
Computer Science and Information Systems 12(2):765–786 DOI: 10.2298/CSIS141104025H

Dynamic Load Balancing Technology for Cloud-oriented

CDN

Hui He1, Yana Feng2, Zhigang Li2, Zhenguang Zhu1,Weizhe Zhang1, Albert Cheng3

1 School of Computer Science and Technology,

150001 Harbin Institute of Technology, Harbin, HL, China

{hehui, wzzhang}@hit.edu.cn
2 HLJ Province Electronic Information Products Supervision Inspection Institute,

150001 Harbin, HL, China

105104397@qq.com, lzg@nstc.gov.cn
3 Department of Computer Science,

University of Houston

Houston, TX, USA

cheng@cs.uh.edu

Abstract. With soaring demands of Internet content services, content delivery

network (CDN), one of the most effective content acceleration techniques, is

applied into Internet services. Content routing functions in CDN are generally

realized by load balancing system. Effectiveness of load balancing strategy

determines response speed to users and user experience (UE) directly. This paper

extracted the most important influencing factor of CDN loading from common

network services and proposed the Variable Factor Weighted Least Connection.

The proposed algorithm made real-time computing and dynamic regulation in

considering of effect of network applications on server load index, performance

changes of the server and workload changes. It has been applied in LVS kernel

system successfully. The experiment confirmed that the CDN load schedule

system with Variable-Factor-Weighted-Least-Connection could balance loads

among cluster servers dynamically according to processing capacity changes of

servers, thus enabling to provide users desired services and contents during high

large-scale concurrence accesses of users.

Keywords: content delivery network (CDN), dynamic load balancing, LVS,

Weighted Least Connection

1. Introduction

In 2014, number of websites in China has reached 2.73 million and Chinese netizen

population has exceeded 632 million [1]. How to provide reliable services to such a big

user population challenges existing Internet technology greatly. Satisfying user

experiences depend on quick responses to desired services and contents of users during

high large-scale concurrence accesses. With the continuous expansion of Internet scale,

internet content providers become aware that it is more and more difficult to provide

desired contents to users within short response time. Such difficulty further intensifies

upon unexpected flash crowd.

mailto:105104397@qq.com

766 Hui He et al.

The traditional web service acceleration strategy which only sets cache at server is no

longer enough to provide content acceleration for new network applications, such as

blog, microblog, SNS, etc. Moreover, cache content changes frequently and has

relatively limited acceleration capacity. Therefore, content acceleration technique in

heterogeneous network environment is attracting increasing research attentions.

Research data reported that users’ patience to website response shortens from 8s to 4s

[2]. To provide quick content distribution and transmission in content agency services,

content delivery network (CDN) is developed [3]. It adds an overlay network into

existing networks and distributes website contents to the “network edge” where is close

to users. When users visit the website, desired content will be transmitted to them

quickly through some algorithms and technologies. This is known as proximity access.

CDN could accelerate content transmission, alleviate backbone network congestion and

shorten response time of the website. The cloud-oriented CDN divides communication

between Internet users and Internet resource providers into two parts: 1) interaction

between users and content proxy server in CDN; 2) interaction between content proxy

server and source content server. Such division not only makes the source service

providers oriented at service delivery to users and content delivery network, which could

reduce operation costs, deployment difficulty and management complexity of source

service providers significantly, but also creates a great CDN market.

Compared to other technologies, cloud-oriented CDN technology has several

advantages:

1. Completely transparent visit to the website. No manual choose or configuration

is needed.

2. Good redundancy mechanism: there are multipoint redundancies within the

physical area and on the network, which ensures that failure of one node won’t

affect normal visit of users.

3. Simple deployment and content management. It could be deployed without any

modification to the source station.

4. It could examine availability of each node and delete unavailable node in time,

thus increasing the web usability.

5. Higher content delivery quality, speed and availability.

6. Lower infrastructure and management facility costs of the whole website.

7. Lower pressure and load on source server.

8. Higher safety of the website. It could hide actual source server better and resist

to DDos attacks better.

CDN includes four key technologies, namely, content routing, content delivery,

content storage and content management [4]. Content routing functions in CDN are

generally realized by load balancing system. Studying dynamic load balancing

technology in content access system could effectively reduce bandwidth consumption of

intermediate network and visit timeout, and improve utilization of server resources and

the overall service ability of the cloud content proxy server system. This is conducive to

safety and reliability of the content service-oriented distributed system platform,

enabling it to bring more benefits to both users and enterprises.

The following text includes four chapters. Chapter II introduces existing researches

on load balancing. Chapter III describes the Variable-Factor-Weighted Least

Connection. Chapter IV tests the proposed Variable-Factor-Weighted Least Connection

Dynamic Load Balancing Technology for Cloud-oriented CDN 767

by four design plans. It is confirmed valid. Chapter V is conclusions and future

prospects.

