Computer Science and Information Systems 12(2):683-705 DOI: 10.2298/CS1S140107022P

Teaching Pragmatic Model-Driven Software Development

Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal

Technical University of Kosice, Department of Computers and Informatics
Letnd 9, Kosice, Slovak Republic
{jaroslav.poruban, michaela.bacikova, sergej.chodarev } @tuke.sk, milan.nosal @ gmail.com

Abstract. Model-driven software development is surrounded by numerous myths
and misunderstandings that hamper its adoption. For long, our students were victims
of these myths and considered MDSD impractical and only applied in academy.
In this paper we discuss these myths and present our experience with devising an
MDSD course that challenges them and motivates students to understand MDSD
principles. The main contribution of this work is a set of MDSD teaching guidelines
that can make the course pragmatic in the eyes of students — programmers. These
guidelines introduce MDSD from the viewpoint of a programmer as a pragmatic
tool for solving concrete problems in the development process. In our MDSD course
we implemented the presented guidelines. The course shows several techniques and
principles of model-driven development in multiple incremental iterations instead of
concentrating on a single tool. At the same time we unite these techniques by using
a dynamic visualisation tool that shows to the students the whole infrastructure in
the big picture. The course is implemented as an iterative incremental MDSD case
study. The paper concludes with a survey performed with our students that indicates
positive results of the approach.

Keywords: Model-driven Software Development, Teaching, Case Study, Iterative
MDSD, Visualisation Tool, Pragmatic MDSD, Domain-Specific Languages.

1. Introduction

Model-driven software development approach (MDSD) promises increase of develop-
ment speed and quality of resulting software by the use of formal model as a basis for
system’s implementation [38]. Understanding MDSD by our students, however, suffers
from several myths that hamper its adoption. In this paper we present these myths about
MDSD as the motivational context to our work.

The core of our work is the set of guidelines that we devised to keep an MDSD course
pragmatic to challenge presented myths. These guidelines emphasize iterative incremental
MDSD process and employment of common industrial tools and techniques integrated
together instead of full-fledged MDSD workbenches. In context of the MDSD theory, we
focus mainly on two topics: domain-specific languages (DSL) and code generation. DSLs
deal with processing of the model input to an in-memory representation. Code generation
uses the in-memory model to emit target code. We use this minimal MDSD skeleton
to show the students that they can get MDSD benefits even without the complexity of
MDSD “big guns”. Other topics, such as model-driven architecture, software factories,
meta-modelling, MDSD tools (EMF, MPS, etc.), and others, are covered only briefly on
lectures.

The contributions of this work are as follows:

684 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

— We devised a set of MDSD course guidelines that challenge common myths about
MDSD and make the course more appealing to common programmers (Section 3).

— We explain our implementation of the guidelines that can serve as an example (Sec-
tion 4). It can provide inspiration for others who want to design an MDSD course and
are concerned with the fact that students are influenced by the myths stated below.
We also present a short survey performed with our students to evaluate the potential
of our approach (Section 6).

— We show how visualisation may help students to understand the whole picture of
the MDSD even when the course employs iterative approach with multiple tools and
techniques integrated into a full MDSD solution (Section 5).

2. Myths about MDSD

We identified several myths that hamper the adoption of the MDSD approach. Our stu-
dents usually come to our MDSD course with these myths deeply rooted in their minds.

Myth 1: MDSD is a large-scale approach

MDSD is mostly viewed from the perspective of large-scale software architecture. A new
system or a family of systems is supposed to be implemented by describing every signif-
icant part and aspect of the system using formal models (for example in [8]). In practice,
however, it is not always the case. When a system development begins, it may not be
known that a whole product family would be needed in the future. Therefore, it is not
clear beforehand that model-driven development would be applicable and that investment
in it would pay off.

Of course, in reality MDSD can be considered in a smaller scale, where only specific
parts of the system are generated based on models [21]. As latest research shows, most of
the successful MDSD projects were developed this way [16]. In this case, the knowledge
of MDSD can be useful even for a single programmer (or a small team) working on a
part of the system and introducing MDSD may not require significant changes in the
architecture of the system as a whole.

Myth 2: MDSD requires massive tool support

MDSD is often associated with integrated modelling tools or language workbenches.
These tools cover development of a meta-model, a domain-specific language used to ex-
press models and a generator that produces runnable code based on a model. modelling
tools can also provide environment for development of the model itself. These tools, how-
ever, are often complex and require high learning costs. What is more important, the use
of such tools poses the risk of vendor lock-in.

Although integrated tools may be useful in a lot of situations, they are not necessarily
required by the model-driven approach [1]. It is possible to use a set of independent tools
for separate parts of the model-driven development infrastructure (e.g., for language pro-
cessing, for code generation [43], etc.). This approach allows looser coupling and greater
flexibility in the choice of tools.

Teaching Pragmatic Model-Driven Software Development 685

Myth 3: MDSD requires special software development process

Itis considered that model-driven approach requires the use of a special software develop-
ment process, where meta-model and modelling language must be completely specified
and implemented before a model of a system can be developed. This opinion renders
MDSD as very inflexible and incompatible with agile development processes that are
currently favoured.

Modelling infrastructure, however, can be developed iteratively and this approach is
usually more successful in industrial practice [16]. Meta-model, language processor and
generator can evolve together with the rest of the system. The use of small-scale MDSD
and simpler tools as described in the previous paragraphs greatly simplifies such iterative
development process and allows using MDSD along with common agile methodologies.

Myth 4: MDSD is not widely used in practice

Without a deeper insight it seems that MDSD is not a widely used approach in practice.
In reality, model-driven and generative approaches are indeed wide-spread and even con-
sidered a good practice for pragmatic programming [15]. Most of the examples, however,
represent small-scale MDSD applications which include:

— Generators of database schemas (e.g., DOMMLite [7], or database refactoring tools
[24]) and object-relational mapping (ORM) code from the description of a data struc-
ture (used in various ORM tools).

Generators of code for accessing web services based on WSDL description.

Tools for graphical user interfaces design that generate code according to a graphical
representation of the user interface (e.g., for business applications [30]).

IDE plugins for specific technologies that are able to generate skeletons of repetitive
artefacts (e.g., GWT plugin for IntelliJ Idea that generates standard GWT RPC service
artefacts).

Spring Roo generative framework that allows to implement custom code generators
for various repetitive code artefacts (currently published generators focus on web-
based CRUD application domain).

Furthermore, MDSD application is often hidden from a programmer by libraries and
frameworks that allow to specify behaviour using a model without knowing any details of
model processing. In case of dynamic languages such as Ruby, internal domain-specific
languages can be used for description of models and code generation can be replaced with
run-time program modification using reflection. This approach makes the use of MDSD
even less obvious.

3. Pragmatic Model-Driven Programming

In our course we wanted to challenge the aforementioned MDSD myths to overcome
students’ scepticism. The course is intended for graduate students that would mostly be-
come software engineers in their future career. Because of this, we wanted to demonstrate
the approach from the viewpoint of a programmer and in correspondence with the use
of MDSD techniques in industrial practice as described by Whittle and Hutchinson [42].

686 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

This is why we are referring to pragmatic model-driven programming. We have come to
the following guidelines for the case study for students that allow a course designer to
fulfill the stated goals.

