
Computer Science and Information Systems 11(4):1617–1637 DOI: 10.2298/CSIS131218055K

Real-time Implementation of Foreground Object
Detection From a Moving Camera Using the ViBE

Algorithm

Tomasz Kryjak, Mateusz Komorkiewicz, and Marek Gorgon

AGH University of Science and Technology,
Krakow, Poland

{kryjak, komorkie, mago}@agh.edu.pl

Abstract. The article presents a real-time hardware implementation of a foreground
object detection for a non-static camera setup. The system consists of two parts: the
calculation of the displacement between two consecutive frames using a correlation
based corner tracker and background generation method ViBE (Visual Background
Extractor). The paper discusses details of the used hardware modules, resource uti-
lization, computing performance and power dissipation. The solution was evaluated
on sequences recorded with a static and moving camera. The system was success-
fully tested on a hardware platform with an FPGA device. It allows to process a 720
× 576 pixels and 50 frames per second video stream in real-time.

Keywords: foreground detection, background generation, background modelling,
ViBE, FPGA, real-time system, image processing, moving camera, background
compensation

1. Introduction

Detection of foreground objects is one of the most important issues in video sequences
processing and analysis. It is used in advanced, automated video surveillance, traffic mon-
itoring systems, UAV (Unmanned Aerial Vehicle) and driver assistance systems, where
the robust segmentation of peoples or vehicles is essential to perform reliable tracking
or recognition. Intensive work on the mentioned systems can be observed in the image
processing researcher community, as well as in the industry.

Foreground object detection methods can be divided into three categories: successive
frame differencing, background modelling and optical flow. In this paper, a hardware
implementation of a method belonging to the second of these categories is presented. An
extensive review of different approaches to foreground object detection can be found in
the works [4] and [5].

The concept of background modelling involves object detection based on the com-
parison between the current video frame and the background, where the background is
understood as an empty scene, i.e. without objects of interest (people, cars). It is worth
noting that foreground object detection is not just a simple moving object detection issue.
The background may contain moving elements: flowing water, moving leaves and shrubs,
which should not be detected. On the other hand, some objects (e.g. a pedestrian or a car)
may remain still for a while and should be continuously detected. Another source of seg-
mentation errors are objects that start to move (e.g. a parked car). The left empty space is

1618 Tomasz Kryjak et al.

usually misclassified as foreground (a so called ”ghost”). That is why the background rep-
resentation should be adaptive in order to compensate some normally occurring changes
such as illumination or movement of certain objects (e.g. chair in an office), as well as
handle difficult cases like ghosts. The process is referred to as background generation or
modelling.

An important feature of a foreground segmentation algorithm is the ability to work
correctly in the case of small and large movements of the camera. The first case relates
specifically to equipment mounted outside, where it is exposed to vibrations and winds.
A very good example are traffic surveillance systems mounted over roads or intersections.
Simple background modelling approaches, like running mean or median, even in case of
small displacements (e.g. 1 or 2 pixels) tend to generate a lot of false detections.

In the second case, the displacement of the camera should be regarded as intentional.
Examples are: pan-tilt-zoom cameras (PTZ cameras) and cameras mounted on-board of
aerial or road vehicles. PTZ devices allow to monitor a larger area than static ones. In
addition, the operator is able to control the camera’s movement and check some details of
the scene (using zoom) or track people.

Segmentation of objects present in sequences acquired by a moving camera is a big
challenge. In the literature, there are three approaches to the problem:

– estimation of camera motion and the use of a modified version of a background mod-
elling algorithm designed for static scenarios [27],

– optical flow based segmentation [22],
– the use of probabilistic models of the background and objects [6].

The first approach is used in the work [27], where interest points detection and the
RANSAC algorithm are applied for estimating the global displacement between consec-
utive frames. Then, on that basis a projective transformation plane is obtained and used
to warp the frame. The authors also proposed a background generation method based on
a statistical analysis of the pixel frequency in the overlapping patches of the sequence.
A similar, but more advanced system is described in the work [1]. Additional elements
are scene segmentation and shadow removal.

Foreground segmentation based on optical flow vectors clustering is described in the
work [22]. A method based on probabilistic models is proposed in [6]. It assumes a manual
initialization, by defining the object (ROI) that should be segmented on following frames.
On this basis, two models for the foreground and background are developed, containing
information about the pixel position and colour. The Gaussian Mixture Colour Spatial
Model method is used. On subsequent frames of the sequence a classification is made,
then the parameters of the two models are updated, as well as the ROI is shifted.

This paper presents a hardware implementation of a foreground detection method for
sequences obtained with a moving camera in an FPGA device. It is based on the estimation
of the camera movement using interest points tracking and background modelling with
the ViBE (Visual Background Extractor) algorithm. To our best knowledge, this is the
first implementation of this approach in reprogrammable devices. The proposed system
allows real-time processing for a video stream with resolution of 720× 576 pixels and 50
fps. The solution was positively verified on the VC 707 development board with Virtex 7
FPGA device, connected to a HDMI camera.

In Section 2 the most representative hardware implementations of foreground detec-
tion algorithms are briefly described. The ViBE algorithm is presented in Section 3. The

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1619

proposed solution i.e. the displacement estimation and modification to the ViBE algo-
rithm, as well as an evaluation are discussed in Section 4. The implemented hardware
system and its integration on the VC707 development board is described in detail in Sec-
tion 5. The article ends with a conclusion and an indication of possible future research
directions.

