Computer Science and Information Systems 17(1):293-313 https://doi.org/10.2298/CSIS190430041C

Business Process Specification, Verification, and
Deployment in a Mono-Cloud, Multi-Edge Context

Saoussen Cheikhrouhou!, Slim Kallel!, Tkbel Guidara2, and Zakaria Maamar®

! ReDCAD
University of Sfax
Sfax, Tunisia
saoussen.cheikhrouhou@redcad.tn
slim.kallel @redcad.tn
? LIRIS
Claude Bernard Lyon 1 University
Lyon, France
ikbel.guidara@liris.cnrs.fr
3 College of Technological Innovation
Zayed University
Dubai, U A.E
zakaria.maamar@zu.ac.ae

Abstract. Despite the prevalence of cloud and edge computing, ensuring the satis-
faction of time-constrained business processes, remains challenging. Indeed, some
cloud/edge-based resources might not be available when needed leading to delay-
ing the execution of these processes’ tasks and/or the transfer of these processes’
data. This paper presents an approach for specitying, verifying, and deploying time-
constrained business processes in a mono-cloud, multi-edge context. First, the spec-
ification and verification of processes happen at design-time and run-time to ensure
that these processes’ tasks and data are continuously placed in a way that would
mitigate the violation of time constraints. This mitigation might require moving
tasks and/or data from one host to another to reduce time latency, for example. A
host could be either a cloud, an edge, or any. Finally, the deployment of processes
using a real case-study allowed to confirm the benefits of the early specification and
verification of these processes in mitigating time constraints violations.

Keywords: Business process, Cloud, Edge, Time constraint, Violation.

1. Introduction

Until recently cloud computing has been praised for both offering elastic (on-demand) re-
sources and adopting pay-as-you-go model [20]. These 2 characteristics made cloud com-
puting extremely popular among Information and Communication Technologies (ICT)
practitioners who deployed software applications around the concept of Everything-as-
a-Service (*aaS) that cloud computing embraces. Unfortunately, with the continuous
advances in ICT and organizations’ changing needs, cloud computing has shown some
signs of “fatigue” when for instance, real-time applications call for almost zero time-
latency. Transferring data to distant clouds is a potential source of delay and opens doors
to unwanted interceptions. Luckily edge computing has been introduced to address some



294 Cheikhrouhou et al.

clouds’ concerns like latency and security. According to Maamar et al. [16], edge and
cloud are expected to work hand-in-hand and not compete.

In conjunction with embracing the latest ICT, all organizations capitalize on their
Business Processes (BP) to remain competitive, cut costs, and sustain their growth.
Referred to as know-how, “...a business process consists of a set of activities that are per-
formed in coordination in an organizational and technical environment. These activities
Jjointly realize a business goal. Each business process is enacted by a single organiza-
tion, but it may interact with business processes performed by other organizations.” [22].
A BP consists of tasks connected together with respect to a particular process model
that BP engineers define at design-time. At run-time, the process’s tasks are assigned to
persons/machines for manual/automated execution. Different works suggest fragmenting
BPs and deploying them over the clouds to tap into their elasticity and pay-as-you-go
benefits [23]. However, deploying fragmented BPs over the cloud [14] could fail when
constraints like temporal are not satisfied resulting into financial penalties, for example.

In line with the works on cloud-driven BP fragmentation, we presented in [5] an ap-
proach to formally specify and verify cloud resources allocation to BPs using Timed
Petri-Net (TPN). Our objective was to ensure that this allocation does not violate any
temporal constraints on BPs. We also presented how BP correctness is formally verified
with respect to such constraints. In this paper we extend this approach by fragmenting
and deploying free-of-violations time-constrained BPs in a mono-cloud and multi-edge
context. We resort to cloud-edge collaboration by verifying at both design-time and run-
time where data should be placed (cloud, edge, or either) and where tasks should run as
well (cloud, edge, or either). Satisfying temporal constraints in the context of cloud is
thoroughly discussed in the literature [4, 12, 13, 19]. However, this remains unexplored in
the context of cloud/edge, which constitutes one of our main contributions in this paper.

The remainder of this paper is organized as follows. Section 2 introduces a motivating
example. Section 3 briefly presents the approach for verification of cloud- and edge-based
resource allocation at both design-time and run-time. We detail the design-time stage in
Section 4 and the run-time stage in Section 5. Section 6 gives implementation details.
Section 7 discusses related work. Finally, concluding remarks and future work are drawn
and presented, respectively, in Section 8.

2. Motivating example

Timely responses to customers’ requests are a key competitive advantage in any econ-
omy. Many organizations tap into lead time to sustain this advantage despite the existence
of many factors that they cannot, sometimes, control like unannounced strikes and bad
weather. Consequences of late delivery are multiple ranging from financial penalties to
angry customers and market-share shrinkage. Amazon.com perfectly illustrates how this
giant online-retailer achieves its targets by offering competitive prices despite limited
lead times. Amazon.com embraces many ICT gadgets like drones in conjunction with
customer care best-practices like return policies. On December 7¢%, 2016, Amazon.com
announced its first drone-based air delivery in Cambridge, UK with a shipment lasting
13 minutes from purchase to drop-off*. This would not have happened if Amazon.com

4 www.engadget.com/2016/12/14/amazon-completes-its-first-drone-powered-delivery.

www.amazon.com/Amazon-Prime-Air/b?ie=UTF8&node=8037720011.