2. Related works

Load balancing technology is to assign loads of one task to multiple servers evenly when

one server is inadequate to accomplish the task. Load balancing mainly involves three

problems: load parameter selection, load computing method and load scheduling

strategy [5].

Load balancing technology can be divided into dynamic load balancing and static

load balancing according to load information used during allocation [6]. Static load

balancing makes decisions according to priori knowledge and running status of

equipments and programs. Dynamic load balancing adjusts task assignment according to

collected load information instead of priori knowledge. Compared to static load

balancing, dynamic load balancing could acquire load information of the system in time,

balance loads better through the scheduling strategy and increase the overall service

capacity of the system. This explains the better application effect of dynamic load

balancing.

Load balancing technology also can be divided into hardware load balancing

technology and software load balancing technology according to the implementation

way. Software load balancing installs software on the existing operating system of

server. Hardware load balancing adds one or some hardware except for the server and

network equipments. Loads are distributed by the added hardware. Selection of

hardware load balancing or software load balancing is a problem similar with system

structure problems of computer. Some part could be realized by both software and

hardware. Compared to hardware load balancing, software load balancing has lower

expenses and better flexibility, but poorer efficiency. Hardware load balancing has

poorer flexibility due to the limited scalability, but is superior in efficiency. Appropriate

implementation way shall be selected according to costs, efficiency and expandability.

Load balancing technology can be divided into local load balancing and global load

balancing according to sphere of influence. Local load balancing assigns tasks within a

local scope (generally within the same physical extent). Global load balancing assigns

tasks within a larger scope. Generally, it uses hierarchical task assignment. For example,

the task is assigned to several regions firstly and in each region, it is further assigned

according to local load balancing. Global load balancing can be divided into two types:

(1) load balancing based on measurement, such as CDN load balancing technology

based on distributed Binning strategy (Jia Bo et al.) [7-9] and CDN load balancing

technology based on performance measurement (Zhang Guomin et al.) [10]; (2) load

balancing based on domain and classification, such as CDN load balancing based on

new multicast characteristics of IPV6 (Zhu Tiannan et al.) [11], level-three load

balancing strategy for streaming media that centered at cooperative interaction of peer

domains (Zhang Guomin et al.) [12].

Brighten Godfrey et al. solved load balancing problem of dynamic P2P network

through heat and loads of log files [13]. Zhu Binjie et al. addressed dynamic load

balancing problems in P2P-CDNs by improving the lookup algorithm [14].

768 Hui He et al.

Specifically, Onur Destanoğlu et al. proposed a dynamic load balancing algorithm

based on hydrodynamic model [15]. Chen Yan et al. put forward a load balancing

algorithm based on air pressure model [16]. Ralf Diekmann et al. developed the nearest

neighbor scheduling algorithm [17]. Sagar Dhakal et al. proposed the improved One-

Short algorithm that takes link delay into account [18].

Network implementation layers include IP layer, HTTP layer and intelligent DNS

layer [19-21]. Implementation layer could be selected according to specific services.

3. Variable Factor Weighted Least Connection load scheduling

In LVS, the only dynamic load information that could be acquired is link numbers of

real servers (recorded upon request of passing the load balancer and controlled by

corresponding timeout mechanism). It is simple to operation and doesn’t need to request

load information from real servers. However, it also has a serious shortcoming. Link

number could only represent load information of few real servers and couldn’t reflect

actual loads of all real servers.

For CDN in backbone network, the Weighted-Least-Connection could reduce

workload of load balancer effectively. But existing Weighted-Least-Connection neglects

effect of different network application connection on server load. Hence, this chapter

improves the Weighted-Least-Connection from load metric selection and load compute

mode. Relationship of load metrics was analyzed by an experiment.

3.1. Selection and measurement of load parameters

In computing cluster emphasized on scientific computing task, dynamic load balancing

is to solve maldistribution of machine loading caused by different operation task queue

lengths of different servers. It could acquire all operation task information, thus enabling

to adjust operation task queue of servers continuously during running. As a result, it

could accomplish all operations in the shortest possible time. However, dynamic load

balancing in content service agency couldn’t predict time and scale of network request.

Meanwhile, one request that has been assigned to one server won’t be readjusted to

other servers in view of costs. Compared to dynamic load balancing emphasized on

scientific computing, dynamic load balancing in content service agency couldn’t predict

future task size and has higher requirement on real-time performance.

Actually, loads in content agency reflect busyness of servers which could be

described by resource utilization of servers. Therefore, resource utilization of servers in

agent-based cloud by different network applications should be analyzed firstly to find

out the best index of busyness of servers.