Use cooperating interchangeable tools and techniques instead of a single complex tool.
Students should understand the basic MDSD principles as they have a much higher level
of applicability than any concrete tool. Therefore the course has to emphasize principles
above any concrete tools. For this reason we have decided not to use traditional MDSD
tools (e.g. based on MDA [17] or Eclipse Modelling Framework) in our case study and
develop the project ground-up instead. Although we demonstrate MDSD development of
a complete system, parts of the system are modelled and generated separately showing
different scales of modelling and using multiple tools and techniques. Students should
also see different combinations of these techniques and understand their advantages and
disadvantages.

Divide the complete solution into small partial solutions. Each lesson can focus on one
such solution, for example parsing or code generation using templates. This provides
more in-depth understanding of each part of the MDSD infrastructure thus emphasizing
principles over tools.

Compose several small languages instead of building a single large language. This shows
that it is possible to use MDSD principles even for a small aspect of a system and then
to combine it with hand-written code or other languages (more on interoperability of
multiple DSLs in a single solution can be found in [28]). Language composition also
allows to keep domain-specific language really focused on their domains. This approach
also corresponds to how MDSD is used in practice [16].

Put the separate solutions back into the whole story. To overcome fragmentation that can
be caused by the previous guidelines, it is important to provide also a high level overview
of the whole solution and roles played by its parts. Also, the usage of each tool/technique
has to be backed up by a presentation of the problem context and reasoning for the choice
of the given tool/technique. The best solution is an interactive visualisation of the lan-
guage processing pipeline where each process and artefact is directly interconnected with
students code.

Show the iterative incremental approach. This not only shows the integration of MDSD
into agile processes, but also allows to teach different techniques on the same case study.
Iterative approach can also helps understanding the basic MDSD principles as they are
repeated in each iteration. Incremental solution helps to understand that the MDSD can
be applied in a small scale as well.

Use technologies that students already know as the basis. 1t is difficult for students to
understand new methodology if they are overwhelmed by the details of new tools they
need to use (accidental complexity). The best is to choose programming language that the
students know from previous courses along with commonly used tools.

Teaching Pragmatic Model-Driven Software Development 687

Focus on common industrial techniques and technologies. We should illustrate common
MDSD principles using realistic examples, tools and approaches that are and can be used
in practice (even in small scale). We wanted to maximize the possibility that our stu-
dents would be able to use the learned skills and techniques in their future careers. This
means that these techniques (along with tools) should be applicable in a wide range of
situations. These are tools that students would probably use in their career even if they
would not build a complete MDSD solution. Learning tools that are used in industry and
implementing realistic solutions also increases students’ motivation.

Explain how to switch to MDSD (and back). Using common industrial techniques and
tools shows the students that they do not have to learn new techniques and tools to adopt
MDSD; all that is important are the principles. Low barrier of exit is also important as
it decreases the risk of being locked in the solution that can turn unsuccessful. The use
of general-purpose language to define the model greatly helps to solve problems of low
entry and exit barriers.

Use the model-first approach. It should be shown that the model is the central and the
most stable part of the solution. Explicitly defined model allows to develop parts of the
solution separately and even replace them without changing the rest of the system. In
addition, definition of explicit domain model is considered a good practice even outside
of MDSD [11].

Show reuse. Reuse of artefacts is one of the fundamental software engineering princi-
ples. This principle should be practically demonstrated during the course by showing how
proper decoupling allows to reuse parts of the implementation during the system develop-
ment. Reuse helps the students to understand that MDSD manifests common engineering
characteristics and it is easily applicable in practice.

Select a well-known and interesting domain. We cannot expect students to have experi-
ence with domains that are not widespread or directly related to their previous courses.
Also, a good choice of a domain for the project can help students” motivation.

Always show industrial examples of MDSD adoption. There are many MDSD solutions
in practice and many of the students have already used them without realising that they are
working with an MDSD solution. We have to emphasize these examples to get students’
attention and to persuade them that MDSD is not just an academic approach.

Build an executable system. The case study that students work on during the course
should result in a complete executable system. This does not necessarily have to mean
that the whole system has to be generated, however, an executable result will give the
students more satisfaction with their work. The aim of this guideline is to motivate them.

We believe that the aforementioned guidelines challenge the myths listed in Section 1.
By using cooperating interchangeable tools and techniques we show that MDSD can be
implemented without using a single large MDSD tool such as JetBrains MPS. The same
myth is challenged by using multiple common tools and technologies. The problem of
students looking at MDSD as a solely large scale approach is challenged by dividing the
MDSD solution into small partial solutions, composing several small languages and by a

688 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

practical explanation of switching to MDSD and back (using incremental development).
The myth about MDSD not supporting agile development process is challenged by using
iterative incremental approach, and again by explaining how to switch to MDSD and
back. Finally, the myth about MDSD not being adopted in industry can be easily rejected
by showing the students many industrial examples. Here a well-known domain for the
case study can help, too. If the industry uses MDSD for that domain, the students can
more easily accept the fact about industrial MDSD adoption.

Some of the guidelines were devised before we started our course, but many of them
came as an experience only after first years of teaching MDSD. As an example, after
interviewing the students we learned that even after they worked on a carefully selected
domain, they still had problems seeing MDSD applied in practice. We realised that there is
a myth about MDSD industrial adoption and since then we are always showing examples
from practice (e.g., visual GUI editors in IDEs). Another experience learned later was the
problem of solution fragmentation caused by division of solution into partial solutions: in
the process of implementing the case study, many students lost the big picture and thus
failed to fully grasp the basic MDSD principles.

In the next sections we present our course in more details. We use a single case study
project that is developed in an iterative manner. We apply one of the standard approaches
to MDSD that uses an explicitly defined meta-model [13]. Meta-model of the generated
system used in the case study is gradually extended showing evolution and composi-
tion [25] of meta-models and languages during the MDSD development.

4. Course in Practice

Section 3 summarizes our experience with teaching MDSD to pragmatic programmers in
form of guidelines or goals that have to be achieved. However, these guidelines are quite
abstract. For a better understanding of our experience we use this section to explain details
about our own MDSD course that can inspire other educators.

4.1. Methodology

The MDSD course at our university is taught to the first year’s graduate students. They
will most likely work as developers after graduation and therefore we wanted to focus the
course on the pragmatic aspects of MDSD. From previous courses they all have experi-
ence with Java programming language and object-oriented programming, thus the Java
language was an obvious choice as the case study platform to prevent accidental com-
plexity. Both the language of the generator and of the generated applications is Java.

As a teaching methodology we use task-driven case studies (abbreviated: TDCS).
TDCS is a methodology developed at our university and we already use it for several
years on multiple subjects with very positive feedback from both the students and teachers
[34]. Basically, TDCS combine task-driven teaching (focusing on student’s task) with
case studies (to provide a meaningful context to those tasks). An important part of the
methodology is to prepare study guides that contain case study context and reasoning and
content structured in objectives and tasks. Study guides are provided on-line to students,
so they can work on their projects from home, too. During the course, each student works

Teaching Pragmatic Model-Driven Software Development 689

individually on his/her own solution at home or in the class. More details about the TDCS
methodology can be found in [34].

