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Abstract. In this paper, we address the issues of safety-critical software 

verification and testing that are key requirements for achieving DO-178C and DO-

331 regulatory compliance for airborne systems. Formal verification and testing 

are considered two different activities within airborne standards and they belong 

to two different levels in the avionics software development cycle. The objective 

is to integrate model-based verification and model-based testing within a single 

framework and to capture the benefits of their cross-fertilization. This is achieved 

by proposing a new methodology for the verification and testing of parallel 

communicating agents based on formal models. In this work, properties are 

extracted from requirements and formally verified at the design level, while the 

verified properties are propagated to the implementation level and checked via 

testing. The contributions of this paper are a methodology that integrates 

verification and testing, formal verification of some safety critical software 

properties, and a testing method for Modified Condition/Decision Coverage 

(MC/DC). The results of formal verification and testing can be used as evidence 

for avionics software certification. 
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1. Introduction 

Developing safety-critical software requires rigorous processes. To prevent catastrophic 

events, the avionics industry has introduced a rigorous certification process, described in 

the RTCA [1, 2] standard. The DO-178C standard [1] includes a supplement on formal 

methods called DO-333. In the DO-333 standard, a formal method is defined as “a 

formal model combined with a formal analysis”. The DO-178C and its supplement have 

been successfully applied into the production of software systems at Dassault-Aviation 

and Airbus [3].  The motivation of this work is to increase software dependability by 

integrating formal verification techniques with testing and to capture the benefits of 
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their cross-fertilization. In addition, formal verification and test results can be used as 

evidence for certification. Although model-based testing [5, 6] and verification activities 

[3, 4, 5] are natural approaches to the certification of avionics software, the integrated 

model-based engineering approach is not yet well studied in the literature, and several 

challenges still need to be addressed [4, 7, 12, 14].  

We propose a model-driven approach that encompasses two main levels: 

verification/design and validation/implementation. As shown in figure 1, in the first 

level, we adopt model checking, a formal and fully automatic technique for model-

based verification. It is a natural choice for a rigorous verification of avionics systems 

against desirable properties, including safety and liveness. In the second level, we 

transform the finite state machine (FSM) verification model [9, 10, 11] into an Extended 

Finite State Machine (EFSM) testing model that is an FSM-like model extended with 

variables [16]. We generate both local test cases for each EFSM component modeled as 

agent in its context of communication, and global test cases for a Communicating 

EFSM (CEFSM) model. The CEFSM is a composition of EFSMs. The test generation 

method satisfies the Modified Condition/Decision Coverage (MC/DC) criterion, all 

Definition-Use (DU)-paths, and ensure that the verified properties hold in the 

implementation. The selection of coverage criteria is based on the satisfaction of DO 

178C for MC/DC and on the use of middle ground structural coverage for all DU-paths. 

Using a better structural coverage criterion, such as all-paths, is often impractical. 

Model–based verification and model-based testing are still very active research 

domains [5, 6, 14, 16, 23, 24, 25]. They are considered as two distinct research areas 

and supported by different research communities. EFSM-based testing and 

Communicating EFSM have been extensively studied [18, 19, 20, 21, 23, 25]. A more 

recent research area is test generation based on model checking, with several 

publications [17, 22, 26, 27, 28, 29] discussing that topic. The principle is basically to 

generate counterexamples or witness traces that can be used to derive test cases. The 

major problems in all the published work are related to performance, the notion of test 

coverage or test efficiency, non-determinism, and the abstraction level of test cases, 

derived from counterexamples and witness traces, that need more refinement to be 

accurate and be utilized to test implementations [17, 29]. To the authors’ best 

knowledge, there is no work on the methodologies that link testing and verification in 

the same framework. 

The rest of the paper is organized as follows. In Section 2, we present an overview of 

the proposed approach and our case study about a landing gear system [11]. This is 

followed by a summary of our model-based verification system, formal modeling of our 

case study, and our experimental results verifying the correctness of the modeled 

landing gear system against desirable properties including safety and liveness in Section 

3. We then present our model-based testing and show how to automatically generate test 

cases in Section 4. In Section 5, we cover the details of MC/DC criterion and how to 

integrate non executable paths. We offer our discussion, conclusions, and identify future 

work in Section 6.  
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2. The Proposed Methodology and Case Study 

2.1. The Proposed Methodology 

We introduce the proposed verification and testing framework in this sub-section. The 

methodology begins with formally modeling the safety-critical airborne system from the 

given informal requirement specifications, producing an FSM-like model as described 

in Figure 1. We assume that a correct informal specification exists. Next, it proceeds to 

refine and encode the obtained model using ISPL+ (an extended version of the input 

language of the symbolic model checker MCMAS+ introduced in [9]) to verify agent-

based intelligent systems.  