Currently, mainstream internet business includes two categories: 1) frequent

interaction of small data size, such as search engine, microblog, mail service, instant

messaging, and so on; 2) continuous interaction of big data size, such as video websites,

P2P download, etc. The following text will make an experiment on these two kinds of

network application to observe resource utilization and provide experimental basis for

selecting load computing indexes.

http://lib.cqvip.com/qk/92040X/200401/9127946.html

Dynamic Load Balancing Technology for Cloud-oriented CDN 769

Load analysis for frequent interaction of small data size. An experimental

environment was created on Linux to measure actual resource utilization. Configurations

of the implementation platform are shown in Table 1.

Table 1. Configurations of the experimental environment

Configuration Name Content

Operating system Centos 6.2

Memory size 32G

CPU 4 AMD Opteron(tm) Processor 6136 CPU

Network card GB Ethernet card

Installing software Apache+Mysql+PHP+Wrodpress

To observe resources utilization of servers, multiuser access was simulated by using

the LoadRunner software of HP in the experiment [22]. LoadRunner simulated that 300

users click five blog pages without video in 5min. Information statistics, including link

number, memory usage, CPU utilization, disk I/O as well as quantity and bytes of

receiving and sending packages, were made every 5s. LoadRunner held each connection

for 600s in the experiment in order to ensure connection continuity (It held connection

even after finished information acquisition).

According to information statistics, the average total disk I/O of servers every 5s

reads 7.3 when accessing to common pages. This indicates that common pages consume

only a small amount of disk I/O resources. No independent graphic is presented in this

paper.

Fig. 1. Relationship between link numbers and CPU utilization when accessing to common pages

A proportional relationship between link numbers and CPU utilization is observed in

Fig.1. This means that CPU utilization could reflect busyness of system (Although link

number keeps increasing, most links are at TIME_WAIT after finished data acquisition.)

Fig.2 shows that memory utilization also could reflect busyness of system. In Fig.3, the

770 Hui He et al.

total sending packages are far more than total receiving packages under high link

number. It is important to note that in every 5s statistical time, total receiving packages

basically conform to total sending packages (total sending packages is some times more

than total receiving packages), but bytes of sending packages are significantly higher

than those of receiving packages.

Fig. 2. Relationship between link numbers and memory utilization when accessing to common

pages.

Fig. 3. Relationship between link numbers and bandwidth of receiving and sending packages

when accessing to common pages

To sum up, when accessing to common webpage with small data size, busyness of

system could be reflected by CPU utilization, memory utilization, link numbers and

bandwidth of receiving and sending packages. It is appropriate to define and measure

system loads with these indexes.

Dynamic Load Balancing Technology for Cloud-oriented CDN 771

Load analysis for continuous interaction of big data size. The experimental

environment for video accessing was same as above. A 500MB RMVB video was

uploaded to the server and then a webpage was edited for codes of online play of this

video. Similarly, information statistics were made every 5s. LoadRunner simulated that

100 users click the video page continuously. Results are shown in Fig.4, Fig.5 and Fig.6.

Fig. 4. Relationship between link numbers and CPU utilization when accessing to video page

Fig. 5. Relationship between link numbers and memory utilization when accessing to video page

0

500

1000

1500

2000

2500

2 63 615 1689 2821 3992 4943 4350 3353 2099 1076 172 121 124 121 129 128
Link num.

Mem usage (MB)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

2 77 1027 2389 3698 4943 4179 2866 1542 272 121 120 121 130 119

Link num.

CPU utilization %

772 Hui He et al.

Fig. 6. Relationship between link numbers and bandwidth of receiving and sending packages

when accessing to video page

In Fig.4, CPU utilization during video accessing is significantly lower than that when

accessing to common pages. CPU utilization during system busy stabilizes at about

10%. It can be seen from Fig.5 that video play consumes a lot of memory. Memory

utilization at accessing peak is about 1.5GB higher than that at the beginning. Fig.6

shows similar bandwidth of receiving and sending packages with that when accessing to

common webpage. Additionally, the average total disk I/O during video play is 448.5,

far higher than that when accessing to common webpage.

Therefore, disk I/O is an important parameter for load measurement during video

play except for abovementioned CPU utilization, memory utilization, link numbers and

bandwidth of receiving and sending packages.

Selection of load metrics. Load indexes are quantitative criteria of load evaluation.

Different load indexes will contribute different load evaluation results at the same

moment. A good load index shall have following two characteristics: (1) index data are

easy to be acquired for the convenience of multiple measurements; (2) index data could

reflect loading condition objectively and clearly.

