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Abstract. Increasing demands on user interface (UI) usability, adaptability, and dy-
namic behavior drives ever-growing development and maintenance complexity. Tra-
ditional UI design techniques result in complex descriptions for data presentations
with significant information restatement. In addition, multiple concerns in UI de-
velopment leads to descriptions that exhibit concern tangling, which results in high
fragment replication. Concern-separating approaches address these issues; however,
they fail to maintain the separation of concerns for execution tasks like rendering or
UI delivery to clients. During the rendering process at the server side, the separation
collapses into entangled concerns that are provided to clients. Such client-side en-
tanglement may seem inconsequential since the clients are simply displaying what
is sent to them; however, such entanglement compromises client performance as it
results in problems such as replication, fragment granularity ill-suited for effective
caching, etc.
This paper considers advantages brought by concern-separation from both perspec-
tives. It proposes extension to the aspect-oriented UI design with distributed concern
delivery (DCD) for client-server applications. Such an extension lessens the server-
side involvement in UI assembly and reduces the fragment replication in provided
UI descriptions. The server provides clients with individual UI concerns, and they
become partially responsible for the UI assembly. This change increases client-side
concern reuse and extends caching opportunities, reducing the volume of transmit-
ted information between client and server to improve UI responsiveness and perfor-
mance. The underlying aspect-oriented UI design automates the server-side deriva-
tion of concerns related to data presentations adapted to runtime context, security,
conditions, etc. Evaluation of the approach is considered in a case study applying
DCD to an existing, production web application. Our results demonstrate decreased
volumes of UI descriptions assembled by the server-side and extended client-side
caching abilities, reducing required data/fragment transmission, which improves UI
responsiveness. Furthermore, we evaluate the potential benefits of DCD integration
implications in selected UI frameworks.
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1. Introduction

Conventional UI design approaches usually provide a wide range of mechanisms to de-
scribe a particular UI: a large collection of composable components, widgets, component
control mechanisms, etc. Such approaches typically focus solely on the UI portion of
the application. Unfortunately, this isolation of UI description from the application often
results in application information restatement especially in the case of data definitions.
[4, 18]. Thus existing data definitions along with their field constraints, input validation
rules, and even security are replicated by the UI description. This correlation between the
UI and other elements must be manually maintained. Besides that, various context-related
situations may demand adjustments to the UI descriptions, which due to limited descrip-
tion mechanisms lead into duplicated descriptions [4]. Conventional approaches become
inefficient when it comes to support of UI variations related to context-awareness [21],
usually resulting in multiple, highly similar UI descriptions.

Recent work applying Aspect-Oriented Programming (AOP) to UI design [4] identi-
fies multiple deficiencies in conventional UI design approaches and provides a mechanism
to address them. First, it provides mechanisms to reduce information restatement by utiliz-
ing metaprogramming and code-inspection [18] that inspect existing data elements and in-
corporates the result into UI descriptions. Next, it identifies that conventional approaches
mix different sorts of information (concerns) together in particular UI descriptions. For
instance, field presentation, layout, and security are all tangled together in the description.
Consequently, this limits reuse of particular concerns, which particularly hinders support
of variations found in context-aware UIs. To address this, AOP UI alters UI description.
Instead of describing it all at once, individual concerns are described separately and inte-
grated upon request at runtime. This allows considering particular runtime context, which
influences concern selection and thus variations. Such mechanisms reduce human-errors
related to typological errors resulting from restatement by using automated enforcement
of the correlation between separately defined the data elements and their UI presentation.
Next, the supported variability and reuse of concerns allows design of context-aware UIs
with low development and maintenance efforts [21]. For instance, [4] reports 30% reduc-
tion of UI code volume in a case study applying AOP UI when compared to conventional
UI.

Although AOP UI design brings multiple benefits to the development and mainte-
nance, it does not speak to the UI delivery to clients. In particular, the concerns separation
gets lost at the server-side upon the delivery to clients, who then cannot take any benefits
that would result from the separation. We consider the maintenance of concern separation
from both client and server perspectives. We extend the AOP UI design with the abil-
ity to preserve the separation on both sides and consider the impact of such distributed
concerns delivery (DCD). Specifically, we consider the volume of transmitted informa-
tion, the volume of information processed by server, opportunities for concurrent deliv-
ery, concern reuse and caching capabilities, as well as the impact on UI responsiveness
and performance. Additionally, we consider DCD integration to selected UI frameworks
and evaluate the potential benefits. We evaluate the impact of DCD on a case study on
an existing production web system and compare it with a conventional UI approach. Our
results show extended caching capabilities, reduced transmission size, improved UI load
times and decreased amount of information processed by server.
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The remainder of this paper is organized as follows: Section 2 describes the back-
ground of the UI designs and gives basic notions. Section 3 provides an overview of
existing work. Our proposed approach is presented in Section 4. A case study is discussed
in Section 5. DCD integration to selected UI frameworks is considered in Section 6. Con-
clusion and future work close the paper.

2. Background

The UI is one of the most critical parts of an application; it plays the role of the am-
bassador of an application, as it is the portion of the application experienced by users.
It provides mechanisms to control the application, submit and retrieve data as well as
influence the presentation of information. The UI graphical design aims to make user in-
teraction simple and efficient for given tasks. On the other side, designers must balance
the demand for usability with the cost of maintainability and the impact on speed. Typi-
cally, improving usability increases application complexity, driving up maintenance costs,
and reducing performance. The scale of UI development efforts are apparent from [4, 17]
showing that approximately 48% of application code and 50% of development time is
devoted to implementing UIs, which only increases with expanding the UI abilities and
context-awareness.

Existing enterprise applications involve large volumes of data [13], tend to be web-
based and provide many different UIs for particular users with different levels of technical
expertise, goals and various purposes. A single piece of data might be presented in many
different ways, and although the data definition is the same, its particular presentation
tends to have a specific UI description. For instance, consider one particular presentation
given by the UI description of person data in Listing 1.1 using JavaServer Faces (JSF)
framework [3] with HTML. Such a description references a person data object from a co-
existing definition in Listing 1.2, defines a particular layout, and uses specific widgets for
each data field. In addition, it can use conditional rendering as well as enforce validation.
Such a description is usually resolved to HTML and provided to clients. In order to pro-
vide slight variations of the presentation, such as changes in the layout, reordered fields,
less restrictive input validation enforcement, etc., it might be necessary to design multiple
such UI descriptions. More variations in the UI presentation mean, more UI descriptions,
which leads to extended development and maintenance efforts.

The conventional UI design approaches possess multiple deficiencies. For example,
UI descriptions for data presentations typically restate information [17] from lower lay-
ers, risking mistype errors that lead to inconsistencies. The complexity is most evident
when the UI description uses Domain Specific Languages (DSLs) [24] with limited type
safety [4]. Our example in Listing 1.1 uses a DSL provided by JSF. For instance, consider
the data property bindings indicated by the green color. Clearly, there is limited type safety
when mistyping maximum length validation restriction (maxlength), not empty enforce-
ment (required), and even the data field value binding. Modification to the co-existing
person object data definition in Listing 1.2 requires manual changes to the UI description
in Listing 1.1. Such maintenance is error prone, and with such weak type safety, there
is no mechanism for warning about failures to maintain perfect synchronization. More-
over, if multiple variants of the person UI description exist, we must apply the changes to
multiple locations.
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Listing 1.1. Sample conventional UI description of a 3-field form based on JSF.
<table><tr>
<td><h:outputLabel value="Email:"/>

<h:input id="email" value="#{person.email}" required="true" maxlength="50"
render="#{security.hasAccess(’email’)}" validate="#{v.validate(’email’)}"/></td>

</tr><tr>
<td><h:outputLabel value="Name:"/>

<h:input id="name" value="#{person.name}" maxlength="100"
required="true"/></td> </tr><tr>

<td><h:outputLabel value="Country:"/>
<a:smenu id="country" value="#{person.country}" required="true"/></td>
</tr></table>

Listing 1.2. Sample Person data object (referenced from Listing 1.1).
@Entity @Table(name = "person")
public class Person {