ISPL+

Informal Specification

Test cases

properties Model for TestingModel for Verification

General purpose model
FSM-like Model

Modeling

Test Cases
generation

Model Checking 
MACMAS+

Refinement and Model 
transformation

System Under Test
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Simulation

Violation 
Simulation

Test Results 
Analysis

Design level
Verification

Implementation Level
Testing 

Document
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CTL

Manual extraction of properties
Legend

Validation of Properties via Testing

 

Fig 1. Overview of our Approach 

Parallel with this step, our approach extracts and expresses the system requirements 

in the form of temporal properties using Computation Tree Logic (CTL) [8]. MCMAS+ 

automatically checks whether the model satisfies the intended properties and graphically 

produces witness-examples or counter-examples [12, 13]. The produced witness-

examples prove the satisfaction of properties while the produced counter-examples 

guide designers to detect and repair design errors in the formal system model. In the 

validation/implementation level, our approach automatically transforms the formal 

models into a reduced Communicating Extended Finite State Machine (CEFSM) that 

uses our developed algorithms and tools to automatically generate abstract test cases. 

These algorithms and tools address the conformity of the implementation under test to 

Low-Level Requirements (LLR), instead of to high-level requirements as in existing 

automated test generation techniques; thereby allowing them to be more applicable and 

efficient for the satisfaction of avionics standards. After assigning values to the required 

data sets, the generated test cases are transformed into concrete ones with respect to the 
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expressed properties. The concrete test cases are then applied to the implementation 

under test. The Modified Condition/Decision Coverage (MC/DC) criterion is integrated 

into the test generation algorithm to satisfy the requirements of the DO-178C [1, 30, 

31]. Finally, our approach analyzes the obtained test results and compares them with the 

produced witness-examples to validate our properties via testing.  

2.2. Case study: Landing Gear System  

Our case study, a landing gear system for an aircraft, was proposed by Frédéric Boniol 

and Virginie Wiels in [11] as a representative scenario for complex industrial needs. 

The case study is very rich as it is not restricted to software and includes complex 

system modeling. The landing system is responsible for maneuvering landing gears and 

attached doors. It consists of three landing packages situated in the front, right, and left 

part of the aircraft. Each landing package includes a door, a landing-gear and related 

hydraulic cylinders. A door can be open or closed, while the gear can be retracted, 

extended, or maneuvered. The landing system can be controlled by a software package 

and can be in two modes: normal or emergency. In outgoing and retraction situations, 

the normal mode is the default. The emergency mode is deployed to handle failure 

situations. This work only considers the outgoing sequence and its normal and 

emergency modes. The architecture of the system consists of three parts (see Figure 2): 

1) a pilot part; 2) a mechanical part that incorporates the mechanical devices and three 

landing packages; and 3) a digital part that includes the control unit software.  

Regarding the pilot part, a pilot has a button switch at her/ his disposal with two 
positions: UP or DOWN. When the button switch goes from UP to DOWN, the 

outgoing sequence is initialized. The pilot has three lights in the cockpit that reflect the 

current status of the gears and doors. These lights are as follows: 

• One green light, indicates that “gears are locked down”; 

• One orange light, indicates that “gears are maneuvering”; and  

• One red light, indicates a “landing gear system failure”.  
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Fig 2. General Architecture of the Landing Gear System 

Before initializing the outgoing sequence, all the landing gears are locked in their up 

position and all the lights are off. In case of failure (i.e., the red light is on), the pilot 

manually pulls the mechanical handle to deploy the emergency hydraulic system. The 

expected consequence of this deployment is to lock the gears in the down location. 

When all gears are successfully extended and all accompanying sensors are valid, the 

green light must be lit. Regarding the mechanical part, the motion of landing gears and 

doors is performed by a set of hydraulic cylinders such that the cylinder position 

basically corresponds to the door or landing gear location. For example, when a door is 

open, the corresponding cylinder is extended. The hydraulic power of these cylinders is 

supplied by a set of electro-valves. The digital part is in charge of sending an electrical 

order to activate each electro-valve. Notably, the three doors (and their gears) are 

controlled in parallel by the same electro-valve. The digital part plays an intermediate 

role between the pilot part and the mechanical part. Specifically, the software embedded 

in the digital part is responsible for controlling the gears and doors, detecting anomalies, 

and informing the pilot about the status of the system through a set of lights. It also 

generates commands directed to the hydraulic system to open or close the doors and 

extend or retract the gears with respect to the values of employed sensors and captures 

the pilot orders.  

