system and the simulation results. Extensive simulation results show that the 

proposed connectivity monitoring model can indicate real circumstances of OSN’ 

connectivity, and it is applicable to monitoring an opportunistic sensor network. 

Keywords: connectivity monitoring model, opportunistic sensor network, evolving 

graph. 

1.  Introduction 

In a typical Opportunistic Sensor Network (OSN) [1], mobile sensor nodes move 

randomly or move according to certain laws to accomplish data gathering. Compared to 

large-scale static sensor networks, OSN can achieve low-power sensing and large-scale 

sensing at the same time. It has the same basic features with Opportunistic network 

(OppNet) [2] and Delay Tolerant Network (DTN) [3], which are intermittent 

connection, frequently separation and high message delay. An OSN transfers messages 

according to opportunities created by the movement of nodes, and it is a new type of 

network whose network status is changing ceaselessly. 
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Fig. 1. Opportunistic sensor network 

In contemporary OSN, the sensing region is often been cut apart into several 

separated regions due to the landform and the frequently changing communication 

quality, as shown in Figure 1. Each region communicates with a mobile node or so 

called Ferry when it passes by. The connectivity is opportunistic, discontinuous and 

dynamic caused by changing topology of the network continually. 

These features lead to a great challenge to establish a connectivity model of OSN, 

and to monitor a running one. This paper proposes an evolving graph based monitoring 

model of OSN. Section 2 analyzes the related researches of connectivity modeling; 

Section 3 gives the evolving graph based connectivity monitoring model; Section 4 

proposes the key algorithms in building the monitoring model and section 5 uses a 

prototype system and simulation experiments to validate the model. 

2.  Related Works 

Traditional models of network connectivity are basically based on the static graph 

model, which often focuses on node degree, connectivity of the graph or the probability 

that a network is k-connected. The topology of OSN is dynamic and timing correlative, 

for which the study of this kind of network is called a dynamic network model. It 

mainly focuses on how to describe the dynamic changes in the network topology. 

To design a dynamic network model, researchers often use the random graph [4-8] or 

the random geometric graph [9-11] as a reference model. Paper [12] proposes a random 

geometric graph by analyzing the features of uniformly distributed network. They find 

that the nearest neighbor distance of this kind of network conforms to the Poisson 

distribution. Based on this conclusion they derive probability equations of connected 

network and k-connected network, and give a function of connectivity probability, 

which is related to node communication range and the density of the network. Paper 

[13] presents an analysis of network connectivity of one-dimensional Mobile Ad hoc 

Networks with a mobility scheme of Random Waypoint Movement. Similar with paper 

[12], this paper derives a probability function of connectivity by mathematical 
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deduction. Paper [14] proposes a vehicular mobility model in freeway traffic scenarios 

and analyzes the connectivity parameter of VANET such as the connected probability 

between any two cars, as well as the diameter size of connected cluster and the number 

of connected cluster. Such researches focus on dynamic network connectivity, and their 

purposes are to optimize the design of dynamic sensor networks. However, network 

monitoring we are studying aims at running networks. 

An OSN is notionally and qualitatively similar to an Delay Tolerant Network (DTN). 

In the preliminary stage of studying these networks, paper [15] proposes the notion of 

multi-graph, where several edges may exist between pairs of nodes, each weighted with 

capacity and delay functions. Also, Space-time graph has been defined in paper [16], 

under perfect information of connectivity at each point in time. Space-time graph is 

constructed by sampling the instantaneous connectivity over a set of consecutive 

disjoint time intervals, where topology and link capacity do not change. Such instances 

are then pasted and linked by directed edges in order to construct the final instance of 

the space-time graph. Paper [17] provides a notion of an evolving graph, which is a 

sequence of graphs constructed from the presence schedule of all nodes and links over a 

set of intervals. Evolving graph can describe the changes and situations of network 

topology overtime. Paper [18] proves that the problem of building a minimum cost 

spanning tree in such domain (evolving spanning tree) is NP-hard. Along with the same 

train of thoughts in paper [17], paper [19] studies the dalian-subgraph problem in 

evolving graph with the geometric properties between nodes. Mobile-graph is another 

similar graph model to describe dynamic network. In a mobile-graph, appearance or 

disappearance of an edge may create a new basic graph, which means that the 

construction of basic graphs has nothing to do with time interval, but the appearance or 

disappearance of edges. Therefore, mobile communication can capture the whole 

process of the evolution of each edge. Paper [20] analyzes network connectivity with 

mobile-graph. They proposes an approach for protocol assessment based on historical 

data of mobile-graphs. Paper [22] analyzes the Random Waypoint Movement model, 

Gauss-Markov Movement model, city area movement model and Manhattan movement 

model by using the performance evaluation algorithm proposed in paper [19]. 