...
@UiUserRoles({"Admin","Owner"}) @UiOrder(1) @NotEmpty @Emai l
@Length(max=100) @Column(nullable=false, length=100)
public String getEmail() { return email; }

@UiOrder(3.1) @NotEmpty @Pattern(regex="ˆ[ˆ\\s].*")
@Length(max=100) @Column(nullable=false, length=100)
public String getName() { return name; }

@UiOrder(81) @UiProfiles({"US"}) @NotEmpty @Column(nullable = false)
public Country getCountry() { return country; }

}

Listing 1.3. Layout concern separated from Listing 1.1 single/double column.
<table> | <table>
<tr><td>$af:email$</td></tr> | <tr><td>$af:email$</td><td>$af:name$</td></tr>
<tr><td>$af:name$</td></tr> | <tr><td colspan="2">$af:country$</td></tr>
<tr><td>$af:country$</td></tr> | </table>
</table> |

Listing 1.4. Field presentation concern separated from Listing 1.1 representing a text field.
<h:outputLabel value="$Field$:"/>
<h:input id="$field$" value="#{$entity$.$field$}" required="$required$"

minlength="$minLength$" maxlength="$empty maxLength ? 255 : maxLength$"
readOnly="#{empty edit$Field$ ? edit : edit$Field$}"
pattern="$pattern$" $validationResolver(field)$/>

Listing 1.5. Sample transformation rules for String fields to derive UI presentation.
<mapping>
<type>String</type>
<default tag="textTemplate" size="20" minLength="0" maxLength="255" />
<var name="Person.username" tag="emailTemplate"/>
<cond expr="${email == true}" tag="emailTemplate"/>
<cond expr="${link == true}" tag="linkTemplate"/>
<cond expr="${maxLength>255}"tag="textAreaTemplate"/>
</mapping>

The conventional UI design aims to describe a particular UI presentation as a self-
contained fragment. In fact, this is the reason for the inefficiency when addressing UI
variations or context-aware UIs. AOP emphasizes the notion of concerns. A concern is
understood [19] as a set of information that influences the source code, description, or
a particular component. An example of a concern [19, 20] is an optimization to perfor-
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mance of a particular component, screen-size element allocation, security enforcement,
etc. Good design should target separation of concerns [19, 20], which is an approach for
modularization that brings a reduction of design complexity. When we have multiple con-
cerns that tangle in the same section (consider code fragments captured by different colors
in Listing 1.1), we call it highly coupled or tangled. Thus we separate concerns to support
readability and maintenance.

The situation is not always straightforward as concerns that cannot be easily separated
and tangle together in a given source code section. These concerns are called cross-cutting
[19, 20]. These concerns cannot be cleanly separated from each other, which causes code
duplication, hard reuse, and has the effect of “spaghetti code” with difficult maintenance.
The reason why we cannot separate cross-cutting concerns lies behind the limited con-
structs of the underlying programming language. Now reconsider Listing 1.1 in the con-
text of separation of concerns. Note that multiple UI concerns tangle together into a single
component [4]. The colored fragments indicate concerns related to field presentation, lay-
out, security, input validation and data binding. In order to provide variation of a particular
concern, such as layout, or varying field order, we have only limited constructs to decom-
pose the layout. Most likely the situation results with producing a novel highly similar
variant of code in Listing 1.1, which extends the maintenance efforts.

At the same time, we should note a particular concern perspective. The cross-cutting
concerns are repeatedly defined and tangled to particular UI description. This means that
a particular concern is captured and defined multiple times and distributed on multiple
places in the application. Global change to a particular concern leads to complex and
tedious work. This “multi-concern component solution” is the result of the inability of
conventional approaches to capture concerns separately [19, 33].

The AOP UI design [4] suggests describing concerns separately, applying the concern
assembly at runtime for each individual user request. It also aims to reduce information
restatement, thus it involves data inspection utilizing metaprogramming. For instance, the
data definition in Listing 1.2 is the subject of inspection in order to produce its presenta-
tion. The collected information together with the application context determine the partic-
ular data presentation, thus the context itself may change the resulting presentation. For
illustration, consider separating the layout from Listing 1.1, which is provided by List-
ing 1.3; next consider a particular field template in Listing 1.4 that describes a text field.
The field template does not reference any data specific elements, which would introduce
restatement, instead it uses expressions that either reference the result received from the
data inspection or information from the application context. Note the corresponding ele-
ments in Listing 1.2 and field conditional restriction to given user roles. Each expression
in Listing 1.4 is interpreted upon assembly. The expression elements are not limited to
the inspection or context; it can integrate any third party service, such as the validation
resolver in Listing 1.4 and involve logical and arithmetical operations. In a case study [4]
that involved 63 data definitions with 473 fields, only 28 templates similar to Listing 1.4
were needed for an entire production-level application, which shows that such templates
are reusable.

The last piece to the puzzle is the data field to field template transformation. Vari-
ous code-based approaches use one-to-one mapping that suits to a single UI situation,
although lack the ability to support UI variations. The AOP UI provides a flexibility de-
manded for context-awareness. The field template selection is determined at runtime by
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transformation rules that query field properties received from the inspection and combine
it with contextual information. The collection of such rules allow adjustments to cover
various situations determined by context changes. Consider the example rules in List-
ings 1.5 that consider String-typed fields with default textTemplate (Listing 1.4) as well
as alternatives for specific field username, and for fields enforcing email validation, link
validation or length exceeding 255 characters.

Next, we consider AOP formalization and terminology for the above description. First,
note the graphical sketch of the description in Listing 1.1 in Figure 1. It shows the form
represented as a composition of multiple concerns denoted by different colors. The AOP
suggests that each of these concerns can be thought of independently, and Figure 2a shows
them in separate dimensions. For instance, when we consider two-column layout where
the required input fields come first, we do not need to consider which presentation is used
or what kind of validation is involved, etc. When we start to implement it for a particular
view, we find out that constructs of conventional programming language are limited. Thus
to describe a particular UI presentation, we must capture all concerns tangled together, as
depicted in Figure 2b collapsing all concerns into a single source code [20].

AOP can be seen as an extension to General Purpose Languages (GPLs). It differ-
entiates GPL components, and an additional concept called an aspect that is intended to
capture a particular concern. Similar to functional or object-oriented decomposition, AOP
decomposes a program on components and aspects. An aspect captures cross-cutting con-
cerns separately from the components. In our example the Listing 1.2 represents a com-
ponent and Listings 1.3-1.5 represent aspects.

The most remarkable construct brought by AOP is the way components and aspects
connect together. Each aspect is further divided onto a pointcut and an advice. A pointcut
specifies a situation, location or context under which an aspect is woven into a component.
An advice gives concern definition specified either in a GPL or a DSL. Going back to our
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examples at Listings 1.4-1.5, the expression language represents a pointcut. The advice of
Listing 1.5 is the field template selection, the advices for Listing 1.4 give resolved content.

The next question to answer is to determine what should be the terms used in the
expression language. In AOP, it should be something that can effectively address location
in GPL components. By the terminology it is called join point. A join point can range
from code location specified by a name or a wildcard, method invocation based on method
name, annotation, or even information from a particular application context [33]. In our
example, a set of join point is associated with each data object, further divided by its fields.
The code-inspection gives such a set of join points for each class that is the subject of UI
presentation. In [19], such join point structure is referenced as a join point representation.

For instance, the data object in Listing 1.2 provides information such as class name,
field names, field types, field properties given by annotation and their specific properties.
Furthermore, each annotation property can be further resolved. Moreover, the application
context can shadow and even extend the volume of information. Referring back to our
examples in 1.4-1.5, each expression uses as terms these join points that in given context
match a particular data field and current application context (user location, time, user error
rate, server load, etc.).

The considered join point mechanism is not limited to data object inspection. It can
involve inspection of Data Transfer Objects (DTO) [13] or it even can be a result of a
Builder [14] from XML (or other format) parsing. Furthermore, [8] shows that existing
enterprise applications usually involve object-oriented design and classes representing
data, such as Listing 1.2 extend the data fields with constraints, input validation rules,
security, etc. Java Enterprise Edition platform (Java EE) [9] provides a standard for such
extensions, specifically for persistence, constrains and input validation, and this informa-
tion usually reoccurs in the UI description. Also demonstrated by initial UI description in
Listing 1.1. Automated propagation of such information from data elements to UI through
code-inspection naturally improves UI development and maintenance efforts.