The course is taught in the second semester and it lasts 13 lessons in 1 semester, each
of 2 hours per week. Students’ progress is controlled in the class on a weekly basis to
prevent procrastination and to help them with issues that raise during the development
of the case study. We use the first lesson in the course to introduce the basic topics of
the case study, to explain the motivation and context and to explain the course organisa-
tion'. To promote an iterative incremental approach we divided the case study into four
relatively self-contained partial solutions. Each of these iterations lasts three lessons to
finish. The first lesson is always dedicated to language processing and model manipu-
lation (evolution, composition); the second lesson is dedicated to model-to-source-code
transformations (code generation); and the third lesson is used to evaluation of students’
solutions. Each iteration is graded by points and students are encouraged to add their own
features for additional points to increase their motivation to go deeper into the problem.
Since we keep each iteration relatively simple, the students have a working executable
solution after each lesson. E.g., in the first lesson of each iteration, they implement a
working parser and after the second lesson they implement a generator that works with a
model generated by the parser. After each iteration the solution can be used to generate
executable code artefacts.

4.2. Case Study

In the case study domain selection we were inspired by successful web development
frameworks that employ the principle of Convention over Configuration to provide fast
bootstrap for CRUD (create, read, update, delete) applications. E.g., in GRails framework
it is sufficient to implement a data model and the framework provides the developer with
a working CRUD application. CRUD applications are common and therefore known by
students. The fact that there are solutions such as GRails or Spring Roo also helps us
to show that MDSD is for this domain used in the industry as well. In their projects the
students are expected to implement a generator for simple CRUD applications in Java.
A concrete CRUD application is defined by a simple model of the domain in terms of
entities, their properties and relationships.

We designed the architecture of the case study CRUD applications to be a 3-tier ar-
chitecture. The CRUD applications have three architectural layers: user interface, service
and data access. The architecture skeleton is depicted in Figure 1. These CRUD applica-
tions are simple Java console applications. The data layer allows to write entities into a
relational database (we use Java Derby). Service layer is defined by simple data access
object (DAO) interfaces and their implementations. And finally, the user interface is im-
plemented as a simple console interface. The implementation is kept simple so that every
average student would be able to finish it.

The case study is divided into 4 relatively self-contained parts. Implementation of a
DSL for each of these parts is a goal of one iteration in the course. Using Java and common

! An English version of the study guides can be found at http://hornad.fei.tuke.sk/
~bacikova/MaGSA/01/. Although we currently use a newer updated version of the study
guides, these should serve as a sufficient illustration (or inspiration, may the reader be considering
to adopt our approach).

690 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

e > Entlty Ob]ect e 1
| presents stores, reads |
1
1
1
1

. 'y i
manipulates i
1 1

User Interface Service Data Access -
Layer Layer Layer Data
Store

form or table mimics DAO
dialogs DAO interfaces implementations

Fig. 1. Multi-tier architecture used by CrudComp CRUD applications

tools shows that MDSD can be adopted relatively easy. Using iterations to implement the
case study incrementally shows that a developer can generate only a part of the system
and the rest can be implemented by hand, thus promoting easy switch back from the
MDSD and one can even combine multiple approaches in the context of the same system.
Incremental approach also enables agile development.

The CRUD applications generation was divided into the following four parts that cor-
respond to the aforementioned iterations:

1. Simple data layer generation. The generated artefacts are classes for data entities
(e.g., aPatient class in case of CRUD application for the domain), simple DAO
interfaces, DAO implementations and an SQL database table creation script. The so-
lution of this iteration cannot generate a whole system, but it can generate a bootstrap
data tier for a CRUD application.

2. Entity constraints support. Entity objects that are handled by CRUD applications
should be validated to conform to domain rules. E.g., a doctor might be required
to have at least five years of experience in his/her field. The iteration enriches DAO
implementations to validate the entity objects before persisting them to the database.

3. References between entities. The third iteration again adds generated code to the data
and business layers. The first two iterations have supported simple entities. This one
allows relationships between them by introducing references. A doctor can have as-
sociated patient records, etc.

4. And finally, the fourth iteration introduces a console-based user interface. This in-
cludes several new source code artefacts. First, a menu for interacting with the appli-
cation showing options for each entity handled by the application is created. Then,
for each entity there is a table that presents all the instances and a form for editing
and creating instances.

The whole case study also includes a framework that implements universal code parts
shared by all generated CRUD applications. The framework provides a base class for DAO
implementations, base classes for forms and tables and code for database connection.
Students are also provided with skeletons and parts of the partial solutions they have to
work on. For example, when generating a DAO implementation students are provided
with a template skeleton and they are supposed to finish just a few small parts of the
template. By seeing a part of the solution they can get to the problem and new technologies

Teaching Pragmatic Model-Driven Software Development 691

more easily. However, later in the course they are given harder tasks. E.g., in the end, when
working on the console Ul they have to write the whole templates for forms and tables.
Although they are provided with parts of the solution the whole case study is still simple
enough to comprehend the whole picture.

4.3. Tools and Approaches

All four case study parts revolve around the model of CRUD application. Model defines
how should the entities in the application look like, what are their properties, types of the
properties, relations between entities, etc. The definition of a concrete model expressed
by a meta-model. For the meta-model definition we use Java classes, again, because we
do not want to bother the students with overwhelmingly complicated model definition in a
completely new and previously unused language or technology. Therefore each concrete
model consists of in-memory Java objects. These objects are created by parsers of DSLs
implemented during the course.

While each iteration uses a different technique and tools, they all share the same tool-
ing infrastructure used in MDSD (see Figure 2). As the reader can see from the scheme in
Figure 2 we accent the importance of the model that connects the problem domain with
the implementation. Meta-model in Java enables us to use multiple approaches and tools
interchangeably; we utilize this fact between iterations.

Tooling infrastructure

--------- > Metamodel [<------ Templates Framework
i based on artifacts

1 based on A A -

! : 1 1 Hand-written
I instance of ,use

artifacts

1
Mod'el g Processors In memory Generators Gen_erated
notation model artifacts

Fig. 2. Tooling infrastructure of our MDSD case study solution

In this section we discuss the concrete tools and approaches taught in the course. Each
subsection is devoted to one of the course iterations. However, for more details about the
case study project we refer the reader to [32].

Data Layer Generation For the data layer generation students need a model that de-
scribes entities and their properties as the data structures handled by CRUD operations.
Entity has a unique name and a set of its properties. Each property has a name, too, and a
type. For the purpose of expressing these information the students have to implement an
external DSL that we call the Entities DSL.

The Entities DSL is implemented as a simple external DSL. From the viewpoint of
the parsing approaches the objective of this iteration is to show the students that writing
an ad hoc delimiter-directed parser for a very simple language can be the right choice —in
some simple situations the “big guns” such as parser generators or language workbenches

692 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

Listing 1.1. Two entities specified in a file-based Entities language
<model>
| ———— <Department>
| name : string
| code : string
‘—-——— <Employee>
name : string
age : integer

could just complicate the matter (learning curve, etc.). To make the implementation of the
entities language as simple as possible we exploit the file system for the concrete syntax:
description of each entity is stored in a separate file and its name denotes the name of the
entity. On the other hand, the students can also see that if the language would get a little
bit more complex, the parser implementation complexity could raise much more, thus we
are preparing the ground for introducing other approaches. An example of a language
sentence is shown in Listing 1.1 (angle brackets denote files and directories).

Another reason why we start with an ad hoc parser is that students are often scared of
parser generators. Usually they think parser generators are complicated and therefore can
be used only by experts in language theory. We start with a simple ad hoc implementation
to gain the students’ attention and enthusiasm.

