
Computer Science and Information Systems 17(1):271–292 https://doi.org/10.2298/CSIS190430040E

Verification and Testing of Safety-Critical Airborne

Systems: a Model-based Methodology

Mounia Elqortobi1, Warda El-Khouly1, Amine Rahj1, Jamal Bentahar1 and

Rachida Dssouli1

1 Concordia University, Quebec, Canada

m_elqort@ mail.concordia.ca,

warda_elkholy@yahoo.com

{amine.rahj, jamal.bentahar, rachida.dssouli}@ concordia.ca

Abstract. In this paper, we address the issues of safety-critical software

verification and testing that are key requirements for achieving DO-178C and DO-

331 regulatory compliance for airborne systems. Formal verification and testing

are considered two different activities within airborne standards and they belong

to two different levels in the avionics software development cycle. The objective

is to integrate model-based verification and model-based testing within a single

framework and to capture the benefits of their cross-fertilization. This is achieved

by proposing a new methodology for the verification and testing of parallel

communicating agents based on formal models. In this work, properties are

extracted from requirements and formally verified at the design level, while the

verified properties are propagated to the implementation level and checked via

testing. The contributions of this paper are a methodology that integrates

verification and testing, formal verification of some safety critical software

properties, and a testing method for Modified Condition/Decision Coverage

(MC/DC). The results of formal verification and testing can be used as evidence

for avionics software certification.

Keywords: Model-based Verification, Model Checking, Communication Graph,

Methodology, Model-based Testing, Partial Reachability Graph, MC/DC

(Modified Condition/Decision Coverage).

Sponsored by NSERC/CRD CMC CS Canada. Project CRIAQ AVIO 604, CRDPJ

463076-14.

1. Introduction

Developing safety-critical software requires rigorous processes. To prevent catastrophic

events, the avionics industry has introduced a rigorous certification process, described in

the RTCA [1, 2] standard. The DO-178C standard [1] includes a supplement on formal

methods called DO-333. In the DO-333 standard, a formal method is defined as “a

formal model combined with a formal analysis”. The DO-178C and its supplement have

been successfully applied into the production of software systems at Dassault-Aviation

and Airbus [3]. The motivation of this work is to increase software dependability by

integrating formal verification techniques with testing and to capture the benefits of

mailto:m_elqort@mail.concordia.ca

272 Mounia Elqortobi et al.

their cross-fertilization. In addition, formal verification and test results can be used as

evidence for certification. Although model-based testing [5, 6] and verification activities

[3, 4, 5] are natural approaches to the certification of avionics software, the integrated

model-based engineering approach is not yet well studied in the literature, and several

challenges still need to be addressed [4, 7, 12, 14].

We propose a model-driven approach that encompasses two main levels:

verification/design and validation/implementation. As shown in figure 1, in the first

level, we adopt model checking, a formal and fully automatic technique for model-

based verification. It is a natural choice for a rigorous verification of avionics systems

against desirable properties, including safety and liveness. In the second level, we

transform the finite state machine (FSM) verification model [9, 10, 11] into an Extended

Finite State Machine (EFSM) testing model that is an FSM-like model extended with

variables [16]. We generate both local test cases for each EFSM component modeled as

agent in its context of communication, and global test cases for a Communicating

EFSM (CEFSM) model. The CEFSM is a composition of EFSMs. The test generation

method satisfies the Modified Condition/Decision Coverage (MC/DC) criterion, all

Definition-Use (DU)-paths, and ensure that the verified properties hold in the

implementation. The selection of coverage criteria is based on the satisfaction of DO

178C for MC/DC and on the use of middle ground structural coverage for all DU-paths.

Using a better structural coverage criterion, such as all-paths, is often impractical.

Model–based verification and model-based testing are still very active research

domains [5, 6, 14, 16, 23, 24, 25]. They are considered as two distinct research areas

and supported by different research communities. EFSM-based testing and

Communicating EFSM have been extensively studied [18, 19, 20, 21, 23, 25]. A more

recent research area is test generation based on model checking, with several

publications [17, 22, 26, 27, 28, 29] discussing that topic. The principle is basically to

generate counterexamples or witness traces that can be used to derive test cases. The

major problems in all the published work are related to performance, the notion of test

coverage or test efficiency, non-determinism, and the abstraction level of test cases,

derived from counterexamples and witness traces, that need more refinement to be

accurate and be utilized to test implementations [17, 29]. To the authors’ best

knowledge, there is no work on the methodologies that link testing and verification in

the same framework.

The rest of the paper is organized as follows. In Section 2, we present an overview of

the proposed approach and our case study about a landing gear system [11]. This is

followed by a summary of our model-based verification system, formal modeling of our

case study, and our experimental results verifying the correctness of the modeled

landing gear system against desirable properties including safety and liveness in Section

3. We then present our model-based testing and show how to automatically generate test

cases in Section 4. In Section 5, we cover the details of MC/DC criterion and how to

integrate non executable paths. We offer our discussion, conclusions, and identify future

work in Section 6.

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 273

2. The Proposed Methodology and Case Study

2.1. The Proposed Methodology

We introduce the proposed verification and testing framework in this sub-section. The

methodology begins with formally modeling the safety-critical airborne system from the

given informal requirement specifications, producing an FSM-like model as described

in Figure 1. We assume that a correct informal specification exists. Next, it proceeds to

refine and encode the obtained model using ISPL+ (an extended version of the input

language of the symbolic model checker MCMAS+ introduced in [9]) to verify agent-

based intelligent systems.

ISPL+

Informal Specification

Test cases

properties Model for TestingModel for Verification

General purpose model
FSM-like Model

Modeling

Test Cases
generation

Model Checking
MACMAS+

Refinement and Model
transformation

System Under Test
SUT

Witness
Simulation

Violation
Simulation

Test Results
Analysis

Design level
Verification

Implementation Level
Testing

Document
Activity
System

CTL

Manual extraction of properties
Legend

Validation of Properties via Testing

Fig 1. Overview of our Approach

Parallel with this step, our approach extracts and expresses the system requirements

in the form of temporal properties using Computation Tree Logic (CTL) [8]. MCMAS+

automatically checks whether the model satisfies the intended properties and graphically

produces witness-examples or counter-examples [12, 13]. The produced witness-

examples prove the satisfaction of properties while the produced counter-examples

guide designers to detect and repair design errors in the formal system model. In the

validation/implementation level, our approach automatically transforms the formal

models into a reduced Communicating Extended Finite State Machine (CEFSM) that

uses our developed algorithms and tools to automatically generate abstract test cases.