Understating the AOP UI design, we can consider the UI delivery to clients, in par-
ticular client-server communication. The concern assembly takes place at the server-side,
which seems a considerable limitation because the client-side cannot take any advantage
of the separation. The concern assembly produces tangled concerns with high amount
of repetitions, even though the HTTP transmission compression may face the extended
size, the delivered information cannot be logically divided on the client-side, which lim-
its reuse and caching capabilities. As indicated in [4], the approach has the ability to
achieve more than 30% reduction of UI code volume, the question to answer is whether
it is possible to apply similar concern separations approach to the perspective of UI de-
livery and receive benefits in form of reduced content transmission, reduced amount of
information the server-side has to process, whether it is possible to extend concern reuse
at the client-side and thus improve caching options, whether such concern separation al-
lows concurrent processing, can improve UI page load time and responsiveness for data
presentations.

Later in this work, we show that it is possible to transmit UI concerns separately
to clients, which impacts all the above perspectives. At the same time the client-side
becomes partially responsible for the UI assembly, which reduces server-side resources
required for information processing. In addition it gives the client the ability to selectively
decide which concerns to cache and reuse and which requests form the server-side.
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3. Distributed Concern Delivery (DCD)

In order to describe the DCD design, we put into the contrast the conventional design UI
approaches and iteratively extend them towards DCD. The conventional UI designs ex-
pect developers to derive presentations of data elements considering a particular situation,
context and data definitions that are further fragmented to fields and constraints. Through-
out the design developers repeat their decisions to select UI components for given fields.
The manually derived presentations struggle with coupling to the data definitions and in-
formation restatement as suggested in Figure 3 (left side). The variability of context can
cause the need to design multiple presentations for given data definition, which may in-
clude repeated decisions. Together this causes significant development and maintenance
efforts as well as potential for errors. Limited type safety only deteriorates the efforts.
Novel data definitions require to design one or even multiple new UI component.

Code-inspection-based approaches would follow the life cycle at Figure 3 (right side).
It shows an extension to the left side of Figure 3 with emphasize on stages A-D, which
reference below. Instead of making references to data instances, the UI component assem-
bly deriving data presentation performs data definition lookup and code-inspection (Stage
A) to derive the data structure. For each field it determines presentation (Stage B), usu-
ally, through hard-coded rules. More flexible mechanisms would use templates (Stage C)
allowing developers to adjust the output. Layout selected for particular presentation dec-
orates field templates (Stage D), which produces the data presentation that the assembly
embeds to the page. This can happen at runtime, but it is possible to have all presentations
generated at compile time.

The AOP extension to the assembly in Figure 4 affects the stages A-D. The exten-
sion can be seen in consideration of join points, pointcuts and advices (see the legend
of Figure 4). Stage A determines the data definition structure and it also considers run-
time context to adjust it to a particular user and system conditions. This derives join point
model that follow the structure of data and fields. The join points reflect both the data
structure and the dynamic context. In practice, the structural model is cached, but the con-
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text and join point representation is resolved each time it used and each time a presentation
is requested. This allows UI adaptation to context-awareness.

Stage B aims to find an appropriate presentation for each field driven by the data struc-
ture of join point model. The context can influence the structure. Instead of designating
each field with a specific presentation template, we use join points to determine the ap-
propriate presentation to generalize the field selection. A set of aspects is designed for this
purpose. Each aspect advice determines an appropriate template to be used; the pointcut
is a query to field’s join points to the join point model. The pointcuts use an expression
language (such as Java Unified Expression Language) that allows determining whether
the pointcut applies; all this solely bases on field join points. Since this mechanism does
not bind to specific field name or class, it is reusable and allows novel data definition to
reuse it with no additional efforts. This is one of the key features that allow reusing these
aspects among any data class/field across the entire system. The pointcuts are generic,
although the expressiveness is not limited to join points, any application context and be
used as well, also field-specific selection can be applied. As mentioned earlier in the larger
case study in [4] only 28 aspects were needed showing the generalization.

The selected presentation template is interpreted using similar mechanisms. Stage C in
Figure 4 gives an abstract detail of the presentation template and repeats for all presented
fields. The template gives a basic presentation for a particular field. It uses the target
UI language and join points to integrate other presentation aspects and to incorporate
field information. Within the field context, we resolve the template content and supply
validation, conditionals, data binding, etc.

The layout integration in stage D uses template selected for particular situation and
presented data. It uses the target language extended with join points that either references
a specific field by name or an anonymous field. To avoid complex indirection the aspect
can be inlined. Besides the specific/anonymous field references, the anonymous fields may
use iteration to simplify dealing with repetitive layout fragments. For instance, a generic
two-column layout description only captures two anonymous fields wrapped in iteration
tag that enforces all data fields to follow the pattern within the tag. Furthermore, this
mechanism can combine with specific field references that are stripped from the iteration
and position to a designated position.
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The illustration in Figure 5 (left side) shows the services provided to clients, when
considering the AOP UI design. Denoted by colors all stages a©- d© are considered. The
aspect weaver does the assembly of data presentation(s) and is used by UI renderer that
resolves page content embedding the derived data presentation(s). The rendered content
is sent to the client-side. Clients interpret the provided description.

All the above approaches deliver the UI description as a single block of information.
Although AOP-based UI design addresses separation of UI concerns for components re-
flecting data, the separation gets lost upon the UI delivery to clients. The provided descrip-
tion consists of repetition and tangled UI presentation. This naturally extends the volume
of provided description, although the disadvantage is addressed by the HTTP compres-
sion. On the other hand, the server is responsible to use its resources to process and tangle
all the concerns to derive data presentations. Thus it works with the full volume. From
the clients perspective there is no mechanism to apply caching for the tangled concerns.
To the contrary, consider concerns (such as these from Figure 2a) streamed separately to
clients. Such distribution might appear to be an additional overhead, as we need to handle
more requests. On the other hand, this may eliminate repeating patterns in the transmitted
content and enable concern caching.

In order to design DCD, the concern weaving process should be partially pushed to
client-side. The application data definitions (or data transfer objects [13]) together with
the application context are part of the server-side where the inspection takes place. This
gives a join point model streamed to the client. Note that certain model elements might
not be relevant to presentation or to a particular user. For instance, consider internal fields,
primary key, version field, etc. The data definition constraints or the context solves this
through the Annotation Driver Participant Pattern [20]. Thus only model elements that
are relevant to user UI presentation conforming user rights are provided to clients. The
selection of a particular presentation template for particular data field could be executed
at the client-side; however, this would increase the complexity of the client since it must
be aware of transformation rules and these may need to have access to internal join points
or server-side information to resolve the decision. Thus this responsibility remains at the
server-side, providing the result to the clients.

The right side of Figure 5 depicts the responsibility assignments between server and
client sides through service calls. Each client requests a HTML page that references client-
weaver that calls for each data element a service that provides the filtered join point model
enriched with the pre-selected template key 1© (a,b). Presentation templates are provided
2© as JS library. Each template has a corresponding key that matches the set of keys given

by 1©. The join points of a given data field from 1© resolve the template matching the
key. There is no enforcement for the client that would prevent it from considering local
context in the template selection in fact multiple template collections may exist for local
context. Layouts 3©, similar to presentation templates, are provided to the client-side for
integration with the data UI presentation. Other concerns might be provided as separate
services, integrated either at the server-side through transformation rules or via client-side
presentation templates. Each client composes the UI data component based on received
concerns that are influenced by system context. The server also provides the actual data
values to the client 4©. These values are displayed in the assembled UI component. Weaver
can determine the matching data values from data element enforcing context and security.
Data submissions use usual HTTP mechanisms or a web service.



On Distributed Concern Delivery in User Interface Design 665

S
er

ve
r-s

id
e 

C
lie

nt
-

si
de

 

b 
a 

d 

client-weaver 
1 2 4 3 

weaver 
b a 

? 
? 
? 
? 