From the viewpoint of code generation we use both template-based generation (widely
used Velocity template engine) and direct transformation (pure Java) approaches de-
scribed by Fowler [11]. Again, we want the students to understand when a generation
using direct transformation is enough and when we can simplify generation with tem-
plates.

In this iteration they generate just a part of the whole system — the data tier of the
CRUD application (simulating small-scale MDSD). For example, for the Employee entity
from Listing 1.1 they are supposed to generate a Java entity class and a data-access object
with appropriate CRUD operations by applying the template-based generation approach.
In the standard line of the case study we use JDBC to prepare SQL statements and run
them on a database, but students are encouraged to use other technologies (such as Hiber-
nate) if they have experience with them. This way we are nurturing individual approach
without adding accidental complexity. To show to the students that we can generate mul-
tiple output artefacts from the same model the case study requires that the students would
also generate a database schema creation script for a specific database by applying the
direct transformation approach.

Combination of the delimiter-directed parser and direct transformation shows to the
students that they do not necessarily need to learn any new language or tool to get started
with MDSD. The most important are the MDSD principles. Introduction of templates and
later other specialized tools helps them understand that these tools are nothing to be afraid
of and that generation can be much more effective with those tools.

Entity Constraints Support The second iteration extends the problem domain with
property constraints. In addition to property name and type, we want to be able to specify

Teaching Pragmatic Model-Driven Software Development 693

constraints on properties. For example, the value of a particular property might be re-
quired, it might have restrictions on range or length, etc. To support constraints we do not
simply extend the existing Entities DSL; we rather introduce a new DSL specialized for
constraints — the Constraints DSL. The languages are composed on level of models, so
a single complete model is created as the result. This way the students can see language
composition on models in practice and we can also introduce new MDSD techniques that
can be used by the students. The Constraints DSL is an internal language based on Java.
We want to show to the students that if syntactic restrictions posed by the host general
purpose language (GPL) are not a problem, an internal DSL can significantly decrease
parser implementation costs. Constraints DSL is a fagade to the language model that can
be used to build constraints language expressions using domain-specific concrete syntax.
In Listing 1.2 there is an example of a sentence specifying constraints on the name prop-
erty of the Employee entity from Listing 1.1. The example specifies that every Employee
must have a name and it cannot exceed 30 characters.

Listing 1.2. Constraints for the Employee entity in the Constraints DSL

public class Constraints extends ConstraintBuilder {
protected void define () {
entity ref ("Employee",
property_ ref ("name",
required (),
max_length (30)));

Assembling the complete model from two different notations helps the students to
understand that in MDSD there may be multiple DSLs combined together to achieve a
single goal. Many times there already is an existing DSL that is perfect for a given domain,
but the users need to do some things that are beyond its domain. Instead of polluting the
existing DSL, it can prove efficient and useful to just implement a new DSL for the new
domain, and then compose both DSLs together. This way the *good old” DSL does not
have to become a GPL to be more usable.

And finally, in the process of code generation we show the students that templates
can be composed, too. Template composition can be used to modularize and simplify the
templates. For each constraint the students have to define a template with appropriate test.
The template for the DAO implementation implements a test () method by including
appropriate templates according to the constraints model.

References between Entities The third iteration moves the focus to the traditional MDSD
tools; we introduce a parser generator. The delimiter-directed parser and expression builder
for the internal DSL created in the previous iterations are substituted with a generated
parser. The previously used approaches were supposed to show to the students that a sim-
ple DSL can be easily built without a lot of knowledge about the language theory. This
iteration is used to show them that with modern approaches to parser generation, gen-
erating a parser is not difficult and for a non-trivial language it is much more effective
than writing a custom implementation. In this iteration a completely new language is de-
signed — the Entities with references DSL. This DSL supports both the domains of the

694 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

Listing 1.3. A sentence in the entities language with references
entity Department {
name : string required, length 5 30

code : string required, length 1 4
}
entity Employee {
name : string required, length 2 30
age : integer
}

reference from Employee to Department

Entities and the Constraints DSLs and enriches them with references between entities. An
example sentence of this language is presented in Listing 1.3.

To keep the course pragmatic (and again prevent accidental complexity) we favoured
model-based approach to parser generation. Students use the YAJCo [33] model-based
parser generator that considers the existing object-oriented model of the Entities with ref-
erences DSL to be the specification of the language abstract syntax. Thus the students
do not have to explicitly worry about the language grammar (although we show them
the correspondence between the EBNF-based and model-based grammar specification).
Moreover, the meta-model from previous iterations is reused thus mimicking agile evolu-
tion of the MDSD solution. Prototype parsers implemented in the previous iterations are
discarded, but the meta-model and the generators are still used (with some evolutionary
modifications, e.g., students need to add references to the meta-model).

User Interface The last part of CRUD applications that needs to be generated is their
user interface (UI). Here again we utilize language composition. The Ul is supposed to
be specified in a Ul specification DSL. Entity objects are presented to application users
in simple tables, each of them with a set of columns corresponding to entity properties.
To support creating and editing entity instances, a form has to be specified. Again, for
each property, a field in the form is defined. To support individuality and creativity we
encourage students to generate desktop, web-based or mobile-based GUI to get additional
points if they are skilled enough. This encourages motivation and allows us to show them
the full potential of generative programming.

The UI DSL is implemented using the generic language approach (called Commercial-
Off-The-Shelf by Kosar et al. in [22]). If a language designer keeps the syntactic restric-
tions defined by a generic language he/she can then reuse its generic parser. Generic lan-
guages (XML, YAML, .properties, etc.) are currently very popular in industry, especially
for configuration languages [27]. This popularity is the reason why we believe that generic
languages should be a part of an MDSD course.

The concrete syntax of the Ul specification language is XML-based. For parsing the
language we chose the Java Architecture for XML Binding (JAXB). JAXB enables to mar-
shal (serialize) a Java object tree into a corresponding XML document and to unmarshal
(deserialize) an XML document into its in-memory object representation. JAXB again
enables meta-model reuse and what is more important, it is widely used in industry (e.g.,
in SOAP web services). The language concrete syntax is described also by using popular

Teaching Pragmatic Model-Driven Software Development 695

Listing 1.4. XML-based user interface specification DSL sentence
<ui>
<form name="EmployeeForm" entity="Employee" label="Employee">
<field property="name"/>
<field property="age"/>
</form>
<table name="EmployeeTable" entity="Employee"
label="Employee" editFormDialog="EmployeeForm">
<column property="name"/>
<column property="age"/>
</table>
</ui>

XML schema to employ another industrially used technology [35]. Listing 1.4 shows a
simple user interface specification for the CRUD application with Employee entities using
an XML-based notation.

From the viewpoint of code generation and templates we use this iteration to show
how the templates can be reused and maintained [4,40]. The Ul has to validate user input
to avoid violating constraints on entity properties. Here the students have to reuse the
constraints validation templates written in the second iteration. This way they can see that
a good decomposition of templates can also support template reusability.

5. The Missing Piece: Build Process Visualisation

Our iterative course employs small-scale solutions to solve partial problems of MDSD. As
we have discussed, teaching with different types of parsers and generative approaches has
multiple advantages to a full-scale MDSD solution. However, tearing the whole solution
apart carries the risks of forgetting how those partial solutions fit together into the whole
picture. We had experiences that our students understood the advantages of generating
software artefacts from a DSL specification, but for many of them the whole solution
remained a black box with several tasks that were not connected together in their eyes.
To deal with this problem we have implemented a visualisation tool we call MagsaTool®.
The tool is able to load the students’ project, illustrate her current progress and execute
actions in the students’ code by directly manipulating with the visualisation.