These algorithms and tools address the conformity of the implementation under test to

Low-Level Requirements (LLR), instead of to high-level requirements as in existing

automated test generation techniques; thereby allowing them to be more applicable and

efficient for the satisfaction of avionics standards. After assigning values to the required

data sets, the generated test cases are transformed into concrete ones with respect to the

274 Mounia Elqortobi et al.

expressed properties. The concrete test cases are then applied to the implementation

under test. The Modified Condition/Decision Coverage (MC/DC) criterion is integrated

into the test generation algorithm to satisfy the requirements of the DO-178C [1, 30,

31]. Finally, our approach analyzes the obtained test results and compares them with the

produced witness-examples to validate our properties via testing.

2.2. Case study: Landing Gear System

Our case study, a landing gear system for an aircraft, was proposed by Frédéric Boniol

and Virginie Wiels in [11] as a representative scenario for complex industrial needs.

The case study is very rich as it is not restricted to software and includes complex

system modeling. The landing system is responsible for maneuvering landing gears and

attached doors. It consists of three landing packages situated in the front, right, and left

part of the aircraft. Each landing package includes a door, a landing-gear and related

hydraulic cylinders. A door can be open or closed, while the gear can be retracted,

extended, or maneuvered. The landing system can be controlled by a software package

and can be in two modes: normal or emergency. In outgoing and retraction situations,

the normal mode is the default. The emergency mode is deployed to handle failure

situations. This work only considers the outgoing sequence and its normal and

emergency modes. The architecture of the system consists of three parts (see Figure 2):

1) a pilot part; 2) a mechanical part that incorporates the mechanical devices and three

landing packages; and 3) a digital part that includes the control unit software.

Regarding the pilot part, a pilot has a button switch at her/ his disposal with two
positions: UP or DOWN. When the button switch goes from UP to DOWN, the

outgoing sequence is initialized. The pilot has three lights in the cockpit that reflect the

current status of the gears and doors. These lights are as follows:

• One green light, indicates that “gears are locked down”;

• One orange light, indicates that “gears are maneuvering”; and

• One red light, indicates a “landing gear system failure”.

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 275

Fig 2. General Architecture of the Landing Gear System

Before initializing the outgoing sequence, all the landing gears are locked in their up

position and all the lights are off. In case of failure (i.e., the red light is on), the pilot

manually pulls the mechanical handle to deploy the emergency hydraulic system. The

expected consequence of this deployment is to lock the gears in the down location.

When all gears are successfully extended and all accompanying sensors are valid, the

green light must be lit. Regarding the mechanical part, the motion of landing gears and

doors is performed by a set of hydraulic cylinders such that the cylinder position

basically corresponds to the door or landing gear location. For example, when a door is

open, the corresponding cylinder is extended. The hydraulic power of these cylinders is

supplied by a set of electro-valves. The digital part is in charge of sending an electrical

order to activate each electro-valve. Notably, the three doors (and their gears) are

controlled in parallel by the same electro-valve. The digital part plays an intermediate

role between the pilot part and the mechanical part. Specifically, the software embedded

in the digital part is responsible for controlling the gears and doors, detecting anomalies,

and informing the pilot about the status of the system through a set of lights. It also

generates commands directed to the hydraulic system to open or close the doors and

extend or retract the gears with respect to the values of employed sensors and captures

the pilot orders.

3. Model-based Verification

3.1. Modeling the Landing Gear System

In this section, we show how our model M can formally model the landing gear system.

In our modeling, we specifically consider the normal and emergency modes of the

landing gear system without going into low-level details regarding the mechanical

devices of sensors and electro-valves. To achieve this aim, we introduce three agent

machine models: Mp for pilot, Mc for control unit, and Me for emergency. The pilot

276 Mounia Elqortobi et al.

agent machine model Mp models the behavior of the pilot part and the control unit agent

machine model Mc models the behavior of the digital part. The emergency agent

machine model Me models the behavior of the emergency system. Instead of adding

another agent machine to model the behavior of the hydraulic cylinders, we depend on

the status of doors and gears to directly represent the status of the employed cylinders.

This is because the description above states that the doors’ cylinders are extended when

the doors are open, and a similar relation holds between gears and their cylinders.

In the published case study paper, there are two types of requirements and the authors

classify them as strong and weak. The weak requirements that did not consider deadline

constraints/time constraints. Although we selected the weak requirements, the time

constraints are abstractly represented in our model where each transition takes one-time

unit as in all standard abstracted temporal models.

Figures 3, 4, and 5 show the EFSM models of the pilot, control unit, and emergency

agent machines, respectively. In each figure, we introduce the input and output of each

transition in a tabular form where the symbols “?” and “!” refer to the process of

receiving and sending an action. The output of a transition can be directly assigned by

the shared and unshared variables when there is no explicit output action. Given that, it

is easy to define the Boolean predicate of each transition using the conjunction operator

between its input and its output.