3. Model-based Verification 

3.1. Modeling the Landing Gear System 

In this section, we show how our model M can formally model the landing gear system. 

In our modeling, we specifically consider the normal and emergency modes of the 

landing gear system without going into low-level details regarding the mechanical 

devices of sensors and electro-valves. To achieve this aim, we introduce three agent 

machine models: Mp for pilot, Mc for control unit, and Me for emergency. The pilot 
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agent machine model Mp models the behavior of the pilot part and the control unit agent 

machine model Mc models the behavior of the digital part. The emergency agent 

machine model Me models the behavior of the emergency system. Instead of adding 

another agent machine to model the behavior of the hydraulic cylinders, we depend on 

the status of doors and gears to directly represent the status of the employed cylinders. 

This is because the description above states that the doors’ cylinders are extended when 

the doors are open, and a similar relation holds between gears and their cylinders.  

In the published case study paper, there are two types of requirements and the authors 

classify them as strong and weak. The weak requirements that did not consider deadline 

constraints/time constraints. Although we selected the weak requirements, the time 

constraints are abstractly represented in our model where each transition takes one-time 

unit as in all standard abstracted temporal models. 

Figures 3, 4, and 5 show the EFSM models of the pilot, control unit, and emergency 

agent machines, respectively. In each figure, we introduce the input and output of each 

transition in a tabular form where the symbols “?” and “!” refer to the process of 

receiving and sending an action. The output of a transition can be directly assigned by 

the shared and unshared variables when there is no explicit output action. Given that, it 

is easy to define the Boolean predicate of each transition using the conjunction operator 

between its input and its output. 

 

Label Input, output & predicate

Pt1 ? LandingSpecs(speed, distance)
! PressDownButton

Pt2 ? PressDownButtonAck
! wforOangeLight

Pt3 ? OrangeLightOn
! OrangeLightOnAck

Pt4 ? GreenLightOn
! GreenLightOnAck

Pt5 ? ConfirmGearDeployment
! DeploymentStatusSccess

Pt5 ? RedLightOn
! RedLightOnAck

Pt7 ? ConfirmGearDeploymentError
! InitializeEmergencySystem

Pt8 ? GreenLightOnMe

! GreenLightOnMeAck

Pt9 ? ConfirmGearDeploymentMe

! DeploymentStatusSuccess
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Fig 3. Pilot Agent Machine model, Mp 
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Label Input, Output & Predicate

Ct1 ? PressDownButton
! PressDownButtonAck
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! OutgoingGears
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Fig 4. Controller Agent Machine model, Mc 

Label Input, Output & Predicate

Et1 ? InitializeEmergencySystem
! OpenGearDoors

Et2 ? OpenGearDoorsAck
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Fig 5. Emergency Agent Machine model, Me 

3.2. Validating 

To perform the verification, we introduce the MCMAS tool. This is a symbolic model 

checker that extends MCMAS, a model checker for Multi-Agent Systems (MAS) that 

uses Ordered Binary Decision Diagrams (OBDD) [12, 13]. MCMAS takes two inputs: a 

model description for the system to be verified and a set of properties specified by 
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different logics such as CTL and CTLC [9, 10]. The inputs of MACMAS are formatted 

by the ISPL language which is used to describe the communicating MAS to be checked 

and encode the desired specifications. The ISPL+ is a dedicated programming language 

for interpreted systems that formalize MASs (Fagin & Halpern, 1994). MCMAS+ 

automatically evaluates the truth value of the encoded specifications and produces 

counterexamples that can be analyzed graphically for false specifications. MCMAS can 

also provide witness executions for the satisfied specifications and graphical interactive 

simulations. For clarity, we introduce the syntax of CTL that is given by the following 

grammar rules: 

 where: 

1) (the set of atomic propositions) is an atomic proposition and  is the 

existential quantifier on paths. 

2) , and  are temporal operators standing for “next”, “globally”, and 

“until”, respectively.  

3) The Boolean operators   and  are defined and used in the usual way. 