Agent-based cloud mainly offers web services under the assistance of database

software, cache software and web server software. According to above analysis on

current internet business and two experimental results, this paper chose CPU utilization,

memory utilization, bandwidth utilization of sending packages, link numbers and total

disk I/O as load parameters.

In this paper, L represents server load and the five load parameters were represented

by five capital letters: C for CPU utilization, M for memory utilization, P for link

numbers, B for bandwidth utilization of sending packages, and D for total disk I/O.

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

2 63 615 1689 2821 3992 4943 4350 3353 2099 1076 172 121 124 121 129 128

Link num.

RP
SP

Receive&send package(KB)

Dynamic Load Balancing Technology for Cloud-oriented CDN 773

, , , , [0,1]C M P B D . M is memory size/total physical memory size. B is bandwidth of

sending packages/total bandwidth. D is the ratio between disk I/O and available I/O.

A formula used to calculate weighted sum of above parameters was proposed in

Reference [23]:

1 2 3 4 5L C M P B D         , and 1 2 3 4 5 1         (1)

In formula (1), importance of resources in the overall load is expressed by adjusting

coefficients of utilization. Due to normalization of coefficients, the final calculated

result is [0,1]L . The whole system will suffer bottlenecks when one resource is

consumed greatly. Since the sum of coefficients in formula (1) is 1, it can only

determine importance of one resource, but couldn’t reflect load distribution when other

resources are in severe shortage. For example, when CPU utilization is the biggest

influencing factor of loading (1 0.5 ), it can only show that weight coefficients of

other resources are very low, but couldn’t reflect the server load objectively. As a result,

formula (1) neglects effect of different application on load indexes when describing

server load.

Product averaging method shall be chosen when utilization of one resource exceeds

the threshold and system capacity of receiving new requests declines significantly [24-

25]. To describe effect of different applications on load indexes, this paper described

server load by product method:

1 (1)*(1)*(1)*(1)*(1)c m p b dL C M P B D           (2)

In formula (2), 0i  and 0 (1) 1i iX   . If one application influences one or

several indexes greatly, its coefficient (i) can be increased accordingly. Sum of

coefficients is no longer equal to 1, thus enabling to describe server load more

objectively. Suppose ratios of any two load indexes are 1 at the very beginning. At one

moment, network application consumes a great proportion of CPU resource and makes

the server couldn’t accept new tasks. Server load calculated from formula (1) isn’t very

high, but server load calculated from formula (2) approaches to 1. This reveals that

formula (2) has stronger adaptability. It could help to increase the global load

scheduling capacity, reduce flash crowd caused by normal mass access and balance

loads of content access dynamically according to the processing capacity.

3.2. Variable Factor Weighted Least Connection

Weighted Least Connection considers performance difference of heterogeneous servers

and servers. It takes connection load as dynamic load scheduling depression of server

and assigns tasks to servers according to their weights. It gives no consideration to disk

I/O and CPU utilization in real servers, thus causing serious uneven load distribution

among servers under small P but high D and C.

On load balancer, P of different servers is the only one information that can be

acquired in time (over frequent collection will increase loads of real servers and pressure

of the central server significantly). The proposed algorithm is to adjust load distribution

774 Hui He et al.

strategy based on collected load information and reduce uneven loading among different

servers.

In this paper, existing Weighted-Least-Connection was improved. One variable factor

was added to each real server. Product of server weight and the variable factor was used

as the actual weight of the server during task assignment. Specifically, after loads of real

servers are collected, variable factor of the server identified with excessive loads will be

reduced and the task will be reassigned using the least-connection scheduling algorithm.

There are two reasons to use variable factor instead of changing server weight directly:

(1) weight reflects the overall performance of one server compared to others. Positive

weight represents actual service capability of the server. Therefore, direct weight

changing will conflict with previous monitoring strategy and man-made strategy. (2)

Weight is expressed by integral, which can only provide a poor accuracy control. On the

contrary, variable factor could adjust weight flexible and contribute higher accuracy

control.

Variable Factor Weighted Least Connection (VFWLC) determines that:

0 1 2 n-1S={S ,S ,S ,...,S } is server set; m is indicator variable; i is index number of servers;

iW(S) is weight of server iS ; iC(S) is current link numbers of iS ; ()iS is variable

factor of iS (() [0,1]iS ). Servers shall be selected according to:

()
min(), [0, 1]

()* ()

i
i

i i

C S
S i n

W S S
   (3)

To accelerate operation, division was converted into multiplication. The algorithm

description is shown as follows.

Algorithm 1: Variable-Factor-Weighted-Least-Connection (VFWLC)

Input: available server set (S), server weight set (W), variable factor set () and

 link numbers set of current servers (C).