Label Input, output & predicate

Pt1 ? LandingSpecs(speed, distance)
! PressDownButton

Pt2 ? PressDownButtonAck
! wforOangeLight

Pt3 ? OrangeLightOn
! OrangeLightOnAck

Pt4 ? GreenLightOn
! GreenLightOnAck

Pt5 ? ConfirmGearDeployment
! DeploymentStatusSccess

Pt5 ? RedLightOn
! RedLightOnAck

Pt7 ? ConfirmGearDeploymentError
! InitializeEmergencySystem

Pt8 ? GreenLightOnMe

! GreenLightOnMeAck

Pt9 ? ConfirmGearDeploymentMe

! DeploymentStatusSuccess

Idle

wforOrange

OrangeLight

GreenLight redLight

cforDeployment wforGreenLight

GreenLight

cforDeployment

Down

Pt1

Pt4

Pt3

Pt2

Pt6

Pt7

Pt8

Pt
9

Pt5

Fig 3. Pilot Agent Machine model, Mp

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 277

Idle

Initialized

DoorOpening

DoorOpened

GearExtending

OrangeLight

DoorClosedError DoorClosed

RedLight

GearNotDeployed

GreenLight

GearDeployed

Ct2

Ct1

Ct3

Ct4

Ct5

Ct9 Ct6

Ct7Ct10

Ct8Ct11

Label Input, Output & Predicate

Ct1 ? PressDownButton
! PressDownButtonAck

Ct2 ? ProcessReceivedCommand
! OpenGearDoors

Ct3 ? OpenGearDoorsAck
! OutgoingGears

Ct4 ? OutgoingGearsAck
! OrangeLightOn

Ct5 ? OrangeLightOnAck
! CloseGearDoors

Ct6 ? CloseGearDoorsAck
! DoorsCloseSuccess

Ct7 ? GearsExtended
! GreenLightOn

Ct8 ? GreenLightOnAck
! ControlUnitDisconnected

Ct9 ? CloseGearDoorsError
! DoorsCloseError

Ct10 ? GearsNotExtended
! RedLightOn

Ct11 ? RedLightOnAck
! ControlUnitDisconnedted

Fig 4. Controller Agent Machine model, Mc

Label Input, Output & Predicate

Et1 ? InitializeEmergencySystem
! OpenGearDoors

Et2 ? OpenGearDoorsAck
! OutgoingGears

Et3 ? OutgoingGearsAck
! VerifyGearsPosition

Et4 ? VerifyGearsPositionAck
! LockDoorsMechanicaly

Et5 ? LockDoorsMecanicalyAck
! GreenLightOn

Et6 ? GreenLightOnAck
! GearStatusExtended

Idle

DoorOpened

Initialized

GearExtendingMechanicaly

GreenLight

DoorClosedMechanicaly

GearLockReleased

Et1

Et2

Et3

Et4

Et5

Et6

Fig 5. Emergency Agent Machine model, Me

3.2. Validating

To perform the verification, we introduce the MCMAS tool. This is a symbolic model

checker that extends MCMAS, a model checker for Multi-Agent Systems (MAS) that

uses Ordered Binary Decision Diagrams (OBDD) [12, 13]. MCMAS takes two inputs: a

model description for the system to be verified and a set of properties specified by

278 Mounia Elqortobi et al.

different logics such as CTL and CTLC [9, 10]. The inputs of MACMAS are formatted

by the ISPL language which is used to describe the communicating MAS to be checked

and encode the desired specifications. The ISPL+ is a dedicated programming language

for interpreted systems that formalize MASs (Fagin & Halpern, 1994). MCMAS+

automatically evaluates the truth value of the encoded specifications and produces

counterexamples that can be analyzed graphically for false specifications. MCMAS can

also provide witness executions for the satisfied specifications and graphical interactive

simulations. For clarity, we introduce the syntax of CTL that is given by the following

grammar rules:

 where:

1) (the set of atomic propositions) is an atomic proposition and is the

existential quantifier on paths.

2) , and are temporal operators standing for “next”, “globally”, and

“until”, respectively.

3) The Boolean operators and are defined and used in the usual way.

To validate our model M (a composition of Mp, Mc, and Me) we need to perform the

review and tracing activities. As a first validation activity, we must review the model

with the wide range of features implemented in the MCMAS+ graphical user interface

[10]. This graphical interface specifically highlights syntax errors, automatically

displays content, and assists and supports text marking and formatting. After fixing all

the highlighted errors, we have a clear and error-free encoding model. Tracing the

activity allows us to track the behavior of the encoded model. The MCMAS+ tool offers

an Explicit Interactive Mode. This tool starts with the initial state and offers all the

transitions available at this state and gives the possibility to choose the transitions. After

we select one of these transitions, the tool moves to the reachable state connected with

the initial state by this transition and then displays the available transitions at the new

state. This step allows us to evaluate whether the model is progressing as we intended. If

an error is detected, we return to our encoding and update it. This process continues

until we reach the end state. Then, we start again from the initial state and select another

transition. Our graphical interface supports a new feature, which displays the whole

model. By completing these two activities, we ensure that our encoding model exactly

captures the intended behavior of the landing gear system. In fact, these two activities

are key to ensuring that the model is correct; otherwise, errors in the design model could

jeopardize the entire activity of the design formal verification using a model checking

technique.

3.3. Model checking

According to the model checking technique, we must formally: 1) model the system

underlying the verification process; and 2) express the requirements. The correctness of

these requirements has been proven on the modeled system using MCMAS+. We have

just shown how we complete the first activity. For the second activity, we used the

Computation Tree Logic (CTL) [8] supported by the MCMAS+ model checker tool [12]

to express the following requirements:

https://www.sciencedirect.com/science/article/pii/S0957417416307138?via%3Dihub#bib0025

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 279

In [11], a set of requirements is presented with respect to the normal mode. The

requirement called R11bis states that “when the command line is working (normal

mode), if the landing gear command handle has been pushed DOWN and stays DOWN,

then eventually the gears will be locked down and the doors will be seen closed”. We

expressed this requirement in the three different CTL formulae , and .

The first formula () can be read as follows: along all computation paths through

all states, when the button is pressed down, then along all computation paths in the

future the gears will be extended and the doors will be closed. The second formula ()

can be read as follows: there exists a computation path such that in all its states the gears

will be not extended, and the doors will be not closed until the button is pressed down.

The third formula () can be read as follows: along all computation paths in the

future, the gears will be not extended, and the doors will be not closed if the button has

never been pressed down before. The CTL formula expresses the safety

requirement, which plays an important role in avoiding a bad situation. This bad

situation in the fourth formula can be read as follows: the button has been pressed down

and along all paths; the green light is never lit. The last CTL formula expresses the

liveness requirement and can be read as follows: along all computation paths, the green

light can be eventually lit. The quantifier ranging over all computation paths (“A”)

enables us to check the status of both normal and emergency modes. For example, the

liveness formula allows us to check the status of the good thing (‘green light’) that will

happen eventually in each mode. All these formulas are evaluated to true on the model

M using MCMAS+. Therefore, our design model is error-free and it is strong, as it

achieves the safety and liveness requirements required in both modes. We can also

report some statistical results, such as that the execution time of verifying these

formulas is 0.298 seconds and the memory consumed is 6 Megabytes.