Time-constrained business processes 295

does not operate warehouses in different parts of the world, Cambridge in this case. The
objective is to be “close” to customers to avoid potential delivery delays. Collecting data
on shipping BPs for the sake of tracking could also benefit from the concept of “close-
ness” that edge computing promotes. Indeed, sending these data to remote cloud servers
for processing could limit Amazon.com’s promptness. By the time the data arrives to
these servers, it could become obsolete, be subject to unauthorized collection, and have
consumed unnecessary bandwidth. This becomes acute in the case of drone delivery when
instant response to unforeseen events (e.g., wind speed) is a must. In the rest of this paper,
we illustrate how a delivery BP could benefit from cloud/edge collaboration. To this end,
a set of what-if analysis will be carried out to decide which parts of the BP should reside
in the cloud, which parts of the BP should reside in the edge, and which parts of the BP
should reside in either. This what-if analysis along with cloud/edge collaboration will be
illustrated in the rest of this paper using drone-based delivery BP whose tasks are listed
in Table 1.

Table 1. Tasks defining drone-based delivery BP

Task Description

t collect and verify delivery instructions

to pick items from robot-smart warehouse

ts define drone position

ta process drone position and other details

ts update logbook of flying/delivering drones

te analyse received information

t7 send instructions to drone to avoid accidents or violations
ts update drone position

to notify customer about item arrival

3. Approach in a nutshell

This section introduces the main concepts and definitions related to TPNs. Afterwards, it
presents the foundations of the proposed approach.

3.1. Time Petri-Nets

A PN is formed upon a mathematical theory that uses automated tools to offer an accurate
modeling and analysis of systems’ behaviors [3]. Initially, PNs were a formal language
without any reference to time or probability. However, for many critical applications, time
is a must-have and designers should consider it when analyzing the correct behavior and
performance of these applications. TPNs integrate clocks and temporal constraints into
transitions to help describe and analyze properly time-dependent systems. TPNs associate
a firing time interval [a,b] with each transition, where a and b are rational numbers such
that 0 < a < b and a # co. Times a and b for t are relative to the moment at which
t was enabled; a and b are referred to as earliest-firing-time and latest-firing-time of t,
respectively. Formally, a TPN is a tuple Y = (P, Tr, Pre, Post, M, IS) where (P, Tr, Pre,



296 Cheikhrouhou et al.

Post, Mp)isaPNand IS: Tr— Q**(Q*U{oo}) is a static interval function that associates
each Tr with a time interval IS (Tr)= [min,max] so, that, Q* is the set of positive rational
numbers. Readers are referred to [3] for more details about TPNs.

3.2. Foundations

Our approach puts forward recommendations about the “ideal” placement of a BP’s tasks
and data in a mono-cloud, multi-edge context. Should the recommendations violate any
time constraint at design- and/or run-time, then the violations should have a limited impact
on completing the BP. By limited we mean an acceptable overtime with respect to some
thresholds that BP engineers could set, e.g., 10 extra minutes are still acceptable. Our
approach spans over BP design-time (Fig. 1) and run-time (Fig. 2) having each a set of
dedicated stages.

At design-time, 4 stages namely specification, placement, transformation, and verifi-
cation, take place.

Time
constraints

Time-
constrained

process
model

Transformed
process
model

Placement

Specification map

Transformation

List of
violations

Towards
run-time
verification

Fig. 1. Stages of the approach at design-time

The specification stage consists of modeling the BP enriched with time constraints on
tasks and data. The placement stage takes as input the time-constrained process model
and available cloud and edge devices to assign this BP’s tasks and data to these devices.
This assignment is reported into what we call a placement map. The transformation stage
uses some in-house rules to convert the placement map into a transformed process model
that is, in fact, a TPN. Our rules address Business Process Model and Notation (BPMN)
constructs, temporal constraints, and time related to transferring data from cloud to edge
and vice-versa. Finally, the verification stage checks if the TPN process model contains



Time-constrained business processes 297

any time violations that needs to be fixed by going back to the placement stage. Otherwise,
we proceed with the run-time verification.

At run-time, 3 stages namely execution, ongoing verification, and ongoing placement
take place. A BP execution engine will run BP instances. A log is also used during run-
time to capture the BP’s instance execution progress and outcomes.

Coming from design-time

!

Time- 1
Placement constrained
map process
model
Y details
> Ongoing
placement
Concurrentlyy
> Execution Ongoing /\NOt SaUSﬁEd> vilz;II:tti?)fns
e verification
Satisfied

f.) consult

BP execution

engine

Fig. 2. Stages of the approach at run-time

The execution stage instantiates the BP’s process model so, that, process instances are
run over an execution engine. Concurrently to the execution stage, the under-execution
BP instances are subject to verification to ensure that no time-constraints are violated.
This ongoing verification stage could produce a list of violations so, that, corrective ac-
tions are taken to avoid additional violations that could impact the rest of tasks and/or
data, and hence, more penalties. The corrective actions are identified thanks to the on-
going placement stage that will put forward additional recommendations about potential
changes related to where future tasks and/or data should be re-placed. The implementation
of these recommendations will be again reflected on the placement map.



298 Cheikhrouhou et al.
4. Design-time specification and verification

Since the definition of a BP’s temporal constraints over tasks and data during the spec-
ification stage may lead to deadlocks or unmet deadlines, designers could resort to for-
mal languages to ensure this definition correctness. In this section, we detail further the
design-time transformation and verification stages.

4.1. Specification stage

The engineer designs the BP’s model using any modeling language, although we recom-
mend BPMN. Then, he defines the time constraints on this BP’s tasks [7, 8] and data.

1. Temporal constraints on tasks. First, we consider intra-task temporal constraint of
type execution duration. Let s(t) (resp., e(t)) be the starting (resp., the ending) time of
a task t. Let d be a relative time value representing the duration of this task. Duration
constraint is defined as per Equation 1:

Duration(t,d) = e(t) — s(t) < d (1

Afterwards, we consider inter-task temporal constraints of type execution dependency
that could be:
— Start-to-Finish (SF): ¢; can not finish until ¢; has started within a given time
interval.
— Start-to-Start (SS): ¢; can not begin before ¢; starts within a time interval.
— Finish-to-Start (FS): t; can not begin before ¢; ends within a time interval. As per
Equation 2, ¢; should start its execution no later than MaxD time units and no
earlier than M inD time units after ¢; ends.