 

To validate our model M (a composition of Mp, Mc, and Me) we need to perform the 

review and tracing activities. As a first validation activity, we must review the model 

with the wide range of features implemented in the MCMAS+ graphical user interface 

[10]. This graphical interface specifically highlights syntax errors, automatically 

displays content, and assists and supports text marking and formatting. After fixing all 

the highlighted errors, we have a clear and error-free encoding model. Tracing the 

activity allows us to track the behavior of the encoded model. The MCMAS+ tool offers 

an Explicit Interactive Mode. This tool starts with the initial state and offers all the 

transitions available at this state and gives the possibility to choose the transitions. After 

we select one of these transitions, the tool moves to the reachable state connected with 

the initial state by this transition and then displays the available transitions at the new 

state. This step allows us to evaluate whether the model is progressing as we intended. If 

an error is detected, we return to our encoding and update it. This process continues 

until we reach the end state. Then, we start again from the initial state and select another 

transition. Our graphical interface supports a new feature, which displays the whole 

model. By completing these two activities, we ensure that our encoding model exactly 

captures the intended behavior of the landing gear system. In fact, these two activities 

are key to ensuring that the model is correct; otherwise, errors in the design model could 

jeopardize the entire activity of the design formal verification using a model checking 

technique. 

3.3. Model checking 

According to the model checking technique, we must formally: 1) model the system 

underlying the verification process; and 2) express the requirements. The correctness of 

these requirements has been proven on the modeled system using MCMAS+. We have 

just shown how we complete the first activity. For the second activity, we used the 

Computation Tree Logic (CTL) [8] supported by the MCMAS+ model checker tool [12] 

to express the following requirements: 

https://www.sciencedirect.com/science/article/pii/S0957417416307138?via%3Dihub#bib0025
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In [11], a set of requirements is presented with respect to the normal mode. The 

requirement called R11bis states that “when the command line is working (normal 

mode), if the landing gear command handle has been pushed DOWN and stays DOWN, 

then eventually the gears will be locked down and the doors will be seen closed”. We 

expressed this requirement in the three different CTL formulae ,  and .  

The first formula ( ) can be read as follows: along all computation paths through 

all states, when the button is pressed down, then along all computation paths in the 

future the gears will be extended and the doors will be closed. The second formula ( ) 

can be read as follows: there exists a computation path such that in all its states the gears 

will be not extended, and the doors will be not closed until the button is pressed down. 

The third formula ( ) can be read as follows: along all computation paths in the 

future, the gears will be not extended, and the doors will be not closed if the button has 

never been pressed down before. The CTL formula expresses the safety 

requirement, which plays an important role in avoiding a bad situation. This bad 

situation in the fourth formula can be read as follows: the button has been pressed down 

and along all paths; the green light is never lit. The last CTL formula  expresses the 

liveness requirement and can be read as follows: along all computation paths, the green 

light can be eventually lit. The quantifier ranging over all computation paths (“A”) 

enables us to check the status of both normal and emergency modes. For example, the 

liveness formula allows us to check the status of the good thing (‘green light’) that will 

happen eventually in each mode. All these formulas are evaluated to true on the model 

M using MCMAS+. Therefore, our design model is error-free and it is strong, as it 

achieves the safety and liveness requirements required in both modes. We can also 

report some statistical results, such as that the execution time of verifying these 

formulas is 0.298 seconds and the memory consumed is 6 Megabytes.  

4. Model-based Test Generation Approach 

The goal is to generate, starting from the verification model, a set of test cases for the 

verified properties, apply them to the implementation under test and to then analyze the 

test results. The main idea is to demonstrate that the verified properties are properly 

propagated from the design level to the implementation level, and that they hold true 

within the Implementation Under Test (IUT). This demonstration requires model 

transformation, local and global test sequence generation, testing and test results’ 

analysis. The approach both verifies the properties at the design level and demonstrates 
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their validity at the implementation level using global test sequences, allowing the 

satisfaction of DO 178C by generating local test sequences with the required coverage 

criteria. In addition, we extend the set of paths to include additional paths to satisfy 

MC/DC. 

4.1. Model Transformation 

In model checking, a simple FSM is often used. Testing can use richer modeling 

techniques such as Extended Finite State Machines (EFSM). To use our test case 

generation techniques and tools with well-defined coverage criterion such as MC/DC 

[30, 31], we transform the verification model into a testing model. The notion of shared 

variables used in our verification model can be transformed into input parameters in the 

EFSM model. The interaction mode considered here is message passing. The discussion 

to use one model or two can take place. The solution for avoiding the use of a single 

model is to manually extract one model for verification and one model for testing. In 

this case, two different quality assurance groups should be involved, and the two models 

should cover the same set of requirements to satisfy the need for independency between 

verification and testing activities. The model transformation can show the equivalence 

between two models in this case. 