V 

advice 
query to given element join points 

client render  weaving stage 
service call 

data values n 
processing 

c 

{html} 

…"…"
…"…"

? 

? 

? V 

? 
X 

Y 

Z 

X Y 

Z 

weaver …"…"
…"…"

key 

U 
V 
W 
X 

renderer 

renderer 

{html} 
{json} {js} {js} {json} 

c 

Fig. 5. Services provided by the AOP-based UI design (left-side) / the DCD UI design (right-side)

The life cycle for the web systems works as follows. The user navigates to a particu-
lar page. This page consists of description elements from conventional UI design, which
are ordinarily interpreted. The difference is for components representing data. These are
replaced by custom tags and interpreted by a client-weaver (for example a JS call). The
tag indicates which data to display and what local settings apply for the UI component
assembly. The client-weaver requests necessary concerns from the server-side. The pro-
vided responses consider user rights, security and application context. As depicted in the
right side of Figure 5, the client-weaver generates the UI representation for a data instance
given as a parameter of the custom tag. It conforms to its structure, application context
and settings provided by the tag. The client-weaver may reuse a particular concern from
cache. For example, presentation templates do not change throughout a long period of
time; data structure might be immutable in a given context and user session, etc.

The extension to the AOP UI design is that concerns are provided to clients separately.
The concern assembly is divided between client and server sides. The server-side does
automated derivation of the join point model through inspection of data definition and
context. This automated derivation provides the model reflecting actual application/user
context. Information provided to the client-side avoids repetitions or tangling. The tem-
plates as well as the client-weaver are expected to load once by the client-side, the join
point model may stay the same for context-unaware UI or may change with particular
session or even request. The weaver can derive the data values using the same context and
structure used for the join point model. Since the join point model and data values deter-
mine the UI presentation, the client assembly is not sensitive to particular data definition
and thus the templates reuse over the time. There is no limitation to web systems and it
is possible to design native platform weaver with templates reflecting the server provided
template keys and the join point model determines the data presentation in native format,
which supports further reuse. The abilities brought by DCD are client-side concern reuse,
possible caching of UI concerns, reduction of repetitions in the delivery, lessen server side
involvement in UI rendering.
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4. Evaluation

We implement a DCD UI prototype. We use AspectFaces library5 to design the server-
side weaver that includes the data definition inspection and AOP transformation. It is used
by the web services providing the join point model and data values for data instance(s)
given the service call parameter. The service output conforms system security and context.
Additionally, we implement service that consumes data from clients. Next, we implement
the client weaver, a JS library, responsible for UI component assembly and interaction
with services. The JS library consists of presentation and layout templates and the client
weaver. The implemented prototype is not specific to a particular application, although
the amount of considered widget types is limited.

In order to compare the DCD UI approach with a conventional approach with respect
to data transmission, page load time, caching and server involvement. We consider an ex-
isting production-level web application that uses the client-server architecture. We extract
its subsystem for user account management and consider it for the evaluation. In particu-
lar, we select a page for the user data manipulation and compare the existing solution with
a version that uses the DCD UI design. The considered application bases on the Java EE
6 platform with the JSF 2.1.18 [3] framework for the UI design together with PrimeFaces
library 4.0.7 and uses JDK 7. Production system static resources (JS/CSS/Images) are
used in the evaluation, although in order to receive equivalent resource transmission, we
remove all image references and icons from the evaluated page and place there a single
image that represents merged icons.

We deploy the application to a server at Baylor University in Texas, US with the
parameters of 8 cores of 2.4 GHz, 16 GB RAM and network access 645/185 Mbits/s
download/upload. Next, we consider a client with a Chrome web browser (37.0.2062.124)
situated in Prague running on 4 cores of 2.3 GHz, 16 GB RAM and network access 6/6
Mbits/s download/upload throughout the experiment. Round-trip time between the client
and server hosts is approximately 140 ms. For the load time evaluation, we consider com-
plete page rendering with 30 measurements for which we provide the average load time
and a standard deviation. Compression is applied to the resource transmission.

To measure the load times, we use the standardized HTML5 Performance Timeline6

that provides performance metric data for the given page. Specifically for the DCD ap-
proach that assembles the UI at the client-side, we consider the finish times of the UI
composition. Thus for the DCD page version we add a listener indicating the finish of the
assembly (rendered UI presentation). The iterations JS script reloads particular page mul-
tiple times and stores the page statistics to Local Storage. This approach gives us minimal
skew since the Performance Timeline already applies in existing web browsers.

In the evaluation, we consider five page versions. First, we consider the page given by
the production application following the conventional design. The page delivers the entire
UI in a single HTML document and then requests addition resources such as JS/CSS/Im-
age. The HTML document consists of multiple forms that are assembled together with
the rest of the document components at the server-side. The tangled concerns of the data
presentation impact its volume.

5 http://www.aspectfaces.com, 2014
6 http://www.w3.org/TR/performance-timeline, 2014
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Table 1. Evaluation of a page with 2 data presentations with 22 fields

Conventional DCD

Single JSF JSF AJAX
per Form

JSF AJAX
all Forms per data merged

Transmission size [KB] 219 220 220 219 218
Number of resources 10 12 11 15 13
Server processing [KB] 852 855 855 803 803
Page load time [ms] 1187 1456 1334 1101 1078
Page load time std. dev. N

o-
ca

ch
in

g

88 54 60 54 38
Conventional DCD

Single JSF JSF AJAX JSF AJAX per data merged per data merged
per Form all Forms cached structure/context requested structure/context

Transmission size [KB] 9,7 11,5 10,9 2,4 2,1 6,4 5,6
Number of resources 1 3 11 3 2 5 3
Server processing [KB] 78,4 81,2 81,6 4,8 4,7 18,2 18
Page load time [ms] 580 787 706 480 464 521 497
Page load time std. dev. C

ac
hi

ng

85 61 30 32 25 65 58

Next, we consider extension to the above design in a way that it requests each form
fragment asynchronously from the server-side through Asynchronous JavaScript and XML
(AJAX) calls. The initial document becomes small, and the content is requested asyn-
chronously, which has the potential to improve the delivery time. Unfortunately, as we
explore throughout the study, the JSF framework queues the AJAX calls received at the
server-side and processes them sequentially to avoid concurrency issues. For the above
reason we consider a third conventional version, requesting all the forms at once by AJAX
call. This way we load a small initial HTML document and the form content is loaded in
parallel with other resources.

The DCD UI design version is evaluated next. A small initial document is loaded
with the page definition; forms are the result of the client weaver generation. First, we
consider a strategy (per data) that assembles each data presentation individually. Thus,
it requests the join point model and data values from the server for each data instance
that is presented at the page. Second, we consider a strategy (merged) that aggregates the
multiple data element requests into one request for join points and one for data values. No
matter the amount of element we issue two requests.

The first evaluated scenario considers a subset of the registration subsystem. It has 2
data elements in the UI presentation, with 22 fields of various widget types, considering
client-side input validation. The total compressed content size that must be transferred
from the server to a client for given page versions is shown in the first row of Table 1. We
can see that the transmitted content size is similar across these approaches. The second
row shows the number of requests made by the client. Naturally, the smallest amount has
the conventional single page approach and the highest amount has the DCD strategy (per
data), although, these extra requests are issued in parallel. In the next row, Table 1 shows
the amount of data that the server has to process, compress and submit. The size variation
between the conventional and DCD approaches reflects the dynamic part of the requests.
Although the total processing size is almost 50 KB larger in the conventional approach,
the compression for the transfer reduces the size to an equivalent of all the page versions.