Compared to evolving graph, when the evolution of the edges between node pairs is 

frequent, such as the situation in our work, modeling a mobile-graph is time consuming 

and it may create a lot of temporary data.  

Evolving graph is mainly used in network modeling [23-26] or interplanetary 

navigation [27]. In summary, evolving graph is able to describe the whole process of the 

changes of dynamic network topology. It can not only describe dynamic networks 

themselves, but also can describe their connectivity. In order to monitor the connectivity 

of running OSN, this paper proposes a connectivity monitoring model based on 

evolving graph.  
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3.  Modeling and Assumptions 

3.1 Scenario and Theoretical Basis 

As shown in Figure 1, an opportunistic sensor network is constructed by many sensing 

nodes in several separated sensing regions, some mobile Ferry nodes and a Sink node. 

Messages flow form sensing nodes to the Sink node via Ferry nodes when the 

opportunity arises. In order to describe the dynamic connectivity of OSN, time is 

usually divided into sequential time slices during the operation of the network. As an 

example, there are four snapshots taken at different time intervals of a OSN, as shown 

in Figure 2. where A, B, C and D represent separated sensing regions; E and F are Ferry 

nodes; S means Sink node. 
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Fig. 2. The evolution of an OSN over time 

As one can readily observe, sensing region B and the Sink node S are never 

connected at a single time interval. Notwithstanding, B can indeed send message to S, 

using the path over time composed of B,F,S. Surprisingly, this otherwise trivial fact 

cannot be directly modeled by usual graphs. So now we model it by evolving graph. 

Definition 1. Let be given a graph G(V,E) and an ordered sequence of its subgraphs, 

 GGGSG ,...,, 21 such that GG
i i 


 1
. Let  ttttST ,...,,, 210  be an ordered 

sequence of time instance. Then, the system ),,( TG SSG , where each iG  is the 

subgraph in place during ],[ 1- ii tt , is called an evolving graph. Let VV   and 

EE  . 



A Connectivity Monitoring Model           899 

 

 

A

B

C

E

F

D

S

2

 

Fig. 3. Evolving graph corresponding to the OSN in Figure 2 

Evolving graph represents a formal abstraction of dynamic networks, and can be 

suited easily to this case. Concisely, an evolving graph is an indexed sequence of T 

subgraphs of a given graph, where the subgraph at a given index point corresponds to 

the network connectivity at the time interval indicated by the index number, as shown in 

Figure 3. Note that B and S is connected within the sequence of B,F,S or B,F,E,S. 

Furthermore, in order to monitor an OSN we should transfer the definitions of the 

most important parameters from usual graph to evolving graph. 

3.2 Connectivity Parameters 

In static graph models we often use the notion of path to represent a connection between 

a pair of nodes, which means if there exists a path between node A and node B, then we 

can say A and B is connected. However, if node A and node B are sensing regions in an 

OSN, the path between A and B is frequently up and down. The notion of path can 

hardly represent the connectivity in such dynamic networks, so we propose a notion of 

connected journey to represent the dynamic connectivity in OSN. 

Definition 2. Let TV  be a set of unrepeatable vertexes kT vvvV ,...,, 21  with 

Vvi ∈ . Let 1-210 ,...,,, kT ttttS   be a time schedule indicating that edge ( iv , 1iv ) 

is to be traversed at time it . Then we define a connected journey ),(),( 1 TTvv SVCJ
k
  

if and only if TS  is in a non-decreasing order. 

As shown in Figure 3, there are 2 connected journeys between node A and S, which 

are ))3,2,2(),,,,((),( SFEACJ SA   and ))4,2(),,,((),( SEAJC SA  . Note that 

there is no connected journey between C and S because the time schedule is decreasing. 