4. Model-based Test Generation Approach

The goal is to generate, starting from the verification model, a set of test cases for the

verified properties, apply them to the implementation under test and to then analyze the

test results. The main idea is to demonstrate that the verified properties are properly

propagated from the design level to the implementation level, and that they hold true

within the Implementation Under Test (IUT). This demonstration requires model

transformation, local and global test sequence generation, testing and test results’

analysis. The approach both verifies the properties at the design level and demonstrates

280 Mounia Elqortobi et al.

their validity at the implementation level using global test sequences, allowing the

satisfaction of DO 178C by generating local test sequences with the required coverage

criteria. In addition, we extend the set of paths to include additional paths to satisfy

MC/DC.

4.1. Model Transformation

In model checking, a simple FSM is often used. Testing can use richer modeling

techniques such as Extended Finite State Machines (EFSM). To use our test case

generation techniques and tools with well-defined coverage criterion such as MC/DC

[30, 31], we transform the verification model into a testing model. The notion of shared

variables used in our verification model can be transformed into input parameters in the

EFSM model. The interaction mode considered here is message passing. The discussion

to use one model or two can take place. The solution for avoiding the use of a single

model is to manually extract one model for verification and one model for testing. In

this case, two different quality assurance groups should be involved, and the two models

should cover the same set of requirements to satisfy the need for independency between

verification and testing activities. The model transformation can show the equivalence

between two models in this case.

4.2. Global Test Sequence Generation

Several approaches to generate global test sequences are based on or are otherwise

similar to the work of Bourhfir and Cavalli [18, 19, 20, 23, 32, and 33]. We propose a

test generation technique for parallel communicating agents. The generation of test

sequences starts with the verification model. We first model each agent in its context

and then create a list of transitions for the communication between a pair of agents. We

use a transition-marking algorithm that marks every transition involved in the

communication as an EFSM, along with its context. This technique generates local test

sequences for each agent. Next, we compose the obtained EFSMs to build a global

system M that is in fact a Communicating Extended Finite State Machines (CEFSMs)

(see Figure 8).

4.3. Test Generation Process for the Case Study

In this case study and for the sake of readability, the EFSMs are only a partial

representation of a landing gear system.

Following the DO-178C standards, the satisfaction of the MC/DC criterion is

mandatory, and it is used as a criterion in this paper for test sequence generation. The

MC/DC is a widely used and known coverage criterion in software avionics [30, 31].

The figure 6 describes the test generation process. To generate global test sequences,

we first derive the local test sequences for each EFSM. Second, we obtain the

communication graph from all EFSMs (see figure 7). Third, guided by the

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 281

communication graph, we obtain the global system, or the CEFSM. Finally, from the

local test sequences and the CEFSM, we generate the global test sequences. The

following sections will detail the different steps of the test generation for the case study.

 Fig 6. Test Generation Process

Communication Graph. To generate global test sequences for a global system

composed of several agents, we need to abstract an EFSM agent into an abstract state

and identify the communication transitions and their parameters that are used for

communication. The communication graph represents the interaction between the

different EFSMs (see Figure 7). For our case study, it is assumed that the

communication between the machines Mp, Mc and Me is two-way. Figure 7 visualizes

the communication graph with the representation of each machine by an abstract state.

Mp

Me Mc

Mp.P8(Me.GreenLight)
Mp.P3(Mc.OrangeLight);
Mp.P4(Mc.GreenLight);
Mp.P6(Mc.RedLight)

 Fig 7. Communication graph representation

Global Model with Communication Points. Using the EFSMs (Figures 3, 4, and 5)

and guided by the communication graph (Figure 7), we obtain (by composition) the

global system model with its communication points (Figure 8). Figure 8 represents the

composite system model M with its communication points, labels and transitions, and

the input and output lists. We can see that the Mc and Mp agents start at the same time. It

is in fact a parallel communicating system. The transitions representing the

communication among agents are shown in orange, green, and red to represent the

landing gear system lights of the same color. Similarly, a computation graph is also a

composition of its constituents.

282 Mounia Elqortobi et al.

start

C0
E0

E1

E2

E3

E4

E5

E6

P0

P1

P2

P3

P4

P5

C1

C2

C3

C4

C5 C7C6

C9

C11

C8

C10

P6

P7

P8

P9

activateEmergencySystem

RedLight

GreenLight

OrangeLight

GreenLight

Ct1

Ct2

Ct3

Ct4

Ct5
Ct6

Ct7

C
t
8

Ct10Ct9

Ct11

Pt1

Pt2

Pt3

Pt5

Pt4 Pt6

Pt7

Pt8

Pt9

Et1

Et2

Et3

Et4

Et5

Et6

Fig 6. System model M: Composed of Mp, Mc, and Me with communication points

Algorithm. In this section, we briefly describe the test generation algorithm and its

application to the case study. More specifically, we extend our algorithm to generate the

test sequences that satisfy the MC/DC criterion. To generate executable test sequences,

we need the final model with all the aforementioned information, the local test

sequences, as well as the communication graph. The algorithm given in [18 and 31],

called the generation of def-use executables, defines four different variable usages:

assignment-use (A-usage), input-use (I-usage), computational-use (C-usage), and

predicate-use (P-usage). These variable usages enable the links between the test

sequences of each machine and help check the test sequences’ executability. The

algorithm provides a full set of executable and non-executable test sequences that will

go through all the possible transitions existing in the system under test. We generate the

paths linking two states from different machines by marking them as communication or

synchronization points.