Next, consider that in the conventional cases the server has the responsibility to pro-
cess and assemble the UI and render it to HTML. DCD delegates the data presentation
assembly to the client. The page load time is considered next, in the fourth row. The
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Table 2. Evaluation of a page with 5 data presentations with 40 fields

Conventional DCD

Single JSF JSF AJAX
per Form

JSF AJAX
all Forms per data merged

Transmission size [KB] 221 225 222 223 219
Number of resources 10 15 11 23 13
Server processing [KB] 875 879 879 813 813
Page load time [ms] 1338 1745 1462 1237 1197
Page load time std. dev. N

o-
ca

ch
in

g

102 70 107 65 45
Conventional DCD

Single JSF JSF AJAX JSF AJAX per data merged per data merged
per Form all Forms cached structure/context requested structure/context

Transmission size [KB] 11,6 16,3 12,9 3,9 2,5 9,8 6,5
Number of resources 1 6 2 6 2 11 3
Server processing [KB] 101 108 106 8,6 7,8 28,1 26,5
Page load time [ms] 625 1258 918 503 489 562 539
Page load time std. dev. C

ac
hi

ng

69 53 53 45 87 64 60

fourth row shows results of page load times and the UI rendering are averaged over 30
samples, the standard deviation is shown in the row below. It can be seen that the DCD
approach outperforms the conventional approaches. The single JSF page approach pro-
cesses the main page at the server-side in 150-220 ms, and there seems to be space for
improvements. Letting the data presentation fragments load asynchronously looks like a
possible improvement. Although, in order to do that we first need to fetch the main page,
JS libraries and then we can issue AJAX calls. In the first case with multiple AJAX calls
the main page server-side processing drops to approximately 45-70 ms; the first and sec-
ond form server-side processing takes around 80-100 and 45-65 ms, unfortunately, we
get the poorest results because JSF queues and chains the AJAX calls. The second single
AJAX approach could bring improvements, the AJAX fragment processing takes around
115-135 ms, and unfortunately together with the RTT latency the page load time is 12%
slower than the no-AJAX version.

The DCD approach reduces the main page processing to the range of 10 ms, the web-
service requests consume from 10-35 ms and are done in parallel, although the client-side
has to process them to assemble the UI. The results in Table 1 show that both merged and
per-data DCD strategies give 7-9% page load time improvements compare to the conven-
tional approach. When we consider the main HTML page produced by the conventional
approach, it has the uncompressed size of 78.4 KB, which is the size processed by the
server-side. In the case of the DCD approach, the main document reduces to 3.3 KB and
the requested web services give 14.8 KB of information. The compression mitigates the
size difference for the transfer, although the server has to process more information in the
conventional case.

Next, let us consider web-browser caching that is usual in modern web-browsers. UI
design should take its advantage as it considerably impact page loads. In the bottom part
of Table 1 we consider the above measurements with cache enabled. The first row of the
bottom part of Table 1 shows large reduction in the transfer size. Basically, we cache all
static resources (CSS/JS/Images), but we can see for all the conventional approaches the
inability to apply cache beyond this. DCD allows in the addition to cache the join point
model, presentation templates and layout as well as the weaver. DCD only requests the
main page and data. Note that we considered the join point model cacheable for a given
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Table 3. Evaluation of the 3G environments with 22-field page

Conventional DCD

Single JSF JSF AJAX
per Form

JSF AJAX
all Forms per data merged

Page load time [ms] 6169 5979 5997 5499 5581
Page load time std. dev. N

o-
ca

ch
in

g

326 626 538 286 164
Conventional DCD

Single JSF JSF AJAX JSF AJAX per data merged per data merged
per Form all Forms cached structure/context requested structure/context

Page load time [ms] 806 1040 1030 533 522 601 578
Page load time std. dev. C

ac
hi

ng
38 54 41 21 20 66 49

session, although it could possibly change based on user actions, time, etc. The client-
side has the ability to make an individual decision whether or not to cache a particular
resource. The strategy would be influenced by the granularity and the scope of the context-
awareness. To cope with situations involving strong context-awareness we also consider
a case re-transmitting the join point model.

The conventional approach has to re-transmit all the presentation, layout, data, and
structure all tangled together. Since it is tangled, the caching options are limited. The
consequent row of Table 1 shows the amount of requests that are being made (we omit
cached resources/header requests). The next row shows the server processing content size.
This is followed by page load results and the std. deviation. The page load times improve
by 17-20% for the DCD approach compared to the conventional approach, when we cache
the join point model and 10-14% when we reload it.

Next, we consider the impact of increase in data volume presented at the page. Thus
we consider a broader part of the production subsystem and evaluate a page that provides
5 data entities with 40 fields that are being presented in 5 page forms. We may assume
that the per-data DCD strategy has to issue 10 more requests for the join point model
and data, which gives it a considerable disadvantage, although, this happens in parallel.
Table 2 shows the results that consider the same attributes as the previous evaluation. We
can see that the server-side processing size further reduces for the DCD approach for both
cache-disabled and cache-enabled cases. The cached case transmission sizes scale better
for DCD. The page load time of DCD outperforms the conventional approach by 7-11%
in the cached-disabled case and by 20-22% in the cache-enabled case that does not request
the join point model. When there are context changes and we would request the join point
model, then we get 10-14% load time improvement. The volume of presented data on the
page does not seem to impact the efficiency of the DCD approach.

Next, consider what happens when the network conditions change. We evaluate a
scenario of a user with a mobile device that uses (384 Kbps) 3G networks with limited
bandwidth and latency. In the evaluation, the network bandwidth is restricted to 384 Kbps
on the client-side and an extra latency 20 ms is added using Mac tool called Speed Limit.
Table 3 shows the page load times for both cache-enabled and cache-disabled cases. While
the cache-disabled case shows DCD UI performance 9-11% better than the convention
page, the cache-enabled case shows 34-35% better performance when we reuse the join
point model and 25 - 28% when the context changes are considered.

The above examples demonstrate enhanced caching options brought by the DCD ap-
proach, which has a positive effect on page load time. Furthermore, concurrent request
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handling positively impacts page load times for the cache-disabled scenarios. The UI as-
sembly delegation to the client-side reduces the server-side efforts, for example in our
evaluation the total size of information the server has to process is reduced by 6-7% for
the cache-disabled case. When we consider only the dynamic part of the page then the re-
duction represents 76-82%. When we apply caching, we can further cache the join point
model and thus the reduction extends to 92-94%. From the study, we can notice that both
the per-data and merged DCD strategies bring improvement to the transmission size. The
per-data strategy extends the amount of requests that can be handled concurrently, but
also brings overhead with extra requests and HTTP headers.

Next, we discuss the result outcome from the study, possible generalization of results
and threats to validity:

Internal validity: To mitigate the impact of network fluctuation to the measured re-
sults of page load times we averaged 30 samples of the same scenario, where we re-run
each measurement right after each other with 5 second delays. The measurement involves
HTML5 Timeline that mitigates skew results. To avoid false times related to client-side
execution, for the DCD we explicitly consider the finish times of client-side UI assembly,
even though this might give better timing to the conventional version. Next, we provide
criteria of evaluation perspective that are not sensitive to network changes and fluctuation.
Specifically we measure the total volume of transferred data, and the volume of UI assem-
bled by server. In addition, we consider the impact of caching abilities that are reflected
by the transmitted volume.

External validity: Similar to [22] our application is one representative of a real-world
application. The selected page reflects part of the application; we aimed to mitigate the
specificity of the particular page size by considering page content extension. At the same
time, the representative does reflect neither all aspects of the data presentations, nor all
conventional approaches. The DCD results show extended ability to reuse concerns at the
client-side and to apply caching, which both reduces the server-side involvement in the
UI rendering and impact on reduced UI description volumes. The constellation of client-
server represents one particular scenario to provide real-world results rather than a wide
spectrum of constellations. At the same time, we consider restrictions to the network con-
ditions to evaluate mobile-like 3G environments. We could use laboratory environment
for the study, although the goal was a demonstration on a real environment to provide
practical impact. To avoid single application framework perspective we consider two al-
ternative frameworks and draw the impact from the perspective of the transmitted content
volume. Similarly to [26], this case study serves as a demonstration of DCD impact on
performance and transmitted volumes when compared to conventional concern-tangling
applications. The study considered the ability of a conventional web-browser Chrome,
although its alternatives provide similar results.