For each lesson, MagsaTool provides an interactive scheme outlining the build pro-
cess’ in the case study. Each scheme is supplemented with a code snippet that implements
the build process in Java. Thus students can compare their testing code with the appropri-
ate build code for the lesson. The students cannot change or adapt the schemes, but they
can execute actions such as parsing, model composing or code generation directly in the
visualisation. Thanks to the visualisation a student can associate the components in the
scheme with the artefacts she was (or will be) implementing in the current lesson. The
tool also highlights the changes between each of the lessons, thus visually showing to the
students what was added to the project and what was discarded.

% Magsa is an acronym of the course name.
3 Process of interconnecting all partial solutions to a complete solution.

696 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal

Task 1| Task 2 | Task 3 | Task 4 | Task 5 | Task 6 | Task 7| Task 8
Parsing Compaesition Generation

Generation of the language processor

-

— /
Cumpﬂse \

" ¢ y
Entity generatar | eoemien— i
|

= i entity dass

—
‘

DAO generator

Generate

Generate

E Generated code:

aiDmdas

Fig. 3. Case study tooling infrastructure after the last iteration

Figure 3 shows the scheme of the tooling infrastructure for a completed case study.
The rectangles with round corners and dashed border are resources (input files, model,
output files), the rectangles with solid border and buttons are executable components.
Available resources are highlighted by green color (dark gray in black and white print).
Executable components are highlighted by yellow (white in black and white print) and
they contain buttons with appropriate actions (parse, compose, generate). After run, in
case of successful execution, they are highlighted in green. Light gray components are not
available (e.g., their input is not available, they were not created yet, etc.). Components or
resources can be highlighted in red, if there was any problem in their loading or execution.

The reader may have noticed that some of the generators in Figure 3 have red thick
borders. MagsaTool highlights new components in the current task with red borders for
few seconds to indicate they are the increment of the current iteration. In this case the
rest of the components was already implemented in the previous lessons, and only those
highlighted generators will be implemented in the current one. Showing the increment of
the current lesson helps the students to have a clear idea about what is their task in the
current lesson.

The model is put in the middle between the parsing/composition phases and the gen-
eration phase to clearly indicate that it is the meeting point of both phases (the interface
between them). It shows that if we do not change the model format we can arbitrarily ma-
nipulate or substitute the parser (as we do across the iterations), and the generation phase
components will remain usable. Another important aspect the students can realize is that
although they work on multiple different generators (of course with different outputs) they
all work with the same model.

The visualisation of the parser generator in Figure 3 shows to the students the place of
parser generator in the MDSD process. In our experience students often get confused in
multiple meta layers of generation. The scheme helps them to put it all in the right place.
It also makes a distinction between a generated parser and the parser generator*. Similar

* For some reason students often think that YAJCo itself parses the sentences, they consider the
generated parser is a part of YAJCo and it will not work without YAJCo library in the classpath.

Teaching Pragmatic Model-Driven Software Development 697

problem arises in the second iteration when they implement an internal DSL based on
Java. They get confused by using the same language for the sentence definition (an internal
DSL), for parsing (expression builder is of course in Java), and also for the generated
system (the CRUD applications are generated to Java). Here the visualisation helps again.

Composition with the XML-based language shows to the students that thanks to using
Java (or GPL in general) for the model definition we can use not only Java-based parser
generators, but all standard tools and technologies on the given platform. In this case
JAXB can be used to parse XML documents and to create in-memory objects.

By going through all the schemes visualized by the MagsaTool students can put all
their work into the big picture. They can understand that although they were implementing
4 different languages with different semantics, they all shared a common MDSD infras-
tructure (sketched in Figure 2). It is also easier to understand the role of each of the used
tools (different parsers, model, etc.) and their interactions.

6. Evaluation

To show the viability of our solution we compare it to multiple similar approaches to
teaching MDSD in the Related work section. As an additional support to our claims and
to determine the impact of using MDSD in our course, we also administered a survey to
the students in our classes. 58 of total 137 students responded the voluntary survey. The
following questions were used in the questionnaire.

A Single choice questions:

1. What were your experiences with model-driven software development (MDSD)
before this course?

(a) I have not heard of it before, (b) I have heard of it before but I have never
used it, (c) I have already used this approach before this course.

2. Do you think you understood MDSD?

1 - Strongly agree, 2 - Agree, 3 - Disagree, 4 - Strongly disagree.
3. Would you use the techniques learned in this course in practice?
1 - Strongly agree, ..., 4 - Strongly disagree.

4. Were you satisfied with the iterative way of development used in the course?
1 - Strongly agree, ..., 4 - Strongly disagree.

5. Rate the amount of work needed to complete the project solved in the course.
(a) Significantly more than in other courses, (b) More than in other courses, (c)
Less than in other courses, (d) Significantly less than in other courses.

6. The course belongs to your:

(a) favourite subjects, (b) rather favourite subjects, (c) rather not favourite sub-
jects, (d) not favourite subjects.
B Open text questions:

7. What did you like about the course?

8. What is the biggest problem you had during the course?

9. What would you change about the course?

10. Which of the learned techniques would you use and in what situations/projects/-
platforms?

698 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

As the reader can see, the first two questions are oriented to students’ knowledge about
MDSD before and after the course. The 2nd and 10th question are targeted to practical
usage of the learned knowledge. The rest of the survey addressed the course itself, it’s
form and the problems that the students might have had during the course. The participants
were further interviewed on difficulties faced during the entire course as well as subjective
preferences.

6.1. Results

The results we obtained from the first two questions revealed that most of the students
(57%) have never heard of MDSD and only 5% have used an MDSD approach before
the course. After finishing the course, almost 86% of the students think they understand
MDSD and only one student feels s/he does not understand MDSD at all.

More than a half of the students (almost 58%) think that they will use the MDSD
techniques in practice. Here we have to note, that not all of our students are skilled pro-
grammers and many of them are focused explicitly on computer networks. According to
the answers of the 10th question, more than a half of all students (51%) specified also rel-
evant examples of using specific techniques in practice. This fact implies that more than
a half of the students sufficiently understood MDSD principles and techniques, they can
distinguish between them and know how to use them in practice.

We interpreted the reasons for such good results’ are a good motivation and examples
from our side, emphasis on industrial practice and the fact, that they could see the whole
approach broken into small interconnected parts. This way they understood that MDSD is
not only about some “magical” generation of the whole solution without even writing one
line of code, but that it can also be applied to little solutions, as it often is in practice. Many
of them identified the potential of MDSD in bootstrapping mobile or web applications
(e.g. generating the core model classes, basic screens, SQLite database etc.) and one of
the students successfully attempted to implement and use such a solution on top of the
case study.

The results of the 4th question shows that majority of the students (93%) liked the
iterative approach used in our course which is understandable, since this approach was
successful in other subjects as well.

It was surprising and gratifying for us to learn that although 88% of students thought
the course puts an excessive amount of work on them, 14% marked the subject as their
favourite in the given semester, other 56% as rather favourite, which is a quite positive
result. The fact that this is one of the few practice-oriented subjects in that semester may
have improved the results a little bit, however based on the interviews the number of
satisfied students was similar.