The Generated Test Sequences. To generate the test sequences, we first need to

identify the communication variables. In the case of landing gear system, the variables

are:

{Start, activateEmergencySystem, OrangeLight(on,off), GreenLight(on,off),

RedLight(on,off) }

These variables indicate the possible communication between the agents. For example,

if activeEmergencySystem is on, it means that the RedLight variable is also on. This is

the only time the emergency system will be called upon. To identify the communication

points, the input and output list for each transition is defined. The related input and

output lists, as well as the predicates, are described in Figures 3, 4, and 5. They are used

as inputs for the algorithm to generate the global test sequence. In general, a test case is

composed of the following elements: <preamble, target, postamble>. Preamble and

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 283

Postamble might be empty. The preamble is the sequence of transitions used to reach

the target transition for testing as given in Table 1.

Table 1 shows examples of the application of the algorithm using the landing gear

case study. It identifies the different usage lists enabling the identification of executable

test sequences. Table 2 shows an example of executable test sequences to reach specific

transitions in the system model. The chosen transitions represent a case of parallelism.

Table 1. Example of usage lists and preamble for specific transitions of the landing gear system

Trans. A-usage I-usage P-usage

Pt2 OrangeLight - -

Pt4 - GreenLight Ct11 OreenLight on

Ct11 - GreenLight on ; OrangeLight off GreenLight on

Trans Preamble

Pt2 Pt1

Pt4 Pt1, Pt2, Pt3, [Ct11]

Ct11 Ct1, Ct2, Ct3, Ct4, Ct5, Ct9, Ct10

Table 2. Executable test sequences of the landing gear system

Transition Executable test sequence

Pt5 Pt1, Pt2, Pt3, Ct1, Ct2, Ct3, Ct4, Ct5, Ct9, Ct10, Pt4, Pt5

Table 3 presents an example of non-executable test sequences. These are non-

executable because they need a preamble execution from another agent to reach the

desired transition and render the sequence executable. Table 4 shows the parallelism in

the executable test sequences required to make the transitions shown in Table 3

executable.

Table 3. Non-executable test sequence of the landing gear system

Transition Non-executable test sequences

Pt5 Pt1, Pt2, Pt3, Pt4, Pt5

Table 4. Parallelism shown for executable test sequences Pt5 of the landing gear system

 Executable test sequences – Pt5

Mp Pt1, Pt2, Pt3 P4, Pt5

Mc Ct1, Ct2, Ct3, Ct4, Ct5 Ct9, Ct10

In the following sections, we will verify the different properties obtained from the

validation phase.

284 Mounia Elqortobi et al.

4.4. Witness Properties’ Verification

Table 5 shows specific executable test sequences for a selection of witness properties

for liveness. Due to a limitation in all model checker tools in terms of generating

witness-examples and counter-examples that include the universal operator “A”, we

used other formulas that achieve the same requirement and allow MCMAS+ to generate

witness-examples.

The executable test sequences are given by the input and output information, as well

as by the transitions for which that input and output information proved the witness-

example to be true.

The executable test sequences represent the transition in which the witness-example

holds. Hence, these are all the possible transitions forming a path needed to render a test

sequence executable, up to the mentioned transition. For example, EF GreenLight holds

true when a sequence executes up to transition Pt5 (refer to Table 4 for the complete

executable test sequence).

Table 5. Executable test sequences for witness-examples for liveness properties

Witness-example for liveness

properties

 Executable test sequences

EF GreenLight Sequences leading to transitions:

Mp: Pt4 – Pt5 – Pt8;

Mc: Ct10 – Ct11

Me: Et5 – Et6

EF (RedLight && EF GreenLight) Sequences leading to transitions:

Mp: Pt8 – Pt9;

Mc: none;

Me: Et5 – Et6

EF (PressedDown && EF

GreenLight)

Sequences leading to transitions:

Mp: Pt4 – Pt5 – Pt8 – Pt9

Mc: Ct10 – Ct11;

Me: Et5 – Et6

4.5. Properties’ Verification

Several properties are defined in Table 6 to verify whether the used algorithm validates

the properties. The two executable test sequences shown in Table 2 were analyzed with

regards to those properties. Both executable test sequences for transitions Pt5 and Pt9

verify all the properties identified so far. Table 6 confirms that all the global test

sequences generated render the defined properties true.

According the algorithm used in [18], none of the executable test sequences validate

the given properties. However, those that represent the full paths in the global system do

validate them, being the paths generated for transitions Pt5 and Pt9. This implies that

through that algorithm, only a set of test sequences can validate the different properties,

and not necessarily all of them.

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 285

Table 6. LGS properties validated with the executable test sequences

CTL Status

 True

True

 True

 True

 True

5. MC/DC

In order to comply with the avionics standard DO-178C, the proposed test generation

algorithm needs to satisfy the modified condition/decision coverage (MC/DC) criterion.

This will ensure that all possible conditions are tested. Therefore, we use a graph

expansion mechanism to handle this type of coverage.

5.1. Handling MC/DC criterion

MC/DC is applied using binary values, and every condition will have a value of true or

false. It is probable that some MC/DC test cases are not feasible within the system [31].

This means that some test cases’ execution will fail.

The following requirements should be satisfied in MC/DC-based testing. For all

decisions, at least once: 1) all possible outcomes are covered; 2) all possible outcomes

for all conditions are covered; and 3) all conditions impacting the decision’s outcomes

are covered [30, 31].

In other words, all the outcomes of every decision, as well as the conditions within

those decisions, should be executed at least once. By doing so, all paths regarding

possible values taken by the system under test will be executed. For example, in the

global system, a single decision must be made at P3 to move further to P4 or P6 as

follows:

If (OrangeLight is on and GreenLight is off and RedLight is off)

 Return light status (RedLight or GreenLight on) from the controller;

EndIf;

To satisfy the MC/DC criterion, we need to visualize a path as binary decisions and

conditions. The algorithm will analyze a path with all possible conditions as binary as

follows:

Decision → go to controller

 Conditions

→ if (OrangeLight is on/off)

→ if (GreenLight is on/off)

→ if (RedLight is on/off)

286 Mounia Elqortobi et al.

Another representation would be that the executable paths consist of all green

transitions, and the non-executable ones are all red. The additional non-executable paths

that will ultimately generate errors are partially red. For example, a path consisting of

the values orange on / green off / red off will be part of a feasible path. However, going

to the next state is impossible if within a path the values are orange on/green off/red on.