TD(FS,t;,t;, MinD, MaxD) £ MinD < s(t;) — e(t;) < MazD  (2)

— Finish-to-Finish (FF): ¢; can not finish until ¢; has finished within a time interval.

2. Temporal constraints on data. We consider freshness to define the allowable time
for a data to remain valid (adapted from [16]) when it is exchanged between tasks
that could be running in separate hosts (e.g., any data received 2 seconds from its
expected arrival time is not valid). Let ¢; be the task producing data data,; that task
t; will consume. Formally, data freshness is defined as per Equation 3:

FreshData(data;j,t;,t;, MaxValue) = produce(t;, data;j) 3)
&consume(t;, data;j)&s(t;) — e(t;) < MaxValue
Let’s recall the case study. The engineer can propose the temporal constraints on BP’s
tasks and data as per Table 2. For example, FS temporal dependency is specified between
t4 and tg. In addition, the data that ¢4 produces needs to be consumed by ¢35 in less than
5 seconds.



Time-constrained business processes 299

Table 2. Case study’s temporal constraints on tasks and data

task duration temporal dependency data freshness

t1 10 milliseconds

to 10 milliseconds TD(FS,t1,t2,1 millisecond,5 milliseconds)

ts 12 minutes

ts 10 milliseconds

ts 10 milliseconds FreshData(t4,t5,5 seconds)
te 10 milliseconds

tz 10 milliseconds FreshData(te,t7,5 seconds)

ts 10 milliseconds TD(FS,t4,ts,1 millisecond,8 milliseconds) FreshData(¢7,ts,5 seconds)

tg 10 milliseconds

4.2. Placement stage

The engineer proceeds with a first assignment of the BP’s tasks and data to cloud/edges.
This assignment results into a placement map that considers how critical the tasks are
(i.e., must execute), how dependent the tasks are, what time constraints are imposed on
tasks and data (e.g., duration and freshness), and any other time-related details (e.g., data
transfer between hosts). How good this first assignment will be checked out during the
verification stage (e.g., no time constraints’ violation). However it is worth noting that the
placement stage could be triggered again if the verification stage reports any temporal vi-
olation. These violations are manually analyzed by BP engineers to identify their causes.
Consequently, the engineer can come along with some corrective actions that would ad-
dress these violations like reassigning some tasks/data from cloud to edge and vice versa.
It is highly recommended to address any violation prior to executing the BP.

Table 3 presents an initial placement that the BP engineer could come up with. For
example, “send instructions to drone to avoid accidents or violations” task is deployed on
the edge device to be each time near to the drone while flying since the decision of chang-
ing position of drone should be made as quickly as possible. Indeed, The use of edge
nodes is to reduce the overall response time and traffic to distant clouds. Contrarily, send-
ing instructions to edge nodes will be forwarded to “ update logbook of flying/delivering
drones” task, which is deployed on the cloud, where high volumes of data can be pro-
cessed.

Table 3. Initial placement of drone-based delivery BP’s tasks

task placement
t1, t2, ts, te, to cloud
ta, t7 edge

4.3. Transformation stage

This stage relies on a set of rules defined in compliance with model-driven engineering
principles. The objective is to convert a time-constrained BPMN process into a TPN model.



300 Cheikhrouhou et al.

It all begins by transforming BPMN basic elements like start/end events, tasks, and

gateways into TPN. Readers are referred to [6] for a complete description of the transfor-
mation rules. We focus on rules related to BP task placement. For instance, a task with an
execution duration will be transformed into 1 place and 2 transitions labeled with clocks
depending on the task’s duration (Fig. 3 (a)). The duration is set by the engineer depend-
ing on whether the task will run on either the cloud or the edge as per the placement map.
Fig. 3 also includes the transformation of some temporal dependencies between tasks such
as SS, FS, and FF.
Let us now focus on the transformation rules for data placement. For a given data data;,
it can be produced by a task ¢; that runs on a certain host (h,. to refer to cloud) and will
be consumed by another task ¢; that runs on a different host (h,, to refer to edge). In this
case, data; should be transferred from one host to another and hence, latency time (li; hy)
needs to be considered. Data latency is transformed into 2 places and 1 transition as per
Fig. 3 (b).



Time-constrained business processes 301

[] O ]

[0,0] t [d.d]
(a)
End ti (hx) di (hx) di transfer di (hy) Start tj(hy)
D W g1 4 3 "D
L L LI
[Idi (hx:hy), Idi (hx,hy)]
(b)
Start t1 End t1 Start t1 End t1
[d1,d1]

[d1,d1]

[0,0] t1

StartMin EndMax StartMin EndMax
Start t2 Endt2 Startt2 End t2
[0.0] t2 (@242 [0,0] t2 [d2.d2)
(c) (d)
StartMin [m,m] EndMin
tMi
[d1,d1] / StartMax [M':SI] / EndMax

End t1
[d2,d2]  pVerif

Start t1

[0.0]

[0,0]

Start t2
[0,0]

tNOTOK

(e)

Fig. 3. [llustration of some transformation rules



302 Cheikhrouhou et al.
4.4. Verification stage

Depending on a BP complexity, software testing and/or manual checks could turn out in-
sufficient and hence, time constraints violations could still arise. To address this concern,
we propose model checking as an accurate and exhaustive verification alternative [2]. The
BP engineer checks the correctness of the time-constrained, TPN-based process model
using a model checker like TIme petri Net Analyzer (TINA) [3].