4.2. Global Test Sequence Generation 

Several approaches to generate global test sequences are based on or are otherwise 

similar to the work of Bourhfir and Cavalli [18, 19, 20, 23, 32, and 33]. We propose a 

test generation technique for parallel communicating agents. The generation of test 

sequences starts with the verification model. We first model each agent in its context 

and then create a list of transitions for the communication between a pair of agents. We 

use a transition-marking algorithm that marks every transition involved in the 

communication as an EFSM, along with its context. This technique generates local test 

sequences for each agent. Next, we compose the obtained EFSMs to build a global 

system M that is in fact a Communicating Extended Finite State Machines (CEFSMs) 

(see Figure 8). 

4.3. Test Generation Process for the Case Study 

In this case study and for the sake of readability, the EFSMs are only a partial 

representation of a landing gear system.  

Following the DO-178C standards, the satisfaction of the MC/DC criterion is 

mandatory, and it is used as a criterion in this paper for test sequence generation. The 

MC/DC is a widely used and known coverage criterion in software avionics [30, 31].  

The figure 6 describes the test generation process. To generate global test sequences, 

we first derive the local test sequences for each EFSM. Second, we obtain the 

communication graph from all EFSMs (see figure 7). Third, guided by the 



Model-Based Verification and Testing Methodology for Safety-Critical Airborne Systems           281 

communication graph, we obtain the global system, or the CEFSM. Finally, from the 

local test sequences and the CEFSM, we generate the global test sequences. The 

following sections will detail the different steps of the test generation for the case study. 

 

 Fig 6. Test Generation Process  

Communication Graph. To generate global test sequences for a global system 

composed of several agents, we need to abstract an EFSM agent into an abstract state 

and identify the communication transitions and their parameters that are used for 

communication. The communication graph represents the interaction between the 

different EFSMs (see Figure 7). For our case study, it is assumed that the 

communication between the machines Mp, Mc and Me is two-way. Figure 7 visualizes 

the communication graph with the representation of each machine by an abstract state.  

 

Mp

Me Mc

Mp.P8(Me.GreenLight)
Mp.P3(Mc.OrangeLight);
Mp.P4(Mc.GreenLight);
Mp.P6(Mc.RedLight)

 

 Fig 7. Communication graph representation 

Global Model with Communication Points. Using the EFSMs (Figures 3, 4, and 5) 

and guided by the communication graph (Figure 7), we obtain (by composition) the 

global system model with its communication points (Figure 8). Figure 8 represents the 

composite system model M with its communication points, labels and transitions, and 

the input and output lists. We can see that the Mc and Mp agents start at the same time. It 

is in fact a parallel communicating system. The transitions representing the 

communication among agents are shown in orange, green, and red to represent the 

landing gear system lights of the same color. Similarly, a computation graph is also a 

composition of its constituents. 
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Fig 6. System model M: Composed of Mp, Mc, and Me with communication points 

Algorithm. In this section, we briefly describe the test generation algorithm and its 

application to the case study. More specifically, we extend our algorithm to generate the 

test sequences that satisfy the MC/DC criterion. To generate executable test sequences, 

we need the final model with all the aforementioned information, the local test 

sequences, as well as the communication graph. The algorithm given in [18 and 31], 

called the generation of def-use executables, defines four different variable usages: 

assignment-use (A-usage), input-use (I-usage), computational-use (C-usage), and 

predicate-use (P-usage). These variable usages enable the links between the test 

sequences of each machine and help check the test sequences’ executability. The 

algorithm provides a full set of executable and non-executable test sequences that will 

go through all the possible transitions existing in the system under test. We generate the 

paths linking two states from different machines by marking them as communication or 

synchronization points.  

 

The Generated Test Sequences. To generate the test sequences, we first need to 

identify the communication variables. In the case of landing gear system, the variables 

are:  

{Start, activateEmergencySystem, OrangeLight(on,off), GreenLight(on,off), 

RedLight(on,off) } 

These variables indicate the possible communication between the agents. For example, 

if activeEmergencySystem is on, it means that the RedLight variable is also on. This is 

the only time the emergency system will be called upon. To identify the communication 

points, the input and output list for each transition is defined. The related input and 

output lists, as well as the predicates, are described in Figures 3, 4, and 5. They are used 

as inputs for the algorithm to generate the global test sequence. In general, a test case is 

composed of the following elements: <preamble, target, postamble>. Preamble and 
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Postamble might be empty. The preamble is the sequence of transitions used to reach 

the target transition for testing as given in Table 1. 