Those additional paths exist to satisfy the MC/DC criterion. The objective is to render

all the paths by considering the binary possibilities for each condition found in a

decision, based on whether the orange light is on or off. However, the two other lights

should be taken into consideration for conformity.

There are three conditions to consider within this decision: whether the OrangeLight

is on, the GreenLight is off, and the RedLight is off. This translates to the following

possibilities shown in Table 7, in which true and false are on and off, respectively:

Table 7. Possible binary values and possible outputs

OrangeLight GreenLight RedLight Output

True False False Go to controller

False True False Error

False False True Error

True True False Error

True False True Error

False True True Error

True True True Error

False False False Idle

There is a value in executing test sequences from MC/DC criterion that result in an

error, as it ensures that a test sequence will fail. As such, we also cover the possible of

faulty signals being sent to the pilot, the controller, and the emergency agent. The errors

are the result of a status or a state that is not naturally feasible by the system. To

generate test sequences for MC/DC criterion [30, 31], we need to identify a way to

consider the binary sequence and condense it into one single segment. This will enable

the generation of MC/DC test sequences using model-checking. For example, we could

add information in the input and output values for transition Pt3 by adding the different

possibilities covered through MC/DC criterion and use that information to generate the

required test sequences.

5.2. Test Generation Algorithm Satisfying MC/DC Criterion

The proposed test generation algorithm generates feasible test sequences. To satisfy the

MC/DC criterion, the test generation algorithm must be modified and all of the decision

branches need to be tested. For each binary decision, two paths will be generated for

each simple condition involved in that decision. To integrate this coverage criterion, we

need to pin-point in the algorithm the parts necessary to identify all DU-paths. For each

element in the preamble list, we add a binary set of possibilities to satisfy the MC/DC

criterion. This binary set will represent the possibilities for each information influencing

a decision [30, 31].

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 287

There are several ways to approach this issue, for example: 1) create a standalone

procedure executed at the end, that will have access to all the paths created initially, and

generate additional ones to satisfy MC/DC criterion; 2) integrate MC/DC coverage

while the paths are being generated to cover all feasible and non-executable paths

related to a decision; or 3) analyze the non-executable paths and choose the ones

satisfying the MC/DC criterion, using a hybrid approach based on approach number 2.

The third approach is the one we selected. The algorithm that generates local test

sequences is sketched as follows:

(1) Transform the EFSM to data flow graph G using graph rewriting.

(2) Expand the graph by an expansion mechanism; use state decomposition

and graph splitting to handle MC/DC coverage criterion

(3) Select input values for each input parameter that can affect the control flow.

(4) Generate executable DU-paths according to data flow graph G and remove

redundant paths. Append the state identification sequence and post amble

(return to the initial state) to each DU-path to form a complete test path.

(5) Check test path executability; if non-executable, use cycle analysis to make it

executable, discard if non-executable. This is done during the generation of

a path.

(6) Verify if there are uncovered transitions, add test paths to cover them.

Handling MC/DC criterion in the Extended FSM Test Generation algorithm is

explained in the following five steps.

Step 1: Define a second variable of binary values called vMCDC. This variable will

take the values that will conform to the coverage’s criterion. This variable will be used

solely for MC/DC criterion satisfaction for test case generation.

Step 2: In the test generation algorithm, add all possible values for the identified

input parameters that satisfy the MC/DC criterion and that are not already covered by

the algorithm in its original state. Next, call a procedure that will analyze the discarded

paths to ensure that they would not be involved in any MC/DC. Step (4) is used to

analyze non-executable paths.

Algorithm EFTG (Extended FSM Test Generation)
(1) Read an EFSM specification;

(2) Generate the dataflow graph G from the EFSM specification;

(3) Choose a value for each input parameter influencing the control flow,

augment the scope to consider the possible values for MC/DC;

(4) If the path is still non-executable, conduct the Analyze-discarded-path(P)

procedure.

Step 3: Create procedure Analyze-discarded-path(P). This procedure will use the

binary variable vMCDC and evaluate the information of path P to determine if it should

be removed or not.
Analyze-discarded-path(P)
(1) Define binary values table with accepted values for green-orange-red

states;

(2) For each variable, in every transition in the discarded path, compare the

values with the binary table for green-orange-red-gear;

(3) If the values conform to the table, discard the non-executable path;

288 Mounia Elqortobi et al.

(4) If they do not conform, add this path to the MC/DC list of conformances

(use the same logic for executable paths and flag them for MC/DC

satisfiability).

Step 4: In the procedure executable-DU-path-generation, we add another loop to take

into consideration vMCDC to identify the paths between transitions.

Procedure Executable-DU-Path-Generation (flowgraph G)
(1) Take in the MC/DC variables from the vMCDC variables;

(2) Generate all possible paths (call to Find-All-Paths (T,U, vMCDC)

for each variable that has an A-use in T, and each transition U that has a P-

use or a C-use.

Step 5: we replace the procedure handle-executability in order to not discard non-

executable paths and call it procedure handle-executability-MCDC. If a path is non

executable, it will not be removed. This is rather complicated as the algorithm is sound

in making sure that all non-executable paths are confirmed twice as non-executable, and

are then discarded. Another possibility is to add a condition that allows us to identify

from which variable a path has been defined. If it was from a vMCDC variable, then we

will not remove the non-executable path. Satisfying MC/DC criterion will result in

adding several non-executable paths. This step is needed to ensure that erroneous paths

are handled correctly, which will control both the satisfaction of the properties and the

alternatives triggered by glitches or possible malfunctions.

6. Discussion and conclusion

Business case studies play a fundamental role in the progress and development of

formal methods and help prospective users and designers demonstrate the application of

different formal methods to model, verify, and test concrete, complex systems. In

addition, they help to compare different formal techniques in terms of performance and

ease of use. Relevant proposals have been put forward to model and formally analyze

the landing gear system, a complex real-life case study published in [11]. Specifically,

these proposals have suggested:

• Formal modeling methods including the Event-B methods [34, 35, 36, 37, 42],

abstract state machines (ASM) [38, 43], and the Fiacre formal language [39, 40];

• Verification techniques including a proof theory [34, 35, 37, 43] and model

checking [35, 39, 41, 40, 43]; and

• A test case generation technique [41], a run-time monitoring approach [40, 41], and

a simulation technique [44].