5. Related work

Various approaches have been introduced to simplify development of complex UIs. They
can be divided into model-based, generation-based, inspection-based, and AOP-based.
Each of these offers certain advantages for UI development; however, they typically
fail to address simplified UI maintenance or complex situations, such as context-aware
UIs adapting during runtime. In terms of client-server communication, conventional ap-
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proaches transfer large, perhaps unnecessary, amounts of data, which negatively impacts
responsiveness.

Model-driven development (MDD) [28] suggests that a model is the sole source of
information, and the resulting source code is generated [29] using the model through a
set of transformation rules. The main advantage is the reduction of information that must
be restated manually [8] for different perspectives. MDD can be applied to context-aware
UIs [21]. A deep explanation of model-to-model and model-to-code transformations in
the area of model-based UI development [31] [32] notes that when we aim to describe
different concerns through multiple models, MDD does not provide a standard integra-
tion mechanism to do so. Although, MDD can be used to capture complex UIs, various
contexts, and provide adaptive features, the model-to-code transformations may struggle
from the performance perspective [21]. Transformations are usually performed at com-
pile time, since they tend to be time consuming [21]. The disadvantage of compile-time
transformations is that they produce source code and descriptions for all possible context
states, many of which may never be used [25].

Next, MDD suffers during adaptation and evolution management [25]. It handles ba-
sic situations well, although when considering variations and customization, the modifi-
cations often take place in the UI code [8] rather than in the model. This leads to difficult
MDD maintenance, since manual changes cannot be removed upon the model-to-code
transformation. An approach dealing with synchronization between models, generated
code and runtime systems is elaborated in [12]. Most of the UI designs based on MDD
do not consider the correlation with other parts of the system, such as persistence or busi-
ness logic subsystems [4]. This deficiency is noted in the research discipline of human-
computer interaction [21]. In such cases, information captured by models must correspond
to information captured by the subsystems. When one part changes, the other must reflect
the change to avoid inconsistency errors; unfortunately this now must be handled manu-
ally [4].

The difference from our approach is that we do not explicitly enforce any explicit
model to be the central source of information for the UI generation. This mitigates the
necessity to learn a new model, and avoids possible correlation issues with the data def-
inition objects. Our approach considers the data definitions and context to be a subject
of inspection from which an ad-hoc model is built. Next, the model transformation rules
are usually strict and derived at compile time, in our approach an aspect-oriented mech-
anism applies integrating custom runtime information. The product of MDD is usually
a tangled UI description, in our approach we let concerns divided for the server-client
interaction and client becomes responsible for concern composition. Thus MDD could
possibly generate large amount of application states and produce large UI descriptions, in
our approach each state would be provided incrementally.

The use of a DSL [24] is common for UI model description, even for direct specifi-
cation of UIs [16, 24]. Consider the Java EE standard for component-based development
JSF [3] in Listing 1.1. The DSL provided by JSF brings simplification to the UI descrip-
tion [4], as oppose to a GPL. Typically, it is transformed to the target UI language, such
as HTML and JavaScript (JS). DSLs naturally fit to UI descriptions, but they may bring
weak type safety, which complicates maintenance, since it is easy to introduce errors [17].
For example, a DSL description may reference data, their fields and constraints that are
already described in the application through a GPL [11]. However, referencing a GPL
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component from a DSL requires certain restatement with a negative impact on mainte-
nance as shown in Listing 1.1. Similarly to MDD, the DSL-to-target code transformation
takes place at the server-side, and usually does not deal with concern separation, which
leads to large volumes of information transmitted to clients, the inability to logically sep-
arate information at the client-side for the caching purposes. On the other, hand DSL
languages fit well for description of particular concerns and are usually used for AOP
pointcuts and advices.

Another approach [4, 17, 18] addresses information restatement by utilizing code-
inspection and metaprogramming using introspection. Usually GPL data definitions are
inspected internally by drawing a structural model, that is transformed to UI descriptions
with all data / constraint references resolved through the model. Such approach can be
compile time or runtime. It avoids human-errors related to inconsistencies or typological
errors since information from data definitions propagate to the result of transformation,
the UI description. In comparison to the above approaches, this approach works at run-
time, although, it does not address cross-cutting UI concerns, and the product is derived at
the server-side. Our approach uses code-inspection to obtain join points from data struc-
tures, as the effect, information from data definitions avoids inconsistencies. The code-
inspection is an essential part for our approach, although it is just the initial stage.

Approaches discussed so far only partially or indirectly addressed cross-cutting con-
cerns. One possible solution to address cross-cutting concerns is Generative Programming
(GP) [10, 30]. The aim is to emphasize domain-specific methods to address certain con-
cerns and their integration with co-existing GPL components. GP can be defined as type
of programming that generates source code through generic code fragments or templates
[10], which is not far from MDD, although it is not tight to models. The goal is to address
gaps between program code and domain concepts, support reuse and adaptation, simplify
management of component variants and increase efficiency. The generation is carried out
at compile time. Its use for UI [30] considers abstract UI specifications. The concept con-
sists of three parts: a DSL for UI description, configuration generator that automates the
product UI assembly and an extensible collection of elementary components available
for the assembly. The configuration generator considers various transformation rules. It
takes the problem specification (in a DSL) and UI components from the target language,
and it assembles them together to produce the result. It usually produces a large number of
component variants for specific requirements. In a case study, given in [30], a system com-
bines two hundred UI features resulting with variability of 5× 1017 prototypes. However,
it is questionable whether such a large number of feature-aware components is reason-
able and could be ever used; all the states are generated at compile time and composed
physically. Consider what happens if such large amount of states needs to be provided to
clients, this can demand large amount of resources, mostly when concern combinations
grow exponentially [25].

Our approach similarly uses GPL components and DSL extension together with an as-
sembly. The difference is that it applies code-inspection to introduce join points. Next, it
considers runtime context as it uses runtime generation. The integration uses AOP mech-
anisms and there is not generation that would produce all possible states at once. In our
approach we generate one UI state that reflects particular conditions for given user and
context each time UI is requested. Next, we keep the concerns divided for the client inter-
action.
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Besides the AOP approach we introduced, alternative AOP approaches were proposed
usually to extend capabilities of other existing approaches. In [25] the authors apply AOP
to MDD to support adaptive features at runtime. This work suggests that MDD approaches
do not naturally fit into adaptive systems because they lack the runtime information, which
determines the model-to-code transformation. The MDD runtime transformation might be
inefficient [32] for complex situations [21]. The compile-time transformation may strug-
gle with the exponential grow of hypothetical/possible situations for which it generates
the code. In [25] the authors suggest using four runtime models that represent main sys-
tem data that are manipulated at runtime to accomplish adaptations. Unfortunately, the
description of the aspect-oriented conceptual model [33], weaving process, and context
is sparsely described in [25] to provide deeper analysis. Furthermore, no performance
consideration is given to the manifest approach effectively for production systems.

The approach we extend in this paper [4] was described in Section 2. It applies code-
inspection and the AOP transformation utilizes separation of concerns for data representa-
tions. It applies to code-based development and builds on existing enterprise system stan-
dards, the approach shows the performance comparable with existing conventional tech-
nologies [4] as well as the capability to design context-aware UIs. The runtime integration
can reflect changing conditions and the output is not limited to a particular technology.
In [21] is provided integration with UI Protocol to stream platform-specific UIs and to
apply automated element distribution at users screen based on metrics. The drawback of
the approach is it limited view on client interaction; the UI is generated at server-side,
which degrades the advantages of concern separation form clients’ perspective. In [6] we
introduce the idea of concern separation applied the UI delivery and provide preliminary
evaluations. In this paper, we elaborate and extend the approach details mostly for par-
ticular stages. The approach capability is extended with resource aggregation to face the
growing amount of requests, while lowering the transmission size. The limitations and ad-
vantages are put to contrast with alternative AJAX-based UI approaches, where possible
integration may provide synergy.

Existing research in UI rarely or indirectly addresses optimization of UI delivery to
clients or client-side caching. On the other hand, there exist contemporary UI frameworks
that address caching and UI delivery. Specifically we consider the Google Web Toolkit
(GWT) [15] and AngularJS [1].