If the check reports any temporal violation, a list of violations (could be based on
counter-examples) is reported and the designer is referred back to the placement stage. At
this stage, a threshold could be put to limit the number of times the designer has to initi-
ate this stage. Otherwise, the designer proceeds with executing the BP. Violations at this
stage could refer to deadlocks due to temporal inconsistencies (e.g., a task minimum du-
ration exceeding the maximum delay of initiating a dependent task) and missed deadlines
(e.g., process ending in 5h but the designer has set 4h as a maximum).

Concretely, we formally verify a TPN-based process model with respect to the follow-
ing properties: deadlock freshness, process deadlines, and data freshness. These properties
are written in State/Event Linear time Temporal Logic (S/E LTL [17]).

— O (- dead) : to check that a process is free of deadlocks.

— ¢ (- notdeadline_process) : to verify if a deadline has been met. This means that
notdeadline_process place (associated with an observer for the deadline property) is
false throughout the whole path leading to this place.

— O (- notfresh_data) : to verify if the freshness time f9?'® related to data; has been
met. This means that notfresh_data place (associated with an observer for the fresh-
ness property) is false throughout the whole path leading to this place.

The verification of the latter properties on the generated TPN of the case study reports
that the process is deadlock free, and meets the deadline (18 minutes), and all data respect
their freshness constraints.

Despite the virtues of design-time model-checking that could guarantee certain free-
of-time violations, many run-time events and actions could happen triggering such viola-
tions. For instance, expected duration times could suddenly change due to power outage
and hence, raising questions about the validity of design-time model-checking. To this
end, we propose run-time verification to monitor process execution. In other words, ver-
ification at design-time is “preventive” rather than “curative”, which backs our run-time
verification.

5. Run-time verification

During execution, current time values like duration and freshness may change resulting
into gaps with the estimated values and thus, can violate time constraints (e.g., a high la-
tency can make data obsolete and a late data arrival can delay a task execution). Thus, BP
instances need to be continuously monitored to ensure the satisfaction of their time con-
straints at run-time. In this section, we detail further run-time’s different stages (Fig. 2).



Time-constrained business processes 303

5.1. Execution stage

A BP instance runs on top of an execution engine that assigns tasks to persons/machines,
transfers data between tasks, stores data, etc. Both the time-constrained process model and
the placement map constitute inputs to the execution stage that continuously updates the
log repository that contains details about instances execution like instance id, exchanged
data, and execution outcome (success or failure).

5.2. Ongoing verification stage

Because of the dynamic nature of environments in which BP instances are executed, we
adopt thresholds that would give engineers some leeway (i.e., extra time) prior to raising
the violation flag. In project management [15], this leeway is known as slack time. We
tap into our previous work on service execution [11] to define thresholds with respect to
a constraint satisfaction model that captures both task duration and data transfer that im-
pacts data freshness (Constraints (4) to (13)). Our objective is to recommend a maximum
threshold for task duration while guaranteeing data freshness.

maximize Duration(t;) 4

Aggt, e (Duration(t;)) < deadline,Vt; € T 5)

e(t;) < s(ty),Vtp € T,t; € Pd(tx) (6)

Duration(t;) = EstimatedDuration(t;),Vt; € T,i # j @)
s(t;) + Duration(t;) = e(t;),Vt, € T 8)

e(t;) + MinD < s(tx), VT D(FS,t;,ty, MinD, MaxD) € TD 9
s(ty) <e(t;) + MaxD, Y TD(FS, t;,tx, MinD, MaxD) € TD (10)
e(t;) + Transfer(d;) < s(tx), VYV DD(d;, t;, tg, hi, hi) € DD (11)
Duration(t;) € [EstimatedDuration(t;), deadline] (12)

st;, et; € [0, deadline],Vt; € T (13)

The maximum threshold of each task ¢; is equal to its maximum allowed duration
value (i.e., Duration(t;)). Constraint (5) guarantees that the global duration constraint is
satisfied. The aggregation function Agg depends on the distinguish characteristics of qual-
ity attributes (i.e., additive, average, multiplicative, and max-Operator) and the structure
of the BP (i.e., structural patterns involved such as sequence, parallel, choice, and loop).
Here, the duration is considered as max-operator quality attribute. Hence, the aggregation
function is as follows:

n
- Aggt,eT(Duration(t;)) = >, Duration(t;) for sequence patterns where n is the
number of tasks in the sequelicé pattern.
- Aggi,eT(Duration(t;)) = mazx_{Duration(t;)} for parallel patterns where n is
the number of tasks in the parallel pattern.
- Aggi,eT(Duration(t;)) = Duration(t)) for choice patterns where ¢, is the se-
lected task in the choice pattern.



304 Cheikhrouhou et al.

- Aggi,e7(Duration(t;)) = a;Duration(t;) for loop patterns where «; is the num-
ber of loops of the task ¢;.

Constraint (6) deals with dependencies between tasks where Pd(tx) denotes the set
of immediate predecessors of the task ¢; and s(¢;) and e(¢;) denote the start time and
end time of the task ¢;, respectively. The duration of each task ¢; is equal to the estimated
duration specified at design time (Constraint (7)). Moreover, the end time of each task ¢;
is equal to the sum of its start time and its duration (Constraint (8)). To deal with tempo-
ral dependencies between tasks, we use Constraints (9) and (10) where 7D is the set of
temporal dependency. For simplicity, we consider only finish-to-start dependencies. Con-
straint (11) guarantees data freshness where DD is the set of data dependencies between
tasks. DD(data;, t;, ti, hi, hi,) denotes the data dependency between the task that pro-
duces the data data; (i.e., task ¢;) and the task that consumes the data data; (i.e., task tj)
when t; is executed in the host k] and ¢ is executed in the host hj. The time required
to the transfer of the data data; from t; to t is denoted by Transfer(data;). The do-
main of the maximum duration threshold and the start and the end time are presented in
Constraints (12) and (13), respectively.