Output: Chosen servers

Function VFWLC()

{

if (W = )

 return NULL; //No server is available

m = 0;

for (i = m + 1; i< n; ++i) {

if (
mC(S)

*
iW(S)

*
()iS

>
iC(S)

*
mW(S)

*
()mS

)

m = i;

}

mC(S) += 1
; //Plus 1 to link numbers of the server

return mS ;

}

Obviously, the time complexity of the proposed VFWLC is O(n). Modification of

variable factors is an important part of VFWLC. Variable factor is modified according

Dynamic Load Balancing Technology for Cloud-oriented CDN 775

to server load. Load and mean load (L) of servers can be calculated from formula (2)

after the central server received load information of all servers at the same moment.

1

0

n

i

i

L L




 (4)

In this paper, server (iL > L) is recognized as overloaded. Variable factor of

overloaded server will be reduced to lower its weight. If iL ≤ L and the corresponding

variable factor is smaller than 1, the variable factor will be adjusted to 1 and the server

will provide services according to normal weight. Other conditions won’t be changes.

To avoid frequent adjustment of variable factors and influence to scheduling stability,

this paper set upper and lower load limits. When server load minus L exceeds  , the

server is determined as overloaded and its variable factor will be reduced. When L

minus server load exceeds  , the server is determined as under-loaded and its variable

factor will be increased. The upper and lower load limits could stabilize loads of servers

within a certain range.

Hence, the adjustment function of ()iS is:

/ * (),

() 1 ,

() ,

i i i

i i

i

L L S L L

S L L

S others

 

 



  


  



 (5)

The proposed VFWLC and adjustment function of variable factor illustrate the load

balancing strategy of this paper.

4. Experimental results and analysis

This chapter made an experimental test on the proposed VFWLC and compared it with

weighted Least Connection.

4.1. Experimental environment

Experimental network topologys. The experimental network topology is shown in

Fig.7. Five PCs are connected directly through Gigabit switch. Client is the user

computer and the IP address is 192.168.1.22. LB is load balancer which is installed with

load computing module and modified load scheduling module. External virtual IP of LB

is 192.168.1.100 and IP to internal server cluster is 192.168.0.100. RS1, RS2 and RS3

(Real Server 1, Real Server 2 and Real Server 3) are three cloud servers which provides

real services. They are installed with load information collection module. IP of these

three cloud servers are shown in Fig.7.

776 Hui He et al.

RS1 RS2

LB

Client

RS3

192.168.1.100

192.168.0.101 192.168.0.102 192.168.0.103

192.168.1.22

192.168.0.100

Fig. 7. Experimental network topology

Experimental environment configuration. Hardware configurations of servers are

listed in Table 2. To test load balancing effect of machines with different configurations,

two servers with same configuration (RS2 and RS3) and one server with poorer service

capability (RS1) are used. According to their service capabilities, weight of RS1 is 7,

while weights of both RS2 and RS3 are 10.

Table 2. Hardware configurations of servers

Server Hardware configurations

Client, RS2, RS3, LB

4 AMD Opteron(tm) Processor 6136

CPU, 32G memory and 2 pieces of

GB network cards

RS1

2 Intel(R) Xeon(R) E5506 CPU,

24G memory and 2 pieces of GB

network cards

 Software configurations of servers are presented in Table 3. To simplify CDN

simulation, same web service was configured on real servers. LoadRunner was installed

on the Client to simulate multiuser access.

Table 3. Software configurations of servers

Server Software configurations

Client Win Server2003+LoadRunner11.0

LB CentOS 6.2

RS1, RS2 and RS3 RedHat AS5.2 +Apache+Mysql+PHP+Wordpress

Dynamic Load Balancing Technology for Cloud-oriented CDN 777

 In the experiment, coefficients in formula (2) were set

{ , , , , } {0.5,0.4,0.4,0.4,0.35}c m p b d      and two parameters in formula (5) were set

0.06  and 0.05  .

4.2. Analysis of experimental results

Experiment design. Considering effect of different network applications on server load

and scalability of the VFWLC and weighted-least-connection, this paper designed four

experiments:

1) Low average load of webpage: effect of VFWLC and weighted-least-connection

on server load when users visit webpage with small data size.

2) High average load of webpage: effect of VFWLC and weighted-least-connection

on server load when users visit webpage with big data size.

3) Mixed webpage: effect of VFWLC and weighted-least-connection on server load

when users visit webpage with small data size and webpage with big data size

simultaneously.

4) Scalability test: effect of VFWLC and weighted-least-connection on server load

when users visit webpage with small data size and webpage with big data size

simultaneously and one additional server is involved.

LoadRunner was installed on the Client to simulate that 1,000 users visit common

webpage and video webpage. LoadRunner parameters of each experiment design are

shown in Table 4.