GWT framework provides abstraction in a way that developers describe the UI in GPL
that compiles/transforms to DSL. Specifically Java translates to JS. The claimed advan-
tage is the improved type safety, although this is only partially truth. GWT similar to other
UI frameworks consider its task to design UI and to provide composeable components for
the UI. The co-existing data definitions are referenced through GPL in UI descriptions,
although consider Listing 1.2 and the field name or field annotations [11] commonly used
in Java Enterprise Edition. There is no mechanism in GWT to lookup annotation and its
properties or field names while preserving type safety. The widget selection is also left to
the designer, thus changes in data definitions impact the correlation with the UI.

The GWT abstraction approach uses GPL language although others could argue that
UI is the domain for DSL languages with different idiom. The abstraction of GWT could
be placed to relation with MDD or GP. It generates the UI JS code at compile-time opti-
mizing its options for all major web-browsers to allow placing the entire application logic
to JS that is sent to client. Naturally, this gives the client a UI that loads once with all pos-
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sible state transitions, which gives the feeling of a standalone-like application. The data
fraction is intended to be loaded separately through web-services. The targets of the GWT
applications are interactive and living websites, such as interactive console, email client,
task management where usually limited amount of page transitions exists. The nature of
GWT does not fit information systems with multiple pages and forms, because usually
the whole application logic loads at once, although it is possible to partition the provided
states with incremental load.

Among the disadvantages, Java may use different idioms than JS considering web
applications, the abstraction makes the debugging hard, and the produced JS can enor-
mously grow, which is expectable considering that all the application logic is being sent.
The GPL nature does not address cross-cutting concerns and a lot of manual work is left
to designers through the information restatement. We see the limitation of GWT usage to
a certain kinds of applications and its inconvenience for data management systems. The
advantage is that GWT separates out data fraction. In our approach we separate larger
amount of concerns. GWT provides the client with the entire state transitions generated at
compile time. In contrast, our approach provides one particular state to the client; the state
is resolved at runtime. Our approach fits to data-oriented systems and GWT fits better to
interactive single page applications. Our approach does not bring high level of abstrac-
tion, although it could integrate it. Later in in Section 6 we provide detailed comparisons
with GWT and our approach.

AngularJS is a UI framework that brings similar to GWT the separation of data frac-
tion from the rest of the UI; in addition to it AngularJS brings string templating mech-
anisms that resolved by a “HTML compiler” at the client-side. This is not far from our
approach as we intend to provide the client multiple concerns and let them integrated
at the client-side. Similar to GWT also AngularJS considers its task to provide UI con-
structs and thus high amount of restatements between co-existing data definition and it its
UI presentations exists. Furthermore, AngularJS is an example of languages with weak
type safety. As oppose to GWT AngularJS is low level and has limited abstraction, which
allows low-level optimization and easy integration with other approaches. AngularJS, in
the contrast with GWT, goes the direction of incremental state requests, which fits to
data-oriented, multi-page systems. Its templating mechanism is promising direction; on
the other hand, the amount of template integration is limited. For instance, to dynamically
integrate template into a template is complex. In comparison to JSF templates, it does not
give the decoration option, which would extend the expressiveness. Similar to GWT, it
involves DTO for data values, which extends development and maintenance efforts. As
in GWT the designer is responsible to prepare the data presentation define the structure,
populate selection/option values, etc.; with the connection of weak type safety this brings
considerable efforts. More detailed comparison with our work is discussed in Section 6.

Indirect improvements to the web resource delivery are addressed by HTTP proto-
col mechanisms, or by resource distribution across the network. HTTP allows clients to
open and reuse multiple TCP connections to the server so the nature of HTTP supports
concurrency. Next, it can apply content compression for the transmission and supports
client-side caching of resources. HTTP caching applies mostly to static resources such
as CSS, images, and JS. Alternative, HTML5 Local Storage involves reuse of JSON and
XML received from asynchronous calls. In addition HTML5 brings mechanisms to re-
ceive performance statistics through Performance Timeline. Usual strategies to improve
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UI page load involve resource merging and content obfuscation. To mitigate the impact
of underlying network delay, servers apply geo-distributed caching of static resources
called content-delivery networks (CDNs), such as Akamai [27]. With our approach we
aim to extend caching option for data presentations and thus the HTTP abilities are cru-
cial mechanisms that are involved, in this work we further involve resource merging for
the same concerns of multiple different elements presented by the same page. When con-
sidering context-unaware UIs, we could consider caching of certain UI concerns at CDNs,
although we leave it for future work. Similarly to CDN, another optimization approach is
brought by cooperative-web cache (CWC) [7]. The idea is to involve clients in the UI de-
livery with sharing cached resources. Experiments provided by [7] address static resource
sharing among clients using an overlay peer-to-peer network to improve page load times
and server scalability. Unlike CDNs it supports natural scalability and free services; how-
ever, it must deal with content invalidation and mechanisms preventing sharing corrupted
data from malicious clients. Considering context-unaware UIs we could share certain UI
concerns by the overlay, but this is left for future work experiments.

Extensions to HTTP [23, 34] are the subject of research of Structured Hypertext Trans-
fer Protocol (STTP) [34] and HTTP-MPLEX [23]. STTP introduces new kind of messages
to control the resource transmission for a particular web page. HTTP-MPLEX employs a
header compression and response-encoding scheme for HTTP. Similar to STTP, HTTP-
MPLEX multiplexes multiple responses to a single sustained stream of data to speed
response times. While this might work for laboratory experiments for a particular page,
we consider this approach hard to use for complex and large context-aware systems while
considering HTTP caching mechanism or resource distributions.

6. Comparison with AJAX-based approaches

The evaluation in Section 4 considered an existing production-level application with a
conventional approach and the comparisons with DCD. Next, we consider DCD compar-
ison with AJAX-based approaches. In particular we consider GWT and AngularJS. Sim-
ilar to Section 4 we implement three prototypes that base on production application (the
page version with two data elements). Since the third party libraries would be alternatives
to the solutions in the other AJAX-based approaches, we modify the application so that
we eliminate all the static resources relevant to the production application and only con-
sider resources needed for the particular prototype. Besides the approaches comparison
we consider extension of GWT and AngularJS with DCD and discuss the implications.

AngularJS changes the UI design towards DCD. Specifically, it suggests to split data
values from the rest of the UI page. The values are provided in JSON format similar to
DCD approach. The difference is that the data value generation and UI matching is left
for manual intervention. Usually, DTOs are designed which brings restatement on the
server-side. The UI page then binds the data, which is again left to developers. AngularJS
Forms do not bring any simplification to the design and is similar to JSF. The developer
has to make the widget selection, apply data binding, enforce constraints and validation
as well as populate the selection values for options. This is error-prone and tedious task
mostly due to limited JS type safety. Even though, AngularJS supports client-side tem-
plating mechanism and provides a HTML compiler to apply the templates to provided
values it does not address form integration with this idea. DCD mechanism considers the
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templating from a different perspective, for example to include form fields. We believe
that AngularJS is missing template support for decoration, similar to JSF, which would
simplify the template use for more complex task such as form fields. On the other hand,
what AngularJS provides is a client-side data model that simplifies population and deriva-
tion of data values in forms, and further extends form management with strong validation
framework.

Our prototype application that implements the considered UI page with data values
separated to JSON has altogether the total size of 58.9 KB in 4 requests as shows Table 4
in the first row. The majority is the AngularJS library. The main document has 5.8KB
(30.0KB uncompressed); the data values supplement the main document. The cached ver-
sion has to load the main page and data, which is 6.4KB. In our evaluation we go beyond
the comparison and integrate the DCD idea to the AngularJS. The join point model is sep-
arated out and the weaver builds the data presentation from AngularJS components that
allow seamless integration with the AngularJS validation and data value manipulation.
Our integration prototype is not limited to the evaluated page and is capable of present-
ing any data element provided by the server-side service. On the other hand, we provide
limited amount of validation. The page statistics changes to 64.2 KB in 6 requests (with
the weaver 6.1KB). The main document reduces to 1.6KB (3.6KB uncompressed); the
join point model has 3.4KB. The consideration of cached UI page with unchanged con-
text, or context-insensitive pages need to transfer 2.2KB, the context-aware cached page
needs 5.6KB to load. The summary and additional information are provided in Table 4,
second row. This approach extends the total size for the uncompressed page due to the
weaver size, although it amortizes over the time when cached. Next, the cached page for
the context-unaware situation reduces the transmission by 65%, the context-aware situa-
tion is reduced by 12%, although this is not the main benefit. The advantage is reduced
development and maintenance efforts at both server and client sides. The join point model
and data values are automatically derived, the client weaver then populates the data pre-
sentation structure, binding, constraints, validation, and selection values, which greatly
reduces the efforts and possibility for human-errors. DCD enforces correlation between
server and client sides.