The maximum threshold of each task ¢; is denoted by T . During execution, if one of
the maximum thresholds is exceeded, the global duration is violated and thus, corrective
actions should be taken which will be discussed in the ongoing placement stage. We note
that maximum thresholds have to be recomputed after each violation.

In conjunction with the maximum thresholds, we identify a set of intermediary thresh-
olds for all tasks. They are used to trigger placement actions prior to a global constraint
violation. Each time a deviation exceeds an intermediary threshold, the placement of tasks
is adjusted so, that, possible violations in the remaining non-executed tasks can be either
reduced or prevented. The aim is to avoid delaying the placement until a violation of a
global constraint occurs on the one hand, and, on the other hand avoid triggering place-
ment actions each time a violation is observed, which can decrease the efficiency of the
proposed approach. The intermediary threshold of each task ¢; is denoted by T}/ that is
the average between the estimated duration value (before the execution) and the maximum
threshold of the same task.

5.3. Ongoing placement

To ensure a continuous execution of the different BP instances while guaranteeing the
satisfaction of all constraints, the BP instances need to continuously react to varying con-
ditions during execution. We present hereafter the ongoing placement of tasks and data
each time a deviation of an intermediary threshold or a violation occurs. To enhance the
efficiency of the placement, we identify a set of alternative hosts for each task. Thus, a
local placement can be easily applied to change the placement of tasks/data and guar-
antee the satisfaction of the different constraints. In case of a deviation/violation during
execution, we propose to change the host of one or more tasks using the alternative hosts.
We note that alternative hosts are updated and re-identified during execution each time a
change occurs in the BP instances.



Time-constrained business processes 305

Alternative hosts Prior to execution, we define a set of alternative hosts for each task t; €
T denoted by H ;. Alternative hosts should satisfy the maximum thresholds of their cor-
responding tasks. Hence, an alternative host h; € H,;; enables to execute task ¢; to start
and end its execution without exceeding the maximum temporal thresholds (i.e., Duration(t;) <
TZ-M ) and guarantee the freshness of data. In fact, since we check the satisfaction of the
transfer time when computing maximum thresholds (Constraint (11) in the model from
Constraints (4) to (13)), all hosts that satisfy the maximum thresholds will guarantee the
satisfaction of the task duration and data freshness at the same time. A host /; that satisfies
the maximum thresholds of its corresponding task is denoted by (h; sat 7). Contrarily,
—(h; sat TM) denotes that the maximum threshold is not satisfied by the host /. In this
latter case, the host will not be considered in the set of alternative hosts of its correspond-
ing task. We note that the set of alternative hosts is updated each time a deviation or a
violation occurs to take into account the new values of the duration of the already exe-
cuted tasks and the new values of the maximum thresholds. We rank the set of alternative
hosts based on the duration of the execution of the tasks in each host. Hence, the host that
guarantees the minimum execution duration will be ranked first and so on. We denote by
Duration(t;)" the execution duration of the task ; when it is executed in host h;.

Changing hosts We denote by PM™* = {hj,...,h{,..., hs} the placement map with h}
is the selected host for the task ¢;. By ongoing placement denoted by PM .., we refer to
changes in the placement map.

Algorithm 1 handles changes in the ongoing placement map. If the execution time
of task t;, while being executed in host h; deviates but does not exceed the intermediary
threshold (Til ), then this will not affect affect the placement map (lines 4 to 6). If the devi-
ation is between the intermediary and maximum thresholds (line 7), then we proceed with
first, the maximum thresholds and the set of alternative hosts H,;:; are updated for each
non-executed task considering the values of the already executed tasks (lines 8 and 9)
where T}, denotes the set of non-executed tasks. We note that when updating the thresh-
olds, the execution duration of the already executed tasks are considered in the constraint
satisfaction model from (4) to (13) (Section 5.2). Moreover, the set of alternative hosts
is updated by identifying the new alternative hosts based on the new values of maximum
thresholds. Then, if the first alternative host guarantees a better execution duration than the
initial selected host, it will be considered in the ongoing placement map (lines 10 to 12)
where h} denotes the best host for the task ¢; when considering the already executed tasks.
The aim of this step is to avoid the accumulation of deviations during execution in order
to prevent possible violations. If a violation exceeds the maximum threshold (line 15),
then, the ongoing execution is no more satisfactory. In this case, we update the maximum
thresholds and alternative hosts for the non executed tasks (line 17). If there is at least one
host in the set of alternative hosts for a non-executed task, the selected host of this task
will be substituted by the first alternative host (lines 18 to 23).

If the ongoing placement is modified, all thresholds and alternative hosts for all non-
executed tasks will be updated (lines 26 to 30).



306 Cheikhrouhou et al.

Algorithm 1 Ongoing placement

: Input: Monitoring results of task ¢;, the placement map PM ™
: Output: The new placement map P M.,
PM}., =0
- if (kS sat T) then
PMy., = PM*
end if
if —(hs sat T ) and (h; sat T*) then
for each t; € Ty, do
update(TM |, Hapis)
if Duration(ti)hZl < Duration(t;)" then
PM;e, = PM*\ {h} U {hi}
end if
end for
: end if
. if (S sat TM) then

R I o T

—_— e
AN S A el

16: while PM;,,, =0 andt; € T,. do
17: update(TL-M, Haiti)

18: if Hyit; # () then

19, PM;,,, = PM*\ {h{} U {h!}
20: break;

21: else

22: move to 1541

23: end if

24: end while

25: end if

26: if PM;,., # () then

27: for each t; € Ty, do

28: update(TF, TM , Haie)

29: end for

30: end if

6. Implementation

This section discusses the implementation work that was carried out in terms of experi-
ments and performance evaluation. In compliance with how our approach is designed, we
discuss the implementation at design-time and then run-time.