Table 4. Experimental parameters

Number

of users

Mean requests

per second

Proportion of

webpage with

small data

size

Proportion of

webpage with

big data size

Experiment 1 1000 1000 100% 0%

Experiment 2 1000 500 0% 100%

Experiment 3 1000 750 50% 50%

Experiment 4 1000 750 50% 50%

Result analysis. Experiment 1 simulated that 1,000 users visit common webpage

continuously by using LoadRunner on the Client. Load balancing results of WLC and

VFWLC are shown in Fig.8 and Fig.9, respectively. In the experiment, it took some time

for request sending rate of Loadrunner reaching the determined stable value. Therefore,

load of backend servers began to increase sharply at 7th information collection. It can be

known from Fig.8 and Fig.9 that after 19th information collection, the request sending

rate of Loadrunner stabilizes. WLC distributes load according to link numbers and

weight of servers. However, different links consume different loads. The LVS system

won’t balance loads of servers even if it recognized uneven load distribution.

Consequently, new load distribution will further intensify such uneven distribution. This

could be observed in Fig.8: RS1 keeps higher load than L , while RS2 and RS3 keeps

778 Hui He et al.

lower loads than L . The proposed VFWLC will modify variable factor of servers

according to their loads and redistributes loads to servers dynamically. In Fig.9, loads of

three real servers are approximate to L , showing slight fluctuations. VFWLC stabilizes

load of servers within a certain range.

Fig.8. Load balancing result of WLC in Experiment 1

Fig.9. Load balancing result of VFWLC in Experiment 1

 Experiment 2 simulated that 1,000 users visit video webpage in LVS. Load

balancing results of WLC and VFWLC are shown in Fig.10 and Fig.11, respectively.

Dynamic Load Balancing Technology for Cloud-oriented CDN 779

Due to the long duration of each link, link numbers could reflect loads of three real

servers. Therefore, both WLC and VFWLC could balance loads of servers well. To

further compare load balancing effect of WLC and VFWLC, loads calculated by WLC

and VFWLC were averaged and variance sum of loads of three real servers was

calculated (Fig.12). Apparently, VFWLC has significantly smaller variance sum and

smaller fluctuation than WLC. This indicates that the proposed VFWLC is superior to

WLC in load balancing.

Fig. 10. Load balancing result of WLC in Experiment 2

Fig. 11. Load balancing result of VFWLC in Experiment 2

780 Hui He et al.

Fig. 12. Load variance sum of WLC and VFWLC in Experiment (2)

 Experiment 3 simulated that 500 users visit common webpage and another 500 users

visit video webpage in LVS simultaneously. Load balancing results of WLC and

VFWLC are shown in Fig.13 and Fig.14, respectively. Under such mixed access, service

loading of WLC fluctuates more violently than that of VFWLC. Similarly, load variance

sums of WLC and VFWLC were calculated using same method mentioned above

(Fig.15). According to Fig.15, VFWLC could balance loads of servers within a small

fluctuation range.

Fig. 13. Load balancing result of WLC in Experiment 3

Dynamic Load Balancing Technology for Cloud-oriented CDN 781

Fig. 14. Load balancing result of VFWLC in Experiment 3

Fig. 15. Load variance sum curves of WLC and VFWLC in Experiment 3

 Experiment 4 also simulated load balancing under mixed access (same with

Experiment 3). It started up RS2 alone at the beginning and added RS3 in LVS when

load of RS2 increases to a very high level. Load balancing results of WLC and VFWLC

are shown in Fig.16 and Fig.17, respectively. Although both WLC and VFWLC could

balance loads between two servers well, load balancing of WLC fluctuates greatly as

time goes one, while load balancing of VFWLC fluctuates within a small range. This

782 Hui He et al.

implies that VFWLC could distribute load to the new added server well, contributing a

stable load balancing among three servers.

Fig. 16. Load balancing result of WLC in Experiment 4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

T
H
e
 l
o
a
d
 v
a
lu
e

Sample times

RS2

RS3

Fig. 17. Load balancing result of VFWLC in Experiment 4

 To sum up, the proposed VFWLC is superior to WLC in dynamic load balancing.

The proposed VFWLC could modify variable factors of servers dynamically according

to load feedback of servers and make loads of all servers vary within a small range

above and below the mean load.

Dynamic Load Balancing Technology for Cloud-oriented CDN 783

Fig. 18. Load balance comparison of servers with different service capabilities

 RS2 and RS3 were further analyzed from link numbers (Fig.18). RS2 and RS3 have

different performances. The proposed VFWLC (VL in Fig.18) could provide stable load

balancing between them. On the contrary, load balancing of WLC fluctuates greatly.