The problems that our students encountered most frequently were mainly misunder-
standing of several tasks in the course materials (30%), technological issues (IDE, operat-
ing system compatibility, etc.) or Java (25%). 17% of students did not report any problems
with the course. A number of students had issues with the techniques used - YAJCo (3
students), annotations (2 students) or Velocity (7 students).

> When compared to studies such as http://modeling-languages.com/failed-convince-students-
benefits-code-generation/

Teaching Pragmatic Model-Driven Software Development 699

Although the students had issues, the results in case of the 9th question show that
more than a half of them (52%) explicitly stated that they would not change the course
materials at all. The reason may be that although they fought the problems for some time,
in the end they always won over them either by themselves or with the help of the instruc-
tor and they became satisfied with what they achieved. Thus in the end of the semester,
looking back at the whole case study, they perceived the issues as “challenges” rather than
as “unsolvable barriers”. The presence and help of the instructor directly during the class
represents an important factor since the most difficult problems were often solved with
his/her help. It is important to help students to solve the problems they fight with for some
time so they are not discouraged from continuing the case study.

The results obtained in the open text section and oral interviews showed that in general
our students tend to like our approach. Some of them explicitly appreciated the various
techniques used and favour the possibility of using the learned techniques in practice.

6.2. Threads to validity

External validity. Although the sample of analysis was sufficient, the validity of this study
can be questioned based on the analysis performed only on a single year’s classes. A
further analysis is needed to find out the impact in the next years and compare the results.
Our subjective experience from the past years is that the recent course is more successful
than the ones in previous years. In the future we will conduct multiple iterations of the
survey to be able to compare the results formally.

Internal validity. Since the survey was voluntary, not all of the students participated,
therefore the participants might not represent an average group of students. The non-
participants might have seen the course negatively, but were afraid of possible repercus-
sions (although the survey was anonymous, students can be paranoid).

Construct validity. The survey evaluates only subjective opinions and feelings of our stu-
dents, therefore it can not be used to fully compare our course to different approaches, it
only evaluates how our students perceived the course. Since our subject used similar ap-
proach for multiple years from the beginning, we do not have comparable empirical data
about different courses based on different approaches at the time. However, the compari-
son can be made based on the existing literature on the topic and is discussed in Section 7.

6.3. Summary

We conclude that our approach to the course has relative success between the students
and orientation to the practice has a motivating impact on them. The survey revealed also
some problems. Main problems are of technical character, mostly with using YAJCo®
and the presence of the instructor was a viable factor when solving them. Students also
reported issues with tasks definition, the less skilled students considered some of them too
hard. The common cause of the task misunderstanding was that although the tasks were

6 Especially because of error reporting, YAJCo generates JavaCC specification that reports errors
in its own vocabulary. Mapping the JavaCC error report to YAJCo meta-model is a hard task even
for a skilled YAJCo user.

700 Jaroslav Porubin, Michaela Bacikova, Sergej Chodarev and Milan Nosal’

explained in the class, some of the students did not listen and started to work on them at
home, without the instructor immediate feedback. Therefore we recommend to encourage
the students to work directly in the class to help them to solve possible issues.

7. Related Work

The motivation for teaching MDSD at our university is based on its promises of nar-
rowing the semantic gap between the problem and solution domains. Selic [37] argues
that these benefits of using models are even greater in software than in other engineering
disciplines (due to less diversity in skills needed for the complete MDSD implementa-
tion). Introduction of the MDSD course at our university was a response to the studies
and works that proclaim the benefits of MDSD on one hand, but on the other hand state
that MDSD is given little attention in education (e.g., an early work by Cowling [6]). The
main problem with MDSD teaching at our university is that myths discussed in Section 1
were and still are strongly rooted among our students. Although there are numerous other
challenges in MDSD and MDSD teaching (e.g., work by France et al. [12]) we faced the
problem of students’ scepticism against MDSD. Most of available scientific works were
just proofs of those myths to our students, because they usually deal with highly specific
problems. In our teaching approach we tried to extract the fundamental MDSD principles
and show them to the students on simple pragmatic examples. The principles had to be di-
rectly applicable in practice (considering the small scale application, application in agile
methodologies, etc.).

MDSD teaching approach Considering the taught principles we explain the MDSD
topic from the viewpoint of the language-oriented programming (details of the course
from this perspective can be found in [32]). Although this viewpoint covers basically the
same challenges and benefits as rather “classic” MDSD teaching approaches, such as the
one by Clarke et al. [5], our approach is based on multiple interchangeable tools and tech-
niques. We also decided to focus more on the topic of formal languages, since currently
there is an ubiquitous need for developing and working with little languages in the indus-
try (especially configuration languages [27]). As described by Picek and Starhonja [31],
MDSD has more potential when using formal languages, especially DSLs, in opposed to
graphical languages such as UML [14].

Tools and models Problem with tools used in MDSD teaching was discussed in multiple
scientific works. There are cases in which teachers chose complex MDSD tools without
reporting any significant problems with students using them. For example, Tekinerdogan
[39] and Clarke et al. [5] used Eclipse modelling Project (EMP) tools, Pareto [29] used
Microsoft DSL toolkit. However, there are some reports of students having problems with
working with such complex tools. For example, Batory et al. [3] tried to use the Eclipse
modelling Framework (EMF), but their students were overwhelmed by the technology.
The failure to successfully understand and work with the EMF resulted in, using words
of Batory et al., “a bitter taste” for them, and worse, even their students. We did not use a
single complex tool to challenge the myths about the solely large scale MDSD application
and the need of massive tool support.

Teaching Pragmatic Model-Driven Software Development 701

There are also works that use tools and models developed specifically for teaching
MDSD, such as the MIST tool by Dimitrieski et al. [9]. Compared to our approach, Dim-
itrieski et al. use an EER DSL to express the domain. EER is similar to entity-relationship
model, which their students are familiar with, therefore they recognize the notation. To
be able to generate SQL code, application code or GUI, an explicit transformation has
to be specified (mapping between EER and the other formats). Considering this fact, our
entity DSL notation is more abstract, although it is not as common and recognizable as
EER would be and it does not provide as many possibilities for transformation. Instead of
focusing on existing entity-relationship model our students develop their own little lan-
guage. We decided not to use an existing modelling language because we suspected that
then some of them might not understand that MDSD can be used for an arbitrary problem
an in turn think that we are speaking about compilers design, etc.

As opposed to an explicit specification of platform-specific details in the model, we
used platform-independent models as defined by Djuki€ et al. in [10] to make the students
implement as much as possible in the generator code. The only mapping that we use in
the final solution is between the model and the UIL. Here we agree with Dimitrieski et al.
[9] that the mapping from entities and properties to screens and components has to be
explicitly specified in the model in order to show to the students that the UI representa-
tion specification can (and should) be separated from the core model to ensure product
adaptability.