It is important to notice that connected journeys connect two nodes over time, even in 

the case the nodes are never connected in each time slice. Conversely, the fact that two 
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nodes are connected in the underlying graph does not imply the existence of a connected 

journey between them.  

In static graph models, the notion of isolated node and node degree are basically 

based on the number of neighbors around the node. But in OSN, neighbors are always 

changing so that the tradition notions cannot describe connectivity accurately. So we 

give a new notion of node degree based on evolving graph. 

Definition 3. If node VVi ∈  is not a Sink node and the number of connected 

journeys between iV  and the Sink node sV  is d , we say the node degree of iV  is 

dD
iV  . 

Once we have the notion of node degree, we have the notion of isolated node, 

average node degree, the minimum node degree and k-connected OSN: If nodes have 

node degree 0
iVD , such nodes are isolated nodes; the average node degree of an 

OSN ∑
1-

11-

1 N

i
Vi

D
N

D


 ; the minimum node degree of an OSN 

),...,,(
1-21min NVVV DDDMIND  , where N is the number of nodes. If the minimum 

node degree of an OSN kd min , we say the OSN is k-connected. 

Furthermore, node degree can hardly show the network connectivity directly. For 

more intuitionistic, we propose the notion of network connectivity degree. Before that, 

we give successful delivery times of node, which means how many times a node 

delivers its message to the Sink node successfully. 

Definition 4. The successful delivery times of node(
iVS ) is the number of such 

events happen when the node iV  meets a Ferry node in it  and ),( SVi i
CJt ∈ . 

For example, as shown in Figure 3, node C meets Ferry F at 4t  for one time, but 

NULLCJ SC ),( , ),(4 SCi
CJt  , so 0CS ; In another hand, node D meets Ferry E 

twice in 1t  and 4t , and ),(1 SDi
CJt ∈ , ),(4 SDi

CJt ∈ , so 2DS . 

Definition 5. If the successful delivery times of node iV : iV sS
i
 , the number of 

time intervals is  , then the node connectivity degree  /iV sP
i

. 

Finally, we propose network connectivity degree to describe the connectivity of an 

OSN. 

Definition 6. Let P  be the network connectivity degree, ∑
1-

11-

1 N

i
Vi

P
N

P


  , where 

N is the number of nodes in  . 

As shown in Figure 3, we can obtain that the node connectivity degrees of sensing 

regions A, B, C and D during 4 time intervals are 5.0AP , 25.0BP , 0CP  and 

5.0DP . According to definition 6, we got the network connectivity degree for that 

period of time is %25.31P . 



A Connectivity Monitoring Model           901 

 

 

3.3 Connectivity Monitoring Model for OSN 

The model we build, as shown in Figure 4, aims at OSN connectivity monitoring. 

Sensor networks in the bottom layer send messages to a cluster of distributed servers via 

a Sink node. After classification and extraction, messages will be transferred into a lot 

of snapshots of the network, which will be represented by a specific data structure 

(details will be mentioned in section 4); then the servers using a 

Evolving-Graph-Modeling (EGM) algorithm to translate data into evolving graph 

model, and a Connected-Journey (CJ) algorithm to get every connected journeys 

between each sensing region and the Sink node. Finally, the network connectivity 

degree will be obtained according to definition 4, 5 and 6, which will be sent to the 

foreground. 

Monitor

Evolving Graph model Connectivity Degree

Network Data

Sensor node

Cluster head

Sink node

Ferry node

 

Fig. 4. Connectivity Monitoring Model for OSN 

3.4 Assumptions 

In order to focus on building the connectivity monitoring, we make the following 

assumptions: 

 We regard the isolated sensing region as a single node, and despite that the regions 

are constructed by real sensing nodes. 

 When capturing network snapshots, we assume that the time intervals are already 

been divided. Network topology remains constant during each time interval and it is 

different between contiguous time intervals. In each time interval, messages can be 

fully exchanged. 

 To facilitate the research, we assume that there is only one Sink node in the 

opportunistic sensor network. 
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4.  Algorithms and Analysis 

According to definition 4 to 6, as soon as we transfer network data to a evolving graph 

model and calculate the connected journey of each sensing nodes, we can obtain the 

network connectivity degree easily. Now we represent the Evolving-Graph-Modeling 

algorithm and the Connected-Journey algorithm. 