Therefore, the proposed distributed cloud brokering platform could not only provide

better content services under GB network environment and high concurrent access, but

also make quick responses to flash crowd.

5. Conclusions

This paper focuses on dynamic load balancing of CDN in super nodes (or clusters).

Through analyzing existing load balancing system and studying scheduling strategies, a

dynamic load balancing system applicable to such CDN is designed and implemented,

aiming to provide high-efficiency and high-quality content services.

This paper gets some achievements:

1. Based on experiments and analysis of CDN services, this paper selects appropriate

load metrics and proposes the VFWLC. VFWLC could adjust request distribution

dynamically and is applicable to various network applications.

2. A CDN dynamic load balancing system based on LVS is designed and

implemented on the basis of the proposed VFWLC. The proposed VFWLC is confirmed

by experiments superior to classical WLC. It could balance loads among servers well

and make loads of all servers fluctuate within a small range.

784 Hui He et al.

Future research will focus on autonomation of CDN server. Autonomic learning and

machine learning shall be involved to improve adaptive ability of global load balancing

strategy for cloud-oriented CDN.

Acknowledgment. This work was supported in part by the National Basic Research Program of

China under Grant No. G2011CB302605. This work is partially supported by the National

Natural Science Foundation of China (NSFC) under grant No. 61173145, 61472108.

References

1. China Internet Network Information Center. Basic Research Data on China Internet

Development.http://www.cnnic.net.cn/hlwfzyj/jcsc2014/201410/t20141008_49231.htm,

2014-06-30. (2014)

2. Informa Telecom & Media. Content delivery networks: Market dynamics and growth

perspectives.

http://www.informatandm.com/ wp-content/uploads/2012/10/CDN-whitepaper.pdf.(2012)

3. Pallis G. and Vakali A.: Insight and Perspectives for Content Delivery Networks.

Communications of the ACM, Vol. 49, No.1,101-106.(2006)

4. Krishnan R., Madhyastha H., Srinivasan S., et. al.: Moving Beyond End-to-end Path

Information to Optimize CDN Performance. Proceedings of the 9th ACM SIGCOMM

conference on Internet measurement conference. Chicago, USA, 190-201. (2009)

5. Jiang W., Rui Z. S., Rexford J. and Chiang M.: Cooperative Content Distribution and Traffic

Engineering in an ISP Network. ACM SIGMETRICS Performance Evaluation Review,

Vol.37,No.1, 239-250.(2009)

6. Aditya P., Zhao M., Lin Y., et. al.: Reliable Client Accounting for Hybrid Content-

Distribution Networks. Proceedings of the 9th USENIX Symposium on Networked Systems

Design and Implementation, San Jose, CA, USA, 34-45.(2012)

7. Yun B., Bo J., Jixiang Z., Qiangguo P.: An Efficient Load Balancing Technology in CDN.

2009 Sixth International Conference on Fuzzy Systems and Knowledge Discovery, 510-

514.(2009)

8. Bo J., Jixiang Z.: CDN Load Balancing Technology based on Distributed Binning Strategy.

Proceeding of 5th Academic Annual Conference of China Institute of Communications,

1237-1241.(2008)

9. Yun B., Bo J.: CDN Load Balancing Technology based on Distributed Binning Strategy.

Journal of University of Science and Technology of Suzhou, Vol.12, No.25, 55-59.(2008)

10. Guomin Z., Ming C., Ke D., Na W.: Distributed CDN Load Balancing Strategy based on

Performance Measurement. Journal of Applied Sciences, Vol.5, No.25, 247-251.(2007)

11. Tiannan. Z.: Research on CDN Load Balancing System based on IPV6. New Technology &

New Product of China, Vol.2009, No.24, 49-49.(2009)

12. Guomin Z., Jushi S., Song W., Na W.: Load Balancing Strategy for Domain-based

Streaming Media CDN. New Progress of Communication Theory and Technology, 469-

473.(2005)

13. Brighten G., Karthik L., Sonesh S., Richard K., Ion S.: Load Balancing in Dynamic

Structured P2P Systems. IEEE INFOCOM. (2004)

14. Binjie Z., Ke X., Renjie P.: A Lookup Algorithm for P2P-CDNs. Proceedings 2010 IEEE

2nd Symposium on Web Society, 494-496. (2010)