An application where data definitions do not reflect the UI can still benefit and ap-
ply. There are three possibilities, one that involves DTO, second that requires correlation
among DTO and data definition structure and a last one merging and filtering multiple
data definitions. The first option would consider DTOs for the inspection, the extended
information such as constraints and validations [2, 11] would need to apply to DTOs. The
second would apply the derived join point of multiple data definitions to the structure
given by a particular DTO. Last, the UI designer indicates, which definitions participate
in the UI and then applies a filter set at the UI level.

The same page designed with GWT pushes the design to high abstraction since the
entire application is designed in a GPL Java. As stated in Section 5, GWT suits better
to one page applications that can keep states for offline work, but does not suit to multi-
page applications, because it usually compiles the entire page state transitions to JS that
is sent to the client. The designed page is compiled to JS, which is a one time process
that produces multiple versions of the UI for support of various web browsers. The GWT
data presentation uses GPL, although it still consists of restatements, such as constrains
and validations, it has repeated decisions, manual selection value population, etc. The
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Table 4. AJAX-approach comparison

Transmission
size [KB] Resources Server

processing [KB]
Transmission

size [KB] Resources Server
processing [KB]

* JP - Join points no caching caching
AngularJS 58.9 4 174 6.4 2 31.1
AngularJS + DCD (with JP) 64.2 6 188 2.2 (5.6) 2 (3) 4.7 (16.6)
GWT 55 4 152.8 5.5 3 11.8
GWT + DCD (with JP) 54.9 5 155.8 5.5 (9) 3 (4) 11.8 (24.5)
DCD (with JP) 25.2 6 87.2 1.8 (5.3) 2 (3) 3.7 (16.4)

approach is similar MDD process where the GPL Java is the model and the JS is the target
language. The compilation applies strategies to obfuscate and optimize the UI pages. Our
prototype with manually designed data presentation and divided data values, similar to
AngularJS, consists of the total of 55 KB with 4 requests, as shows Table 4 third row. The
main page has only 1.4KB (3KB uncompressed). The cached version issues 3 requests,
the main page, non-cacheable part of JS and the data altogether 5.5 KB. We consider the
application of the DCD similarly to AngularJS to receive the automated data presentation,
binding, etc. The difference is that the weaver and templates consider GPL Java. The DCD
GWT prototype has the size of 54.9KB with 5 requests. The join point model is separated
out, which deduces the produced JS size. We see that the compilation in the original GWT
application did an optimization comparable to the size of join point model in the DCD
version. The cached version for context-insensitive UI has the equivalent size 5.5KB; the
context-aware situation would request the join point model with the total of 9KB. The
summary is provided in Table 4, fourth row.

We can see that GWT brings significant optimization to the UI. This requires high
level of abstraction and compilation. The GWT targets interactive live web pages with
limited amount of page navigation so that all application states are sent at once to the
client. The DCD as well as AngularJS fits better to system where large amount of page
exists, such as information systems or enterprise software applications. The more detailed
comparison with GWT would require a larger application to compare.

The same application prototype using solely DCD need 25.2KB in 6 requests to load
the UI page, the cached version needs to transmit 1.8/5.3KB for the context-insensitive
/ context-aware situation as shows Table 4 last row. The AngularJS integration looks
promising for practical use as it has large community and DCD integration can bring
simplification to the development and maintenance efforts.

7. Conclusion

In this paper, we discuss issues related to conventional UI designs, which source from
tangled concerns. Tangled concerns are responsible for increased development and main-
tenance efforts and weak readability. We identify that concern separation can provide ben-
efits to the client-server communication as well as to the client abilities. Concerns that are
tangled together can hardly be reused, which disallows the possibility to cache them at the
client side and reduce the network communication demands. Existing concern separating
approaches separate the concerns only at the server-side and the separation gets lost upon
rendering. We research the distribution of concern weaving across the client and server-
sides to maintain the concern separation at the client-side and provide extended abilities
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to clients. We consider DCD approach, as an extension of the AOP-based UI approach
providing the benefits of automate code-inspection and AOP-based transformation.

This approach allows us to reuse sedately provided concerns at the client-side and
apply caching. The concern separation reduces the volume of transferred UI related in-
formation through reduced restatements. The partial delegation of the UI assembly from
the server to client reduces the required server-side resources to render a particular data
UI presentation. Next, the approach supports concurrency and the nature of the approach
support context-aware UI features.

We evaluate DCD approach on a case study that bases on a production system and
demonstrates the benefits. The study results show reduced page load times for the con-
sidered scenario. Next, it shows reduced volume of UI data presentation description that
must be processed by server-side. The reduced data transfer is evident for the client cache-
enabled scenarios, which shows the extended client-side caching abilities over the con-
ventional approach.

We also consider alternative AJAX-based approaches AngularJS and GWT, which
bring different perspective to the UI development, although in both approaches are left
gaps regarding the data presentation UI design, mostly regarding to involved development
efforts, maintenance, repeated decisions and information restatement. From the study can
be seen the differences of the approaches. While AngularJS represents incremental state
client-request approach, the GWT provides the entire application state space in one re-
quest. Both approaches also present a different level of abstraction. Upon DCD integra-
tion to both approaches we can see considerable synergy with AngularJS although limited
advantages are given to the GWT approach, which shows DCD to better fit to incremental
state client-request approaches.

Contribution of this paper is the detailed description of the DCD approach with discus-
sion of its benefits. The advantages are demonstrated on a case study. Co-existing AJAX-
based approaches are considered from the DCD perspective and the provided integration
shows the possible synergy mostly for incremental state client-request approaches.

Although the results of the case study are promising, we still must consider DCD
limitations. The design approach fits to data presentations; it builds on the top of other
approaches that deal with page-flow, and other UI tasks. One of the promising future
directions is the integration with AngularJS. The underlying AOP UI design approach
interacts with development standards and third parties for security, context-awareness,
etc., although it is only aimed for data presentations.

Regarding future work we have a preliminary client DCD prototypes involving stan-
dalone and mobile based clients. The join point model and data values are enough to
determine the data presentation on such platform-specific clients. At the same time this
brings usability advantages to end users. This can also lead to the ability to describe UI
data presentations in platform-independent format [5], open web applications to further
reuse and simplify native client development.

Next, we could consider separating out the static and dynamic particles of the join
points, which would allow caching the static particles for a long period of time. This
approach could go the direction of GWT when the entire static particles load at once and
persist in cache. This would also allow considering the CDN and CWC integration.

The discussion of AngularJS and GWT approach gives two different views on UI
development, on one side full state space given to client, on the other side an incremental
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approach. Is this the only possibility or does there exists even finer granularity that could
be determined at runtime basing on client abilities, battery consumption, etc.? What if
the client uses a watch but the other uses a desktop? Perhaps with GWT one client might
receive usable UI but the other that is above the ability of the watch to be processed.
Perhaps AOP abilities could provide the granularity to choose the appropriate strategy to
interact with the client, all with the low development and maintenance efforts.

The AngularJS DCD integration will be considered more closely with aim to push for
AngularJS plugin to contribute the community.

Our preliminary research in the area of application business rule allows us to apply
inspection not only to data definitions but also the business rule definitions, and such defi-
nition could be provided as separated concerns, which would allow to reuse and transform
existing business rules in different subsystems. For instance, consider the client-side UI
business rule integration allowing (for certain rules) applying rule resolution at the client-
side. This would improve the UI usability. The UI might not be the only target domain for
the DCD approach; it might be used in middleware integration.
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