4.1 Evolving-Graph-modeling (EGM) algorithm 

According to section 3.1, an evolving graph model is established by network snapshots. 

Based on the characteristics of OSN, network snapshots can be represented by the 

neighbor lists of Ferry nodes in each time interval. The neighbor list corresponds to 

snapshots shown in Figure 2 is shown in Table 1. 

Table 1. F period 

 Ferry E Ferry F 

T1 D B,C 

T2 A,F E 

T3 A S 

T4 D,S C 

 

An evolving graph can be represented by a special adjacency list. In order to save the 

time sequences above each edge, we regard different time slices as different items. For 

example, when we save node A in Figure 3, the physical model is A→(E,1)→(E,2), 

which means the linked list started with A has two linked nodes: (E,1) and (E,2). 

 

Input:  p_tn -- neighbor list of Ferries; 

Output: r_al -- adjacency list of the model; 

1   for Each node in p_nt do 

2       t_am.add(node,ferry,time_sequence) 

3   end for 

4   for Each time_sequence in t_am do 

5       r_al.add(source_node,dest_node,time_sequence) 

6   end for 

7   return r_al 

Algorithm 1: Evolving-Graph-modeling (EGM)  

4.2 EGM algorithm analyzing 

Algorithm 1 takes an encounter matrix as an auxiliary space and two independent loops 

to establish the model. Assume that the number of Ferry is Nf, the number of sensing 

region is Na, the number of time slice is Nt. The time and space complexity of 

Algorithm 1 is described in Theorem 1. 
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Theorem 1. The space complexity and time complexity of Algorithm 1 are O(Nf * Na) 

and O(Nf * (Nt + Na)).  

Proof. The encounter matrix used in Algorithm 1 has a size of Nf * Na. The 

construction of the matrix requires traversing the neighbor list, of which the time 

complexity is Nf * Nt; the construction of the adjacency list requires traversing the 

encounter matrix, of which the time complexity is Na * Nf. So the general time 

complexity is O(Nf * (Nt + Na)), the space complexity is O(Nf * Na). 

Notice that the encounter matrix is not necessary. If we transfer the neighbor list 

directly to the adjacency list, the time complexity is O(2*Nf * Nt). But practically, Nt >> 

Na, so that O(2*Nf * Nt) >> O(Nf * (Nt + Na)). Besides, the space of servers are often 

large enough, so trading space for time is advisable for Algorithm 1. 

4.3 Connected-Journey (CJ) algorithm 

Finding the connected journeys for an OSM is basically a path searching algorithm. The 

difference is that, firstly, each time we find a new connectable node, we should check 

whether the time sequence is in a non-decreasing order; secondly, each node may has 

many time intervals, so that we should find connected journeys for each time interval 

individually. 

 
Input:  p_al -- adjacency list of the model ; p_sn – the beginning node; 

Output:  r_journeyList – connected journey list that been found. 

1   hashTable.init(), stack.init(), journeyTree.init(); 

2   add p_sn into journeyTree; 

3   p = p_sn.next; 

4   push p into stack; 

6   while stack is not empty do 

7       p = stack.top(); 

8       if hashTable[p.node] is Visited or sequence is not increase progressively 

9          pop stack; break; 

10      end if 

11      if p.node is sink node 

12         add p into journeyTree; 

13         hashTable[p.node] = visited; 

14         pop stack; 

15      end if 

16      if p.next is empty 

17        pop stack; break; 

18      end if 

19      add p into journeyTree; 

20      hashTable[p.node] = visited; 

21      pop stack; 

22      p = p.next; 

23      push p into stack; 

24   end while 

25   convert journetTree into r_ journeyList; 

26   return r_ journeyList; 

Algorithm 2: Connected-Journey (CJ) 
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Algorithm 2 is based on depth-first search, using a hash table to mark the visited 

nodes. Before visiting the top element of the stack, we check if it has been visited, and 

whether the time sequence is in an non-decreasing order (line 8). Each time we found a 

new appropriate node, we insert the node into a journey tree along with the time 

instances (line 12, 19). When finishing constructing the journey tree, we transfer the tree 

into a journey list (line 25). 