6.1. Design-time implementation

We extended the work we presented in [13] that resulted into the development of an
Eclipse plug-in. Using this plug-in, a designer represents a BP’s 2 things: needs of re-
sources (cloud and/or edge resources) and time-constrained activities. Next, a source
model is generated as an XML document. In our work, we focused on implementing rules
that transform BPs into TPN. This is done using an XSLT file containing the transforma-
tion rules. Fig. 4 exhibits an XSLT excerpt that transforms a SS temporal dependency into
2 places and 1 transition with a delay of minFE and maxFE.



Time-constrained business processes 307

<xsl:when test="§typeTD—'StartToStart ST '">
<xsl:element name="place">

<xsl:element name="place">

<xsl:element name="transition">
<xsl:attribute name="id">

<name>
<delay>
<interval closure="closed" xmlns="http://www.w3.org/1998/Math/MathML">
<cn><xsl:value-of select="SminFE"/></cn>
<cn>»<xsl:value-of select="SmaxFE"/></cn>
</interval>
<graphics>
<xsl:element name="offset">
<xsl:attribute name="x"><xsl:valus-of sslect="0"/></xsl:attribute>
<xsl:attribute name="y"><xsl:value-of select="-10"/></xsl:attribute>
</xsl:element>
</graphics>
</delay>
<graphics>

</xsl:element>
<xsl:element name="arc">

<xsl:element name="arc">

<xsl:element name="arc">

<xsl:element name="arc">
</xsl:when>

Fig. 4. Transformation rule of a SS temporal dependency as XSLT

The result of the transformation is an XML document that describes the generated
TPN. An example of this TPN based on the drone delivery is given in Fig. 5. datalEdge
and datal Cloud places and Tlatencyl transition labeled by the time interval [latencyEC,latencyEC]
specify data transfer time between t_4 (running on edge) and t_5 (running on cloud). We
consider “latencyEC” equals to 200 milliseconds as latency edge to cloud. StartMax2 and
EndMax?2 places and FS2 transition labeled by the time interval [m2,M2] with m2= 1
millisecond and M2= 8 milliseconds specify a temporal dependency constraint between
t-4 and t_8.

Finally, we formally verify the matching between the activities, temporal constraints,
and resource temporal constraints. The generated TPN are the inputs for the TINA model
checker.



308 Cheikhrouhou et al.

[m1,M1]
Staft t1 Endtl StartMaxl EndMax1 Start t2 End t2 seq211
O—1HFO=HOLHO Q)
[0f0] t1 [d1,d1] [0,0] 2 [d2,d2]
seq3l
[0,0 seq13 Start 3 End t3
Diverding_ParfallelGateway1 X t3 [d3,d3]

[m2,M2]
StartMax2 Fs2 EndMax2

[latencyEC,latencyEC] .
e dataiCloud __ [latencyCE,latencyCE]
datajCloud

End t5 seq56  Start t6

p15 b
5 [d5.ds] 0ol  p14 [dod Zenaaotsdhaz :
[fd45,fd45] seq8g Start t9 1871067 (ere el
deaglline
‘ End t9
[0,0] p20

. [deadline,deadline] [d9,d9]
‘ notdeadline_process

Fig. 5. Generated TPN of the drone delivery BP

6.2. Run-time implementation

We investigated how our approach behaves at run-time. First, we evaluate the success
rate (I suggest to remove this. This is not the definition of success rate. i.e., converging
“quickly” to optimal solution) and computation time. Thus, constraints (4) to (13) and
algorithm 1 were used to test a BP of 9 tasks generated randomly. As candidate hosts, we
used a mono-cloud with multiple VMs and 10 edges respectively. Constraint satisfaction
models are implemented using the constraint solver Choco’.

First, the success rate is compared to First In First Out (FIFO), in which, the first come
host is first assigned to task without taking into account the host that has the best duration
and the replacement of hosts is delayed until a global violation occurs which can affect the

5 http://www.emn.fr/z-info/choco-solver/



Time-constrained business processes 309

execution of tasks contrarily to our approach which allows enhancing the selected hosts
during execution as soon as a deviation occurs.

Fig. 6 depicts the success rate in response to the number of deviations in process
tasks which are generated randomly at run-time. All deviations are assumed to be less
than the maximum thresholds (see subsection 5.2). The positions of deviations are gener-
ated randomly. Experimental results show that our approach has a higher success rate in
comparison to FIFO approach. Indeed, it reacts to changes as soon as they occur which
increases the likelihood to find a solution. In contrast to FIFO, it might be the case where
no solution is found after a violation which can be caused by multiple deviations.

Random deviations in tasks execution

100

M Qur approach
FIFO approach
0
1 2 3 4 5 6

Number of deviations

Success Rate (%)
B D [}
o o o

N
o

Fig. 6. Success rate versus number of deviations

Second, we calculate the computation time of our approach. It takes between 7 and
200 milliseconds to find a solution. These time values are taken while considering random
task violations exceeding the maximum thresholds and thus, hosts changing is mandatory
to guarantee the satisfaction of all process constraints. Indeed, solutions can be found by
changing hosts using the alternative hosts (see subsection 5.3). In addition, new placement
actions are taken as soon as deviation occurs in parallel to the execution and does not cause
the interruption of the execution. Results show that the computation time of our approach
is “negligible” compared to the deadline of the expected process. Results also show that
the computation time increases proportionally to the number of deviations in the process.