Schmidt et al. [36] identified three approaches to MDSD teaching: (i) purely theoret-
ical approach that focuses on theoretical knowledge and neglects the practical exercise of
the MDSD principles by students themselves; (ii) fool-supported approach is a teaching
approach that uses a single complex MDSD tool (e.g., EMF in [5]); and (iii) practical ap-
proach that focuses on underlying concepts rather than the use of a concrete tool. Schmidt
et al. [36] use the practical approach in which they ask students to implement the gener-
ator tool by themselves. They favoured this approach over the tool-supported approach
since with the practical approach students have to directly apply the MDSD elementary
principles themselves. Using a complex MDSD framework risks that some of the basic
principles might be encapsulated by the framework and thus hidden from the students.
Although this motivation differs from ours (we did not use a complex tool to show that
MDSD can be applied without a massive tooling support) we ended with the very similar
approach focused rather on principles than on tools.

Domain selection As many projects showed, careful consideration of the domain of
the course project is very important, especially in the fields where formal methods [20],
[41] and specifications [19] [18] are used. For example, Mosterman [26] uses the domain
of embedded systems, Clarke et al. [5] use the domain of communication services and
Batory et al. [3] let the students choose a domain of their interest. We think CRUD is
the best choice for us for the reasons we explained in section 4.2. While the usage of a
well-known domain does not bother the students with unnecessary learning load, the fact
that the domain is widespread in the industry serves as a motivational factor.

Teaching approach From the viewpoint of the teaching approach, most of the articles
report using classic development with a single iteration (e.g., Clarke et al. [5]). We use
iterative approach to show the options in using MDSD for incremental, agile development

702 Jaroslav Porubén, Michaela Bac¢ikovd, Sergej Chodarev and Milan Nosdl

and also to reduce the focus on a complex MDSD tool and to rather move it to MDSD
principles. Iterative teaching approach is also used by Schmidt et al. [36]. They use the
iterative approach for the same reason as we do; they want to focus on MDSD principles
rather than on tools. In the first iteration their students implement their own generator tool,
in the second iteration they extend the tool, and only in the last iteration they implement a
language using a complex MDSD tool. Thus, each iteration explains a different topic. In
our approach the iterations’ character is quite different; in each iteration we reiterate the
whole MDSD process, only with different tools and techniques. We believe that repeating
the same concept with different implementation details helps a deep understanding of the
basic MDSD principles.

Evaluation Barisic et al. [2] present a controlled experiment that evaluates usability of a
DSL in comparison with GPL. The experiment was conducted with two groups of physi-
cists using a Pheasant DSL for High Energy Physics, and a GPL solution based on C++
and BEE library. The results showed that DSL had significantly better results in effective-
ness, efficiency, and confidence. Kosar et al. [23] use cognitive dimensions framework
to evaluate the difference between program understanding using a DSL (XAML) and us-
ing a GPL (C# Forms). They confirm the better understandability of the DSL over GPL.
Moreover, they use cognitive dimensions framework to analyse the study results of the
used languages with respect to cognitive dimensions (Closeness of mapping, Viscosity,
etc.). In our work we used a simple questionnaire combined with interviews to get feed-
back from our students. While the results were quite optimistic, since we did not conduct
a controlled experiment, they are also quite disputable. In future work we want to design
a controlled experiment to compare our approach to a “conventional” teaching approach
using an integrated MDSD solution. Also, as Kosar et al. [23], we should be able to better
analyze the reasons for the success of our approach from aspects of cognitive dimensions.

8. Conclusion

In this paper we have presented our approach to teaching model-driven software devel-
opment. The goal of our course is to explain the basic principles and concepts of model-
driven and generative development in a way that the students would understand the high
applicability of small scale MDSD in practice. These concepts are illustrated using sev-
eral different practical tools and techniques that can be used in different combinations
and in projects of different scale. The presented approach could be also an inspiration
when adapting the model-driven approach in an agile development of a software project.
Although the presented approach is not a silver bullet, in our experience it helps us to en-
gage our students in MDSD topic and to provide them with necessary knowledge required
for MDSD adoption in practice. The guidelines which are the results of this work can be
beneficial for all the MDSD teachers that meet with the myths presented in Section 2
spread among their students.

In future research we plan to improve the subject based on students’ feedback: im-
prove the task formulations, start using Maven to solve IDE compatibility problems and
the next step is to answer the problem of high work load by separating the subject into
two new subjects: “Modelling and Generating” and “Domain-Specific Languages”.

Teaching Pragmatic Model-Driven Software Development 703

Acknowledgments. This work was supported by project KEGA No. 019TUKE-4/2014 Integration
of the Basic Theories of Software Engineering into Courses for Informatics Master Study Pro-

grammes at Technical Universities — Proposal and Implementation.

References

10.

11.

12.

13.

14.

15.

16.

. Ambler, S.: Agile model driven development is good enough. IEEE Software 20(5), 71-73 (Sep

2003)

. Barisi¢, A., Amaral, V., Gouldo, M., Barroca, B.: Quality in Use of Domain-specific Languages:

A Case Study. In: Proceedings of the 3rd ACM SIGPLAN Workshop on Evaluation and Us-
ability of Programming Languages and Tools. pp. 65-72. PLATEAU ’11, ACM, New York,
NY, USA (2011)

. Batory, D.S., Latimer, E., Azanza, M.: Teaching model driven engineering from a relational

database perspective. In: MODELS 2013: 16th International Conference Model-Driven Engi-
neering Languages and Systems. pp. 121-137 (2013)

. Christou, M., Flouri, T., lliopoulos, C., Janousek, J., Melichar, B., Pissis, S., Zd’érek, J.: Tree

template matching in unranked ordered trees. Journal of Discrete Algorithms 20, 51-60 (2013)

. Clarke, PJ., Wu, Y., Allen, A.A., King, T.M.: Experiences of Teaching Model-Driven Engi-

neering in a Software Design Course. In: MODELS 2009: 12th International Conference on
Model Driven Engineering Languages and Systems (2009)

. Cowling, A.J.: Modelling: a neglected feature in the software engineering curriculum. In:

CSEE&T 2003: 16th Conference on Software Engineering Education and Training. pp. 206—
215 (March 2003)

. Dejanovié, 1., Milosavljevié¢, G., Perisi¢, B., Tumbas, M.: A Domain-Specific Language for

Defining Static Structure of Database Applications. Computer Science and Information Sys-
tems 7(3), 409-440 (2010)

. Demir, A.: Comparison of Model-Driven Architecture and Software Factories in the Context

of Model-Driven Development. In: MBD-MOMPES’06: Fourth Workshop on Model-Based
Development of Computer-Based Systems and Third International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software. pp. 75-83 (2006)

. Dimitrieski, V., Celikovié, M., Aleksic, S., Risti¢, S., Lukovié, I.: Extended entity-relationship

approach in a multi-paradigm information system modeling tool. In: FedCSIS 2014: Federated
Conference on Computer Science and Information Systems. vol. 2, pp. 1611-1620 (2014)
Djukié, V., Lukovié, 1., Popovié, A., Ivancevi¢, V.: Model execution: An approach based on
extending domain-specific modeling with action reports. Computer Science and Information
Systems 10(4), 1585-1620 (2013)

Fowler, M.: Domain Specific Languages. Addison-Wesley Professional (2010)

France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research
Roadmap. In: FOSE’07: Future of Software Engineering at ICSE. pp. 37-54 (2007)
Greenfield, J., Short, K., Cook, S., Kent, S.: Software Factories: Assembling Applications with
Patterns, Models, Frameworks, and Tools. Wiley (2004)

Havlice, Z.: Auto-reflexive software architecture with layer of knowledge based on uml models.
International Review on Computers and Software IRECOS) 8(8) (2013), http://goo.gl/
gakEMI