 

Table 1 shows examples of the application of the algorithm using the landing gear 

case study. It identifies the different usage lists enabling the identification of executable 

test sequences. Table 2 shows an example of executable test sequences to reach specific 

transitions in the system model. The chosen transitions represent a case of parallelism.  

Table 1. Example of usage lists and preamble for specific transitions of the landing gear system 

Trans. A-usage I-usage P-usage 

Pt2 OrangeLight - - 

Pt4 - GreenLight Ct11 OreenLight on 

Ct11 - GreenLight on ; OrangeLight off GreenLight on 

Trans Preamble 

Pt2 Pt1 

Pt4 Pt1, Pt2, Pt3, [Ct11] 

Ct11 Ct1, Ct2, Ct3, Ct4, Ct5, Ct9, Ct10 

Table 2. Executable test sequences of the landing gear system 

Transition  Executable test sequence 

Pt5 Pt1, Pt2, Pt3, Ct1, Ct2, Ct3, Ct4, Ct5, Ct9, Ct10, Pt4, Pt5 

 

Table 3 presents an example of non-executable test sequences. These are non-

executable because they need a preamble execution from another agent to reach the 

desired transition and render the sequence executable. Table 4 shows the parallelism in 

the executable test sequences required to make the transitions shown in Table 3 

executable. 

Table 3. Non-executable test sequence of the landing gear system 

Transition Non-executable test sequences 

Pt5 Pt1, Pt2, Pt3, Pt4, Pt5 

Table 4. Parallelism shown for executable test sequences Pt5 of the landing gear system 

 Executable test sequences – Pt5 

Mp Pt1, Pt2, Pt3  P4, Pt5 

Mc Ct1, Ct2, Ct3, Ct4, Ct5 Ct9, Ct10  

 

In the following sections, we will verify the different properties obtained from the 

validation phase. 
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4.4. Witness Properties’ Verification 

Table 5 shows specific executable test sequences for a selection of witness properties 

for liveness. Due to a limitation in all model checker tools in terms of generating 

witness-examples and counter-examples that include the universal operator “A”, we 

used other formulas that achieve the same requirement and allow MCMAS+ to generate 

witness-examples.  

The executable test sequences are given by the input and output information, as well 

as by the transitions for which that input and output information proved the witness-

example to be true.  

The executable test sequences represent the transition in which the witness-example 

holds. Hence, these are all the possible transitions forming a path needed to render a test 

sequence executable, up to the mentioned transition. For example, EF GreenLight holds 

true when a sequence executes up to transition Pt5 (refer to Table 4 for the complete 

executable test sequence). 

Table 5. Executable test sequences for witness-examples for liveness properties 

Witness-example for liveness 

properties 

    Executable test sequences 

EF GreenLight Sequences leading to transitions: 

Mp: Pt4 – Pt5 – Pt8;  

Mc: Ct10 – Ct11  

Me: Et5 – Et6 

EF ( RedLight && EF GreenLight ) Sequences leading to transitions: 

Mp: Pt8 – Pt9;  

Mc: none;  

Me: Et5 – Et6 

EF (PressedDown && EF 

GreenLight ) 

Sequences leading to transitions: 

Mp: Pt4 – Pt5 – Pt8 – Pt9  

Mc: Ct10 – Ct11;  

Me: Et5 – Et6 

4.5. Properties’ Verification 

Several properties are defined in Table 6 to verify whether the used algorithm validates 

the properties. The two executable test sequences shown in Table 2 were analyzed with 

regards to those properties. Both executable test sequences for transitions Pt5 and Pt9 

verify all the properties identified so far. Table 6 confirms that all the global test 

sequences generated render the defined properties true. 

According the algorithm used in [18], none of the executable test sequences validate 

the given properties. However, those that represent the full paths in the global system do 

validate them, being the paths generated for transitions Pt5 and Pt9. This implies that 

through that algorithm, only a set of test sequences can validate the different properties, 

and not necessarily all of them. 
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Table 6. LGS properties validated with the executable test sequences 

CTL Status 

 True 

 

True 

 True 

 True 

 True 

5. MC/DC 

In order to comply with the avionics standard DO-178C, the proposed test generation 

algorithm needs to satisfy the modified condition/decision coverage (MC/DC) criterion. 

This will ensure that all possible conditions are tested. Therefore, we use a graph 

expansion mechanism to handle this type of coverage. 

5.1. Handling MC/DC criterion   

MC/DC is applied using binary values, and every condition will have a value of true or 

false. It is probable that some MC/DC test cases are not feasible within the system [31]. 

This means that some test cases’ execution will fail.  