7. Related work

Our related work consists of 2 parts. The first part is about BP formal specification. The
second part is about BP allocation into clouds. Many works in the literature address the
issue of defining BP formal specification. First, Dijkman et al. in [9] propose a formal
BPMN semantics defined in terms of a transformation to standard PN. The transforma-
tion has been implemented as a tool that generates Petri Net Markup Language (PNML)
code. But, the authors do not consider any temporal dimension in their analysis. Rachdi et
al. [19], propose an approach that takes into account time concepts in BPMN processes.
They present a formal semantics of BPMN defined in terms of transformation to TPN but



310 Cheikhrouhou et al.

without taking into consideration of temporal constraints as in our work nor the notion of
resources. Cheikhrouhou et al.[7, 8] address the problem of formal specification and ver-
ification of temporal constraints of activities using timed automata. But, resources were
not considered. Hachicha et al [12] extend of the BPMN meta-model to optimally man-
age cloud resources. They formalize the resources consumed using a shared knowledge
base. Therefore, the authors propose a semantic framework for BPs enriched by cloud
resources. However, the temporal perspective for BPs is out of reach.

Several works have addressed the specification and formal verification of cloud re-
sources in BPMN. Boubaker et al.[4] validate the consistency of the allocation of cloud
resources using Event- B. The latter is used to formally specify cloud resource allocation
policies in business process models and to verify its accuracy based on user requirements
and resource properties. However, in this work, BPs are not enriched by time constraints.
Ben Halima et al. [13] formally specify temporal constraints on pricing strategies for
cloud resources, especially virtual machines, and on BPMN activities. This specifica-
tion is translated into timed automata to formally verify the correspondence between the
time constraints of the business process and the cloud resources. But, this work does not
deal with constraints on process data nor support automatic BPMN mapping to timed
automata, which can lead to errors during the transformation. Several searches extend
BPMN with time constraints and cloud resource perspectives and use formal verification.
Watahiki et al. [21] extend BPMN to handle time constraints. They also provide an au-
tomatic mapping of extended BPMN to timed automata. This approach aims to verify
certain characteristics, such as deadlock. However, the scope of this article is limited to
a small subset of BPMN elements. In addition, the extension proposed in this work gives
specific temporal constraints to a single task of the business process model and does not
take into account time constraints related to a set of activities such as temporal depen-
dency. There is previous research that aims to check whether the selected cloud resource
meets the time constraints of business processes. Du et al.[10] propose to dynamically ver-
ify the temporal constraints of multiple simultaneous business processes with resources.
However, the work does neither deal with data flow and their temporal constraints, nor
with edge resources. While almost works in the litterature focus only on control flow
verification, process data flow modeling is of similar importance. In [1], the approach
generates a PN process model that captures the control flow along with data aspects of
BPMN process models. The approach detects data-flow errors in BPMN 2.0 process mod-
els, such as missing or unused data and possible deadlocks in the PN model. However, the
approach does not deal with temporal constraints on process data. The approach in [18]
focuses on the resource allocation problem in fog computing based on Priced Timed Petri
nets (PTPN). Provided with a group of pre-allocated resources, the designer can choose
the satisfying resources autonomously while considering both the price and the cost to
execute a process’s tasks as the credibility evaluation of both users and fog resources.
From one hand, the constructed PTPN models of process tasks does not deal with tem-
poral constraints of the process such as deadline nor with cloud resources and the delay
caused by data transfer from one host to another. Furthermore, the PTPNs were used as
a formal background for a proposed algorithm that predicts task completion time. Thus,
no formal verification is proposed and simulation results are presented. To the best of our
knowledge, there is no research attempts to verify process models while addressing both



Time-constrained business processes 311

cloud and edge resource allocation, data flow aspects, and their temporal constraints. Such
verification is scarce at both design-time and run-time.

8. Conclusion

This paper presented an approach to specity, verify, and deploy BPs in a mono-cloud,
multi-edge context. These BPs are bound to time constraints whose satisfaction requires
placing their tasks and data in the appropriate hosts, whether cloud, edge, or either. This
placement is continuous because of the dynamic environment in which BPs are expected
to execute. Indeed, communication networks could become jammed and some computa-
tion resources could become unavailable. Either reason could lead to delays in executing
tasks and/or transferring data. Delays raise time violations, which themselves mean penal-
ties of all types, financial, market share loss, etc. Our specification, verification, and de-
ployment approach happens at both BP design-time and BP run-time involving different
stages such as specification, ongoing placement, verification, and execution. One of the
run-time stages, ongoing placement, included a set of thresholds that give BP engineers
some leeway (i.e., extra time) prior to raising any violation flag. In term of future work,
we would like to extend the proposed approach to deal with several simultaneous changes
in a BP’s tasks and data placement and propose strategies to handle potential conflicts be-
tween corrective actions. Furthermore, we aim to further compare our approach to other
approaches that suggest backup solutions.

References

1. Ahmed Awad, Gero Decker, and Niels Lohmann. Diagnosing and repairing data anomalies in
process models. In Stefanie Rinderle-Ma, Shazia Sadiq, and Frank Leymann, editors, Business
Process Management Workshops, pages 5—16. Springer Berlin Heidelberg, 2010.

2. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

3. Bernard Berthomieu and Francois Vernadat. Time petri nets analysis with TINA. In Proceed-
ings of the Third International Conference on the Quantitative Evaluation of Systems (QEST.

4. Souha Boubaker, Walid Gaaloul, Mohamed Graiet, and Nejib Ben Hadj-Alouane. Event-b
based approach for verifying cloud resource allocation in business process. In Proceedings of
the 2015 IEEE International Conference on Services Computing, SCC, pages 538-545, 2015.

5. Saoussen Cheikhrouhou, Nesrine Chabouh, Slim Kallel, and Zakaria Maamar. Formal specifi-
cation and verification of cloud resource allocation using timed petri-nets. In Proceedings of the
New Trends in Model and Data Engineering - MEDI 2018 International Workshops, DETECT,
MEDI4SG, INCFS, REMEDY, Marrakesh, Morocco, October 24-26, 2018, pages 40-49, 2018.

6. Saoussen Cheikhrouhou, Nesrine Chabouh, Slim Kallel, and Zakaria Maamar. Transformation
of timed BPMN busines processes and cloud resources into timed Petri-Nets. Technical report,
http://www.redcad.tn/projects/bpmn2tpn/technicalreport-0618.pdf, 2018.

7. Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel. Toward a
time-centric modeling of business processes in BPMN 2.0. In The 15th International Con-
ference on Information Integration and Web-based Applications & Services, IIWAS, page 154,
2013.

8. Saoussen Cheikhrouhou, Slim Kallel, Nawal Guermouche, and Mohamed Jmaiel. The temporal
perspective in business process modeling: a survey and research challenges. Service Oriented
Computing and Applications, 9(1):75-85, 2015.



312 Cheikhrouhou et al.

9. Remco M Dijkman, Marlon Dumas, and Chun Ouyang. Formal semantics and analysis of
bpmn process models using petri nets. Queensland University of Technology, Tech. Rep, 2007.

10. YanHua Du, PengCheng Xiong, YuShun Fan, and Xitong Li. Dynamic checking and solution
to temporal violations in concurrent workflow processes. IEEE Transactions on Systems, Man,
and Cybernetics-Part A: Systems and Humans, 41(6):1166-1181, 2011.

11. L. Guidara, I. Al Jaouhari, and N. Guermouche. Dynamic selection for service composition
based on temporal and qos constraints. In 2016 IEEE International Conference on Services
Computing (SCC), pages 267-274, June 2016.

12. Emna Hachicha and Walid Gaaloul. Towards resource-aware business process development in
the cloud. In Proceedings of the 29th IEEE International Conference on Advanced Information
Networking and Applications, AINA, pages 761-768, 2015.

13. Rania Ben Halima, Imen Zouaghi, Slim Kallel, Walid Gaaloul, and Mohamed Jmaiel. Formal
verification of temporal constraints in business processes and allocated cloud resources. In
Proceedings of the 32nd IEEE International Conference on Advanced Information Networking
and Applications, AINA, 2018.

14. Slim Kallel, Zakaria Maamar, Mohamed Sellami, Noura Faci, Ahmed Ben Arab, Walid
Gaaloul, and Thar Baker. Restriction-based Fragmentation of Business Processes over the
Cloud. Concurrency and Computation: Practice and Experience, 2019.

15. Olivier Lambrechts, Erik Demeulemeester, and Willy Herroelen. Time slack-based techniques
for robust project scheduling subject to resource uncertainty. Annals OR, 186(1):443-464,
2011.

16. Z. Maamar, B. Thar, N. Faci, E. Ugljanin, M. Al Khafajiy, and V. Burégio. Towards a Seamless
Coordination of Cloud and Fog: Illustration through the Internet-of-Things. In Proceedings
of the 34th ACM/SIGAPP Symposium On Applied Computing (SAC’2019), Limassol, Cyprus,
2019.

17. Madhavan Mukund. Linear-time temporal logic and bchi automata, 1997.

18. Lina Ni, Jinquan Zhang, Changjun Jiang, Chungang Yan, and Kan Yu. Resource allocation
strategy in fog computing based on priced timed petri nets. IEEE Internet of Things Journal,
4(5):1216-1228, Oct 2017.

19. Anass Rachdi, Abdeslam En-Nouaary, and Mohamed Dahchour. Liveness and reachability
analysis of BPMN process models. CIT, 24(2):195-207, 2016.

20. Ruben Van den Bossche, Kurt Vanmechelen, and Jan Broeckhove. Cost-optimal scheduling in
hybrid iaas clouds for deadline constrained workloads. In Cloud Computing (CLOUD), 2010
IEEE 3rd International Conference on, pages 228-235. IEEE, 2010.

21. Kenji Watahiki, Fuyuki Ishikawa, and Kunihiko Hiraishi. Formal verification of business pro-
cesses with temporal and resource constraints. In Proceedings of the IEEE International Con-
ference on Systems, Man and Cybernetics, Anchorage, Alaska, USA, October 9-12, 2011, pages
1173-1180, 2011.

22. Mathias Weske. Business Process Management - Concepts, Languages, Architectures, 2nd
Edition. Springer, 2012.

23. Xun Xu. From cloud computing to cloud manufacturing. Robotics and Computer-Integrated
Manufacturing, 28(1):75 — 86, 2012.

Saoussen Cheikhrouhou obtained her diploma of engineering in 2009 and master degree
in computer science in 2010 and her Ph.D. in 2015 from National School of Engineering
of Sfax (University of Sfax, Tunisia). She joined the Faculty of Economics and Manage-
ment (Tunisia) as Associate Professor of Computer Science in 2015. Her research interests
include the business process management field and Time-aware Business Processes. More



Time-constrained business processes 313

details are available on her home page:
http://www.redcad.org/members/saoussen.cheikhrouhou/

Slim Kallel obtained his diploma of engineering and masters degree in computer science
from National Engineering School of Sfax (University of Sfax, Tunisia) in 2005 and his
Ph.D. from Darmstadt University of Technology (Germany) in 2011. He joined the Uni-
versity of Sfax as Assistant Professor of Computer Science in 2009. He became an Asso-
ciate Professor in 2012. His work focused on the specification and the implementation of
Time-aware business process, and adaptive systems.

Ikbel Guidara is Assistant Professor at Claude Bernard University of Lyon 1 and mem-
ber of SOC research team at LIRIS-CNRS Lyon-France. Her research interests include
Service-Oriented Computing, Business Process, Quality-of-Service (QoS) driven service
selection and Internet of Things.

Zakaria Maamar is a Professor in the College of Technological Innovation at Zayed
University, Dubai, UAE. His research interests include Internet-of-Things, social com-
puting, and business process management. Zakaria has extensively published in different
peer reviewed journals and conferences, regularly serves on the program and organizing
committees of several international conferences and workshops. He also serves on the
editorial boards of many international journals.

Received: April 30, 2019; Accepted: September 12, 2019.