Hunt, A., Thomas, D.: The pragmatic programmer: from journeyman to master. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA (1999)

Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engineering practices in industry:
Social, organizational and managerial factors that lead to success or failure. Science of Com-
puter Programming 89, Part B(0), 144-161 (2014)

704

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Jaroslav Porubén, Michaela Bac¢ikovd, Sergej Chodarev and Milan Nosdl

Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)
Kolldr, J., Halupka, I.: Role of Patterns in Automated Task-Driven Grammar Refactoring. In:
SLATE 2013: 2nd Symposium on Languages, Applications and Technologies. pp. 171-186
(2013)

Kollar, J., Halupka, I, Pietrikova, E.: A task-driven grammar refactoring algorithm. Acta Poly-
technica 52(5), 51-57 (2012)

Korecko, v., Sordd, J., Dudldkovd, Z., Sobota, B.: A toolset for support of teaching formal soft-
ware development. In: Software Engineering and Formal Methods, Lecture Notes in Computer
Science, vol. 8702, pp. 278-283. Springer International Publishing (2014)

Kos, T., Kosar, T., Knez, J., Mernik, M.: From DCOM interfaces to domain-specific modeling
language: A case study on the Sequencer. Computer Science and Information Systems 8(2),
361-378 (2011)

Kosar, T., Martinez Lopez, P.E., Barrientos, P.A., Mernik, M.: A preliminary study on various
implementation approaches of domain-specific language. Information and Software Technol-
ogy 50(5), 390405 (Apr 2008)

Kosar, T., Oliveira, N., Mernik, M., Pereira, V.J.M., Crepinéek, M., da Cruz, D., Henriques,
R.P.: Comparing general-purpose and domain-specific languages: An empirical study. Com-
puter Science and Information Systems 7(2), 247-264 (2010)

Macek, O., Richta, K.: Application and Relational Database Co-Refactoring. Computer Sci-
ence and Information Systems 11(2), 503-524 (2014)

Mernik, M.: An object-oriented approach to language compositions for software language en-
gineering. Journal of Systems and Software 86(9), 2451-2464 (2013)

Mosterman, P.: Automatic Code Generation: Facilitating New Teaching Opportunities in Engi-
neering Education. In: 36th Annual Frontiers in Education Conference. pp. 1-6 (Oct 2006)
Nosal’, M., Porubén, J.: XML to annotations mapping definition with patterns. Computer Sci-
ence and Information Systems 11(4), 1455-1477 (2014)

Ober, ., Abou Dib, A., Féraud, L., Percebois, C.: Towards Interoperability in Component Based
Development with a Family of DSLs. In: Software Architecture, Lecture Notes in Computer
Science, vol. 5292, pp. 148—163. Springer Berlin Heidelberg (2008)

Pareto, L.: Teaching Domain Specific Modeling. In: 3rd Educators symposium at MODELS
2007. p. 7 (2007)

Perisi¢, B., Milosavljevié¢, G., Dejanovié, 1., Milosavljevi¢, B.: UML profile for specifying user
interfaces of business applications. Computer Science and Information Systems 8(2), 405-426
(2011)

Picek, R., Strahonja, V.: Model driven development - future or failure of software development?
In: IIS’07: 18th International Conference on Information and Intelligent Systems. pp. 407—413
(2007)

Porubin, J., Bacikovd, M., Chodareyv, S., Nosal', M.: Pragmatic model-driven software develop-
ment from the viewpoint of a programmer: Teaching experience. In: FedCSIS 2014: Federated
Conference on Computer Science and Information Systems. pp. 1647-1656 (Sept 2014)
Porubin, J., Forgac, M., Sabo, M., Béhalek, M.: Annotation Based Parser Generator. Computer
Science and Information Systems 7(2), 291-307 (Apr 2010)

Porubin, J., Nosal', M.: Practical Experience with Task-driven Case Studies. In: ICETA 2014:
IEEE International Conference on Emerging eLearning Technologies and Applications. vol. 11,
pp. 367-372. IEEE (2014)

Pusnik, M., Heri¢ko, M., Budimac, Z., Sumak, B.: XML Schema metrics for quality evaluation.
Computer Science and Information Systems 11(4), 1271-1289 (Oct 2014)

Schmidt, A., Kimmig, D., Bittner, K., Dickerhof, M.: Teaching Model-Driven Software De-
velopment: Revealing the "Great Miracle" of Code Generation to Students. In: Sixteenth Aus-
tralasian Computing Education Conference (ACE2014). CRPIT, vol. 148, pp. 97-104. ACS,
Auckland, New Zealand (2014)

Teaching Pragmatic Model-Driven Software Development 705

37. Selic, B.: The Pragmatics of Model-Driven Development. IEEE Software 20(5), 19-25 (Sep
2003)

38. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Technology, Engi-
neering, Management. John Wiley & Sons (2006)

39. Tekinerdogan, B.: Experiences in teaching a graduate course on model-driven software devel-
opment. Computer Science Education 21(4), 363-387 (2011)

40. Cerny, T., Macik, M., Donahoo, M.J., Janousek, J.: Efficient description and cache performance
in aspect-oriented user interface design. In: FedCSIS 2014: Federated Conference on Computer
Science and Information Systems. vol. 2, pp. 1667-1676 (2014)

41. Simotidk, S.: Verification of communication protocols based on formal methods integra-
tion. Acta Polytechnica Hungarica 9(4), 117-128 (2012), http://www.uni-obuda.hu/
journal/Simonak_36.pdf

42. Whittle, J., Hutchinson, J.: Mismatches between industry practice and teaching of model-driven
software development. In: Models in Software Engineering, vol. 7167, pp. 40—47. Springer
Berlin Heidelberg (2012)

43. Zivanov, Z., Raki¢, P., Hajdukovi¢, M.: Using Code Generation Approach in Developing Kiosk
Applications. Computer Science and Information Systems 5(1), 41-59 (2008)

Jaroslav Porubiin is Associate professor and the Head of Department of Computers and
Informatics, Technical university of KoSice, Slovakia. He received his MSc. in Computer
Science in 2000 and his PhD. in Computer Science in 2004. Since 2003 he is a member
of the Department of Computers and Informatics at Technical University of KoSice. Cur-
rently the main subject of his research is the computer language engineering concentrating
on design and implementation of domain specific languages and computer language com-
position and evolution.

Michaela Bacikova is Assistant professor at the Department of Computers and Infor-
matics, Technical University of KoSice, Slovakia. She received her PhD. in Computer
Science in 2014 for her work in the field of domain analysis of graphical user interfaces.
Currently her research focuses on domain-specific languages, domain analysis, graphical
user interfaces, usability and user experience.

Sergej Chodarev is Assistant professor at the Department of Computers and Informatics,
Technical university of KoSice, Slovakia. He received his PhD. in Computer Science in
2012. The main areas of his current research are design and implementation of domain
specific languages, metaprogramming and user interfaces.

Milan Nosal’ is PhD student at the Department of Computers and Informatics, Technical
University of Kosice, Slovakia. He received his MSc. in Computer Science in 2011 for
his work in the field of configuration formats and attribute-oriented programming. Cur-
rently his research focuses on attribute-oriented programming, program comprehension
and projectional programming.

Received: January 7, 2015; Accepted: June 4, 2015.