These proposals provide only a partial solution with a unique objective, either

modeling, verification, or testing. Moreover, these proposals do not consider all the

industrial requirements of the case study. For example, a formal verification using

model checking is used mainly to verify properties at the design level; the verified

properties may not be propagated to the implementation stage. Therefore, testing of

these properties is still needed. Although model-based testing and verification activities,

as shown in DO-178C and DO-333, are natural approaches to the certification of

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 289

avionics software, combining formal verification and testing in a single framework is

still in its infancy and needs further investigation.

The proposed methodology and its application show that the integration of software

quality assurance activities is needed to achieve software certification in the airborne

industry. There are more challenges to overcome to be able to automate all the activities

of the methodology. The avionics software has several types of inputs such as data from

various actuators, and high volume of outputs. Both data input selection and trace

analysis constitute real challenges and need more research and innovation to address

them properly. Some hybrid modeling of the diversity of data input is needed. The

oracle problem needs more data mining and intelligence for analyzing and for

correlating outputs and searches in artifacts, such as requirement specifications, logs and

test architectures. More efficient algorithms will also advance work in this field.

Acknowledgement. We would like to thank the reviewers and Dr. M. El Menshawy for their

useful comments. This work was funded in part by NSERC/CRD CMC CS Canada and Project

CRIAQ AVIO 604, CRDPJ 463076-14.

References

[1] http://www.rtca.org. RTCA/DO-178C (2011) "Software Considerations in Airborne
Systems and Equipment Certification", December 13, DO-332 Object-Oriented
Technology and Related Techniques Supplement to DO-178C and DO-278A, DO-
331 Model-Based Development and Verification Supplement to DO-178C and DO-
278A, DO-333 Formal Methods Supplement to DO-178C and DO-278A

[2] Zoughbi, G., Briand, L., Labiche, Y.: Modeling safety and airworthiness (RTCA
DO-178B) information: conceptual model and UML profile, Journal of Software &
Systems Modeling, Volume 10, Issue 3, pp. 337-367, 2011

[3] Moy, M., Ledinot, E., Delseny, H., Wiels, V., Monate, B.: Testing or Formal
Verification: DO-178C Alternatives and Industrial Experience, Journal of IEEE
Software, Volume 30, Issue 3, pp. 50-57, 2013

[4] John Rushby, “New Challenges in Certification for Aircraft Software”, Proceedings
of the 9th ACM International Conference on Embedded Software, pp. 211-218,
2011, www.csl.sri.com/users/rushby/papers/emsoft11.pdf

[5] Peleska, J., Siegel, M.: Test Automation of Safety-Critical Reactive Systems. South
African Computer Jounal 19, pp. 53-77. (1997):

[6] Jan Peleska (2013): Industrial-Strength Model-Based Testing - State of the Art and
Current Challenges. MBT 2013: 3-28

[7] Gotzhein, R., Khendek, F.: Compositional Testing of Communication Systems.
LNCS 3964, pp. 227 – 244 (2006) Gotzhein, R., Khendek, F.: Compositional
Testing of Communication Systems. LNCS 3964, pp. 227 – 244 (2006)

[8] Clarke, E., Grumberg, O., Peled, D.: Model Checking. The MIT Press,
Massachusetts (1999)

[9] El-Kholy, W., Bentahar, J., El-Menshawy, M., Qu, H., Dssouli, R.: Conditional
commitments: Reasoning and model checking. ACM Trans. on Soft. Eng. and
Metho. 24(2), 9:1–9:49 (2014)

[10] El-Kholy, W., El-Menshawy, M., Bentahar, J., Qu, H., Dssouli, R.: Formal
specification and automatic verification of conditional commitments. IEEE
Intelligent Systems 30(2), 36–44 (2015)

[11] Boniol, F., Wiels, V.: The landing gear system case study. In: Boniol, F., Virginie
Wiels, Ameur, Y.A., Schewe, K.D. (eds.) Proceeding of 4th International
Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z.

http://www.rtca.org/

290 Mounia Elqortobi et al.

Communications in Computer and Information Science, vol. 433, pp. 1–18.
Springer (2014)

[12] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the
verification of multiagent systems. CAV. LNCS, vol. 5643, pp. 682–688. Springer
(2009)

[13] Lomuscio, A., Qu, H., Raimondi, F.: MCMAS: A model checker for the
verification of multiagent systems. J. International Journal on Software Tools for
Technology Transfer, 2017, Vol.19, N°1

[14] Berrada, I., Castanet R., Felix P.: Testing Communicating Systems: a Model, a
Methodology, and a Tool. LNCS 3502, pp. 111–128 (2005)

[15] Kalaji, A.S., Hierons, R.M., and Swift, S.: Generating feasible transition paths for
testing from an extended finite state machine(EFSM), International Conference on
Software Testing Verification and Validation, ICST, pp.230–239, 2009.

[16] Clarke, E., Wing, J.: Formal Methods: State of the Art and Future Directions. ACM
Computing Surveys, Vol. 28, No. 4 (1996)

[17] Fraser, G., Wotawa, F., Ammann, P.: Testing with model checkers: a survey.
Softw. Test., Verif. Reliab. 19(3): 215-261 (2009)

[18] Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: A test case generation
approach for conformance testing of SDL systems. Computer Communications,
vol.24, no.3-4, pp.319–333, 2001

[19] Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: Automatic executable test case
generation for extended finite state machine protocols. IWTCS (1997)

[20] Bourhfir, C., Aboulhamid, E., Dssouli, R., Rico, N.: A guided incremental test case
generation procedure for conformance testing for CEFSM specified protocols.
IWTCS (1998)

[21] Aichernig B. K., Delgado, C. D.: From Faults Via Test Purposes to Test Cases: On
the Fault-Based Testing of Concurrent Systems. LNCS 3922, pp. 324–338 (2006)

[22] Paul, E. Black.: Modeling and Marshaling: Making Tests From Model Checker
Counterexamples. In Proc. of the 19th Digital Avionics Systems Conference, pages
1.B.3–1–1.B.3–6 vol.1, 2000.