The following requirements should be satisfied in MC/DC-based testing. For all 

decisions, at least once: 1) all possible outcomes are covered; 2) all possible outcomes 

for all conditions are covered; and 3) all conditions impacting the decision’s outcomes 

are covered [30, 31].  

In other words, all the outcomes of every decision, as well as the conditions within 

those decisions, should be executed at least once. By doing so, all paths regarding 

possible values taken by the system under test will be executed. For example, in the 

global system, a single decision must be made at P3 to move further to P4 or P6 as 

follows: 

 

If (OrangeLight is on and GreenLight is off and RedLight is off )  

    Return light status (RedLight or GreenLight on) from the controller; 

EndIf; 

To satisfy the MC/DC criterion, we need to visualize a path as binary decisions and 

conditions. The algorithm will analyze a path with all possible conditions as binary as 

follows: 

 
Decision → go to controller 

   Conditions 

→ if (OrangeLight is on/off) 

→ if (GreenLight is on/off) 

→ if (RedLight is on/off) 
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Another representation would be that the executable paths consist of all green 

transitions, and the non-executable ones are all red. The additional non-executable paths 

that will ultimately generate errors are partially red. For example, a path consisting of 

the values orange on / green off / red off will be part of a feasible path. However, going 

to the next state is impossible if within a path the values are orange on/green off/red on. 

Those additional paths exist to satisfy the MC/DC criterion. The objective is to render 

all the paths by considering the binary possibilities for each condition found in a 

decision, based on whether the orange light is on or off. However, the two other lights 

should be taken into consideration for conformity.  

There are three conditions to consider within this decision: whether the OrangeLight 

is on, the GreenLight is off, and the RedLight is off.  This translates to the following 

possibilities shown in Table 7, in which true and false are on and off, respectively: 

Table 7. Possible binary values and possible outputs 

OrangeLight GreenLight RedLight Output 

True False False Go to controller 

False True False Error 

False False True Error 

True True False Error 

True False True Error 

False True True Error 

True True True Error 

False False False Idle 

 

There is a value in executing test sequences from MC/DC criterion that result in an 

error, as it ensures that a test sequence will fail. As such, we also cover the possible of 

faulty signals being sent to the pilot, the controller, and the emergency agent. The errors 

are the result of a status or a state that is not naturally feasible by the system. To 

generate test sequences for MC/DC criterion [30, 31], we need to identify a way to 

consider the binary sequence and condense it into one single segment. This will enable 

the generation of MC/DC test sequences using model-checking. For example, we could 

add information in the input and output values for transition Pt3 by adding the different 

possibilities covered through MC/DC criterion and use that information to generate the 

required test sequences.  

5.2. Test Generation Algorithm Satisfying MC/DC Criterion 

The proposed test generation algorithm generates feasible test sequences. To satisfy the 

MC/DC criterion, the test generation algorithm must be modified and all of the decision 

branches need to be tested. For each binary decision, two paths will be generated for 

each simple condition involved in that decision. To integrate this coverage criterion, we 

need to pin-point in the algorithm the parts necessary to identify all DU-paths. For each 

element in the preamble list, we add a binary set of possibilities to satisfy the MC/DC 

criterion. This binary set will represent the possibilities for each information influencing 

a decision [30, 31]. 
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There are several ways to approach this issue, for example: 1) create a standalone 

procedure executed at the end, that will have access to all the paths created initially, and 

generate additional ones to satisfy MC/DC criterion; 2) integrate MC/DC coverage 

while the paths are being generated to cover all feasible and non-executable paths 

related to a decision; or 3) analyze the non-executable paths and choose the ones 

satisfying the MC/DC criterion,  using a hybrid approach based on approach number 2. 

The third approach is the one we selected. The algorithm that generates local test 

sequences is sketched as follows: 

 

(1) Transform the EFSM to data flow graph G using graph rewriting. 

(2) Expand the graph by an expansion mechanism; use state decomposition  

and graph splitting to handle MC/DC coverage criterion 

(3) Select input values for each input parameter that can affect the control flow. 

(4) Generate executable DU-paths according to data flow graph G and remove 

redundant paths. Append the state identification sequence and post amble 

(return to the initial state) to each DU-path to form a complete test path. 

(5) Check test path executability; if non-executable, use cycle analysis to make it 

executable,  discard if non-executable. This is done during the generation of 

a path. 

(6) Verify if there are uncovered transitions, add test paths to cover them. 

Handling MC/DC criterion in the Extended FSM Test Generation algorithm is 

explained in the following five steps. 