4.4 CJ algorithm analyzing 

Algorithm 2 uses a stack, a hash table and a journey tree as an auxiliary space. We 

assume that the number of nodes is N, the average number of edges in the connected 

journey to be found is M, and the average length of the time sequence attached to each 

node is L. Then the time and space complexity of Algorithm 2 is described in Theorem 

2. 

Theorem 2. The space complexity and time complexity of Algorithm 2 are O(N * L) 

and O(M).  

Proof. Each node in the adjacency list will be visited at most once, and each time 

instance of node is treated respectively, so the size of the stack is no more than N*L. 

Likewise, the size of the hash table and the journey tree is no more than N*L. Therefore 

the space complexity of Algorithm 2 is O(N*L). Based on the number of nodes that 

already been visited we can reach that the construction time of the journey tree is 

directly proportional to the length of the time sequence attached to each node. Therefore 

the time complexity of Algorithm 2 is O(L). 

According to Algorithm 1 and 2, we can construct a evolving graph model for a 

running OSM based on network data and obtain the connected journey of each sensing 

region. According to definition 4 to 6, the network connectivity degree can be obtained 

easily. 

5.  Simulations and Results 

5.1 Experiment Parameters 

In this paper, we developed a prototype system of the connectivity monitoring model 

under VS2008, along with the ONE (Opportunistic Network Environment) simulator to 

simulate an OSN monitoring scenario. Firstly, we simulate an OSN with the ONE 

simulator, as shown in Figure 5. In this scenario, we extract neighbor lists of Ferries 

every 10 seconds, which include 120 snapshots of the OSN. Meanwhile, the ONE 

simulator will count the actual message delivery rate of the OSN. The neighbor lists 

will be put into the prototype system synchronously. After modeling and processing 

with the prototype system, the network connectivity degree will be obtained.  
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Fig. 5. Experiment scenario in ONE simulator 

The total experiment time is 8 hours. During the first two hours, we made all the 

Ferries working normally; in the second two hours we shut down the Ferry node fa to 

make the connectivity worse; in the third two hours we shut down fa and fb to make the 

connectivity even worse; in the last two hours we recover all Ferries. Experiment 

parameters are shown in Table 2. 

Table 2. Experiment Parameters 

Parameter Value 

Number of Regions 25 

Number of Ferries 3 

Sampling period 10 s 

Length of time interval 1/12 s 

Total sampling time 8 h 

Sampled data Neighbor lists of Ferries 

5.2 Results and analysis 

The results of network connectivity degree obtained by the prototype system are shown 

in Figure 6, and the actual message delivery rates counted by ONE simulator are shown 

in Figure 7. 

As shown in Figure 6, during the second experiment period, the network connectivity 

degree falls down but not very violent, because although the Ferry fa is not working, 

Ferry fb can also coverage some regions in the top left corner of the scenario, the 

connectivity loss is not very large. But when we shut down two Ferries fa and fb, the 

loss of connectivity is significant, as shown in Figure 6 (the green dots). As soon as we 

recover all Ferries, the connectivity degree is coming back to normal. 
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Fig. 6. Simulation results of network connectivity degree 

 

 

Fig. 7. Actual message delivery rates 

Comparing Figure 6 and 7 we can find that the results come from our connectivity 

monitoring model is consistent with actual network connectivity. The results prove the 

correctness of the model and also prove that the connectivity monitoring model 

proposed by this paper is applicable to monitor an opportunistic sensor network. 

6.  Conclusions 

Network connectivity is one of the key concerns in monitoring an OSN. Due to the fact 

that its connectivity is timing correlative and evolutionary, it can hardly be modeled by 

usually graph models, which makes it extremely difficult to monitor the connectivity of 

an OSN. This paper propose a connectivity monitoring model based on evolving graph, 
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by which we can obtain the network connectivity degree of a running OSN 

synchronously, thereby monitoring the connectivity of the OSN. Extensive simulation 

results show that the proposed connectivity monitoring model can indicate real 

circumstances of network connectivity, and it is applicable to monitor an opportunistic 

sensor network. 
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