[23] Yin, X., Jiangyuan, Y., Wang, Z., Shi, X., Wu, J.: Modeling and Testing of
Network Protocols with Parallel State Machines, IEICE Transactions on
Information and Systems E98. D(12) :2091-2104, 2015

[24] Utting, M., Pretschner, A., Legeard, B.: A taxonomy on model-based testing.
University of Waikato, Hamilton, New Zealand (2006)

[25] Bochman, G. V., Khendek, F.: Test Selection Based on Finite State Models. IEEE
Transactions on Software Engineering (1991)

[26] Clarke, E., Veith, H.: Counterexamples revisited: Principles, algorithms,
applications. In Verification: Theory and Practice, volume 2772 of Lecture Notes in
Computer Science, pages 208–224, 2004.

[27] Clarke, E., Grumberg, O., McMillan, K. L., Zhao, X.: Efficient generation of
counterexamples and witnesses in symbolic model checking. In Proceedings of the
32st Conference on Design Automation (DAC), pages 427–432. ACM Press, 1995

[28] Jéron, T., Morel, M.: Test generation derived from model-checking. In CAV ’99:
Proceedings of the 11th International Conference on Computer Aided Verification,
pages 108–121, London, UK, 1999. Springer-Verlag. ISBN 3-540-66202-2

[29] Fraser, G., Wotawa, F., Ammann, P.: Issues in using model checkers for test case
generation. Journal of Systems and Software 82(9): 1403-1418 (2009)

[30] Ackermann, C.: MC/DC in a nutshell, Fraunhofer CESE, Maryland USA, 2006

[31] Prestschner, A.: Compositional generation of MC/DC integration test suites,
Elsevier Science B.V, 2003

[32] Jiangyuan, Y., Wang, Z., Yin, X., Shi, X., Wu, J.: Reachability Graph Based
Hierarchical Test Generation for Network Protocols Modeled as Parallel Finite
State Machines. 2013 22nd International Conference on Computer Communication
and Networks (ICCCN), 1-9 (2013)

https://www.researchgate.net/journal/0916-8532_IEICE_Transactions_on_Information_and_Systems
https://www.researchgate.net/journal/0916-8532_IEICE_Transactions_on_Information_and_Systems

Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems 291

[33] Besse, C., Cavalli, A., Kim, M., Zadi, F. : Automated generation of interoperability
tests. Testing of Communicating Systems XIV, 169-184, 2002

[34] Su, W., Abrial, J-R. Aircraft landing gear system: Approaches with Event-B to the
modeling of an industrial system. In Boniol, F., Virginie Wiels, Ameur, Y.A.,
Schewe, K.D. editors, ABZ: The Landing Gear Case Study, volume 433, pages 19–
35, 2014.

[35] Hansen, D., Ladenberger, L., Wiegard, H., Bendisposto, J. and Michael Leuschel.
Validation of the ABZ landing gear system using ProB. In Boniol, F., Virginie
Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case Study,
volume 433, pages 66–79, 2014.

[36] Mammar, A., Laleau, R.: Modeling a landing gear system in Event-B. In Boniol, F.,
Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case
Study, volume 433, pages 80–94, 2014.

[37] Méry M., Kumar Singh, N.: Modeling an aircraft landing system in Event-B. In
Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing
Gear Case Study, volume 433, pages 154–159, 2014.

[38] Kossak, F., Landing gear system: An ASM-based solution for the ABZ case study.
In Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The
Landing Gear Case Study, volume 433, pages 142–147, 2014.

[39] Dhaussy, Ph., Teodorov C.: Context-aware verification of a landing gear system. In
Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors, ABZ: The Landing
Gear Case Study, volume 433, pages 52–65, 2014.

[40] Berthomieu, B., Dal Zilio, S., Fronc, L.: Model-checking real-time properties of an
aircraft landing gear system using Fiacre. In Boniol, F., Virginie Wiels, Ameur,
Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case Study, volume 433,
pages 110–125, 2014.

[41] Arcaini, P., Gargantini, A., Riccobene, E.: Offline model-based testing and runtime
monitoring of the sensor voting module. In Boniol, F., Virginie Wiels, Ameur,
Y.A., Schewe, K.D., editors, ABZ: The Landing Gear Case Study, volume 433,
pages 95–109, 2014.

[42] Banach, R.: The landing gear case study in hybrid Event-B. In Frédéric Boniol,
Virginie Wiels, Yamine Ait Ameur, and Klaus-Dieter Schewe, editors, ABZ: The
Landing Gear Case Study, volume 433, pages 126–141, 2014.

[43] Arcaini, P., Gargantini, A., Riccobene, E.: Modeling and analyzing using ASMs:
The landing gear system case study. In Boniol, F., Virginie Wiels, Ameur, Y.A.,
Schewe, K.D., editors, ABZ: The Landing Gear Case Study, volume 433, pages
36–51, 2014.

[44] Savicks, V., Butler, B., Colley, J.: Co-simulation environment for Rodin: Landing
gear case study. In Boniol, F., Virginie Wiels, Ameur, Y.A., Schewe, K.D., editors,
ABZ: The Landing Gear Case Study, volume 433, pages 148–153, 2014.

Mounia Elqortobi is a Ph.D. degree student in Information Systems Engineering,

Concordia University. She received her M. Eng. in QSE and bachelor’s degree in CSE

from Concordia University (2015, 2010).

Warda EI-Kholy received her PhD degree in Information Systems Engineering from

Concordia University, she is a lecturer in Menofia University, Egypt.

Amine Rahj is a master’s degree student in Quality Systems Engineering, Concordia

University. He received his bachelor’s degree (2015) from INPT, Morocco.

292 Mounia Elqortobi et al.

Jamal Bentahar is a Full Professor with Concordia Institute for Information Systems

Engineering, Concordia University, Canada. His research interests include services

computing, applied game theory, computational logics, model checking, multiagent

systems, and software engineering.

Rachida Dssouli is Full professor and founding Director of Concordia Institute for

Information Systems Engineering (CIISE), Concordia University. Her research area is

in Testing and Verification.

Received: April 30, 2019; Accepted: September 17, 2019