15. Onur D.: Hydrodynamic Based Hybrid Dynamic Load Balancing, 2008 IEEE, 1-6. (2008)

16. Yan C., Xiaochun H., Taoshen L.: CDN Load Balancing Algorithm based on Air Pressure

Model. Microcomputer Information, Vol.2008, No.24, 93-95. (2008)

http://www.cnnic.net.cn/hlwfzyj/jcsc2014/201410/t20141008_49231.htm
http://cpfd.cnki.com.cn/Area/CPFDCONFArticleList-ZGTH200802001.htm
http://cpfd.cnki.com.cn/Area/CPFDCONFArticleList-ZGTH200802001.htm
http://cpfd.cnki.com.cn/Area/CPFDCONFArticleList-ZGTH200802001.htm
http://www.google.com.hk/url?url=http://c.wanfangdata.com.cn/Periodical-zgxjsxcpjx.aspx&rct=j&sa=X&ei=a2JsTtSiF-iViQfIsszsBA&ved=0CCAQ6QUoATAA&q=??IPV6?CDN???????&usg=AFQjCNGJ7Ct0KvGbAKegPsWu57LSJ3gDxg

Dynamic Load Balancing Technology for Cloud-oriented CDN 785

17. Ralf D., Andreas F., Burkhard M.: Efficient schemes for nearest neighbor loadbalancing.

Parallel Computing, Vol.1999, No.25:789-812.(1999)

18. Sagar D., Majeed M., Hayatorge E., Cundong Y., David A. B.: Dynamic Load Balancing in

DistributedSystems in the Presence of Delays, A Regeneration-Theory Approach. IEEE

Transaction on Parallel and Distributed System, Vol.4, No.18, 485-497.(2007)

19. Omp.D. P., Emerald C., Yennun H.: ONE-IP: Techniques for Hosting a Service on a Cluster

of Machines. http://www.ra.ethz.ch/cdstore/www6/technical/Paper196/PAPER196.html,

1996-02-05.(1996)

20. Vittorio M., Roberto C., Andreas M., Gareth T.: Next Generation CDN servicesfor

Community Networks. IEEE Coumpter Society, 89-94.(2009)

21. Wenzheng L., Qiao G., Weimin G.: Internet Load and Traffic Balancing. Journal of

Shanghai University, Vol.9, No.2, 143-146.(2005)

22. Wikipedia. HP LoadRunner. http://en.wikipedia.org/wiki/LoadRunner, 2012-04-23.(2012)

23. Jingbo L., Zhila C., Anfeng L.: A Dynamic Regulation Program based on Weight of LVS

Server. Computer Engineering, Vol.32, No.14, 104-106.(2006)

24. Quansheng G., Jiwu S., Xiping M., et al.: Dynamic Load Balancing Design and

Implementation based on LVS system. Journal of Computer Research and Development,

Vol.41, No.6, 923-929.(2004)

25. Jinpeng W., Longfa P., Jianglong L..: Dynamic Feedback Scheduling Algorithm in LVS

Cluster. Computer Engineering, Vol.31, No.19,40-42.(2005)

Hui He is currently an associate professor of network security center in the Department

of Computer Science, China. She received the Ph.D. in department of computer science

from the Harbin Institute of Technology, China. Her research interests are mainly

focused on network security, distributed computing and big data analysis. Contact her at

hehui@hit.edu.cn.

Yana Feng received the M.Sc. in software engineering from the Harbin Institute of

Technology, China. Her research interests are mainly focused on software engineering

and software testing etc.

Zhigang Li received the M.Sc. in software engineering from the Harbin Institute of

Technology, China. His main research interest is in network engineering, software

security and software testing.

Zhenguang Zhu received the M.Sc. in information security from the Harbin Institute of

Technology, China. His main research interest is in network security and distributed

computing.

Weizhe Zhang is corresponding author of this paper, who is the professor of Harbin

Institute of Technology. He has been a visiting scholar in the Department of Computer

Science at University of Illinois at Urbana-Champaign and University of Houston, USA.

His research interests are primarily in parallel computing, distributed computing, cloud

computing. He has published more than 100 academic papers in journals, books, and

conference proceedings. He is a member of the IEEE. Contact him at

wzzhang@hit.edu.cn.

786 Hui He et al.

Albert Cheng Albert M.K. Cheng is Professor and former interim Associate Chair of

the Computer Science Department at the University of Houston. He received the B.A.

with Highest Honors in Comput-er Science, graduating Phi Beta Kappa, the M.S. in

Computer Science with a minor in Electrical Engineering, and the Ph.D. in Computer

Science, all from The University of Texas at Austin, where he held a GTE Foundation

Doctoral Fellowship. A recipient of numerous awards, Prof. Cheng is the author of the

popular textbook entitled Real-Time Systems: Scheduling, Analysis, and Verification

(Wiley) and over 200 refereed publications on real-time, embedded, and cyber-physical

systems. He is a Senior Member of the IEEE and a Fellow of the Institute of Physics.

Received: November 4, 2014; Accepted: May 19, 2015.