Step 1: Define a second variable of binary values called vMCDC. This variable will 

take the values that will conform to the coverage’s criterion. This variable will be used 

solely for MC/DC criterion satisfaction for test case generation. 

Step 2: In the test generation algorithm, add all possible values for the identified 

input parameters that satisfy the MC/DC criterion and that are not already covered by 

the algorithm in its original state. Next, call a procedure that will analyze the discarded 

paths to ensure that they would not be involved in any MC/DC. Step (4) is used to 

analyze non-executable paths. 

 

Algorithm EFTG (Extended FSM Test Generation) 
(1) Read an EFSM specification; 

(2) Generate the dataflow graph G from the EFSM specification; 

(3) Choose a value for each input parameter influencing the control flow,  

augment the scope to consider the possible values for MC/DC; 

(4) If the path is still non-executable, conduct the Analyze-discarded-path(P) 

procedure.  

Step 3: Create procedure Analyze-discarded-path(P). This procedure will use the 

binary variable vMCDC and evaluate the information of path P to determine if it should 

be removed or not. 
Analyze-discarded-path(P) 
(1) Define binary values table with accepted values for green-orange-red 

states; 

(2) For each variable, in every transition in the discarded path, compare the 

values with the binary table for green-orange-red-gear; 

(3) If the values conform to the table, discard the non-executable path; 
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(4) If they do not conform, add this path to the MC/DC list of conformances 

(use the same logic for executable paths and flag them for MC/DC 

satisfiability). 

 

Step 4: In the procedure executable-DU-path-generation, we add another loop to take 

into consideration vMCDC to identify the paths between transitions.  

 

Procedure Executable-DU-Path-Generation (flowgraph G) 
(1) Take in the MC/DC variables from the vMCDC variables; 

(2) Generate all possible paths (call to Find-All-Paths (T,U, vMCDC)  

for each variable that has an A-use in T, and each transition U that has a P-

use or a C-use. 

 
Step 5: we replace the procedure handle-executability in order to not discard non-

executable paths and call it procedure handle-executability-MCDC. If a path is non 

executable, it will not be removed. This is rather complicated as the algorithm is sound 

in making sure that all non-executable paths are confirmed twice as non-executable, and 

are then discarded. Another possibility is to add a condition that allows us to identify 

from which variable a path has been defined. If it was from a vMCDC variable, then we 

will not remove the non-executable path. Satisfying MC/DC criterion will result in 

adding several non-executable paths. This step is needed to ensure that erroneous paths 

are handled correctly, which will control both the satisfaction of the properties and the 

alternatives triggered by glitches or possible malfunctions. 

6. Discussion and conclusion 

Business case studies play a fundamental role in the progress and development of 

formal methods and help prospective users and designers demonstrate the application of 

different formal methods to model, verify, and test concrete, complex systems. In 

addition, they help to compare different formal techniques in terms of performance and 

ease of use. Relevant proposals have been put forward to model and formally analyze 

the landing gear system, a complex real-life case study published in [11]. Specifically, 

these proposals have suggested: 

• Formal modeling methods including the Event-B methods [34, 35, 36, 37, 42], 

abstract state machines (ASM) [38, 43], and the Fiacre formal language [39, 40]; 

• Verification techniques including a proof theory [34, 35, 37, 43] and model 

checking [35, 39, 41, 40, 43]; and 

• A test case generation technique [41], a run-time monitoring approach [40, 41], and 

a simulation technique [44]. 

These proposals provide only a partial solution with a unique objective, either 

modeling, verification, or testing. Moreover, these proposals do not consider all the 

industrial requirements of the case study. For example, a formal verification using 

model checking is used mainly to verify properties at the design level; the verified 

properties may not be propagated to the implementation stage. Therefore, testing of 

these properties is still needed. Although model-based testing and verification activities, 

as shown in DO-178C and DO-333, are natural approaches to the certification of 
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avionics software, combining formal verification and testing in a single framework is 

still in its infancy and needs further investigation. 

The proposed methodology and its application show that the integration of software 

quality assurance activities is needed to achieve software certification in the airborne 

industry. There are more challenges to overcome to be able to automate all the activities 

of the methodology. The avionics software has several types of inputs such as data from 

various actuators, and high volume of outputs. Both data input selection and trace 

analysis constitute real challenges and need more research and innovation to address 

them properly. Some hybrid modeling of the diversity of data input is needed. The 

oracle problem needs more data mining and intelligence for analyzing and for 

correlating outputs and searches in artifacts, such as requirement specifications, logs and 

test architectures. More efficient algorithms will also advance work in this field. 
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