2. Hardware implementation of foreground object detection
algorithms

Background generation and foreground object detection is a key operation in many vision
systems. Because it is computationally demanding, it was willingly implemented in FPGA
devices, which allow massive parallelization. Over the years, with the emergency of new
FPGA devices families, the implemented algorithms evolved from simple, able to process
low resolution video stream only, to highly sophisticated and very accurate methods able
to process Full HD video stream. Since the full review of all hardware implementations
of background generation algorithms would require a separate article, in this section the
state-of-the-art implementations in terms of throughput and accuracy from the last two
years only are described. A more extensive review was provided in [17].

A hardware implementation of running average based background generation algo-
rithm was presented in [26]. Authors reported the processing speed of 368 frames in sim-
ulation and 51 frames per second for resolution 640× 480 pixels in real hardware system
(evaluation board with RAM access consideration). The quality of obtained foreground
object mask was not measured.

Genovese and Napoli presented a series of articles about hardware implementation of
the Mixture of Gaussian (MoG, GMM) algorithm: a system able to process 24 frames
of 1920 × 1080 pixel resolution on Virtex 5 device in [8], an optimized circuit, able to
process 30 frames of Full HD resolution in [7] and an FPGA and ASIC implementation,
which was able to process up to 91 frames of Full HD frames [9]. However, the hardware
implementation on an evaluation board was able to process only 20 frames of 1280× 720
pixel resolution, due to issues with external RAM transfer.

An implementation of the clustering background generation method was presented
in [17]. The system was able to generate a background for colour video stream of 1920
× 1080 image resolution. The module implemented on evaluation board processed 60
frames of Full HD video transferred by a HDMI bus.

Gomez et al. proposed a hardware architecture for background subtraction based on
the Horparsert method [21]. It was able to process 32.8 frames per second of 1024 × 1024
pixel resolution. The high level synthesis language Impulse-C was partially used, to de-
sign the system.

Hardware implementation of the Codebook method was presented in [20]. A low cost
Spartan 3 device was able to process images of 768× 576 pixel resolution with 60 frames
per second. The proposed method achieved very good accuracy compared to other hard-
ware implementations.

The visual background extractor (ViBE) method implementation on a Virtex 6 FPGA
device was presented in [15]. The system was able to work with maximum frequency of
140 MHz. The hardware realization on development board was able to process 640 ×

1620 Tomasz Kryjak et al.

480 pixel colour images with 50 frames per second. The main limitation was the external
RAM throughput.

Hardware implementation of the pixel-based adaptive segmenter (PBAS) method was
described in [16]. The presented architecture could process 50 frames of 720× 576 pixels
resolution in one second. The design was implemented on a VC707 evaluation board with
Virtex 7 device and verified on video stream received from a HDMI camera.

3. The ViBE Algorithm

The foreground object segmentation algorithm ViBE (Visual Background Extractor) was
proposed by O. Barnich and M. Van Droogrnbroeck and described in detail in [2], [3] and
[25]. It contains several innovative elements (the solution is patented) and allows to obtain
very good results, which is confirmed by a high place in the object detection algorithms
ranking [11].

The background model in ViBE consists of a set of observed pixel values. This is
an important difference compared to the most common methods, where the background
model is based on a probability distribution function. The authors of ViBE justify this
concept, pointing out the difficulties in selecting the appropriate probability distribution
and the corresponding update mechanism.

Let v(x, y) denote the pixel value in a given colour space at the point (x, y) in the
image, and vi the i-th sample from the background model. Then the model for each pixel
(x, y) is defined as a set of N samples:

M(x, y) = {v1, v2..., vN} (1)

In order to classify the pixel v(x, y) a sphere Sr(v(x, y)) of radius R centred at the
point v(x, y) is defined. The analysed pixel is considered as background, if at least #min

samples from the model M(x, y) are located inside the sphere. The distance is defined as
Euclidean and the procedure requires, in the worst case, N distance calculations and N
comparisons.

The authors proposed a method of initializing the background model using a single
video frame. This results in fast initialization and re-initialization e.g. in case of a sudden
lighting change or surveillance system reboot. In this approach, however, the temporal
context (history of the pixel) is not available, therefore, the assumption has been made
that the adjacent pixels should have similar values. The initialization procedure involves
filling the buffer M(x, y) with randomly selected samples from the pixel’s spatial context
(size 3× 3).

The disadvantage of this approach is its susceptibility to artefacts in the form of
”ghosts” – a collection of pixels classified as belonging to the foreground, but actually
not related to any real object. The background model update mechanism that eliminates
such interferences is discussed below.

The ViBE algorithm uses a conservative update approach – the background model is
modified only in the case of classifying a pixel as part of the background. On one hand,
it prevents the penetration of moving objects into the background model, but at the same
time it can lead to irreparable segmentation errors (e.g. ”empty” space left by a car which
drove away is classified as an object).

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1621

Contrary to popular background generation algorithms that use a pixel buffer approach
(average of the buffer, the median of the buffer), where the update process relays on
replacing the oldest sample by a new value (FIFO scheme), in ViBE the temporal context
is not considered. The sample, to be updated, is chosen at random. In conjunction with
the conservative approach this results in an exponential lifespan of a given sample. To
further extend the time interval, which is covered by the background model, the update is
performed with a fixed probability (1/16).

In order to counteract the negative effects of the assumed conservative approach,
a mechanism of updating the adjacent background models was proposed. It can be de-
scribed as follows. If the current pixel v(x, y) is regarded as belonging to the background,
two update procedures are executed: for the current and the neighbouring background
models. First of all, in a random fashion, it is determined whether the update should be
executed (the likelihood proposed by the authors equals 1/16). Then, in the first case the
sample to be substituted is randomly selected (1 out of N). In the second case, the neigh-
bouring model (1 out of 8 assuming a 3 × 3 context) and the sample (1 out of N) are
chosen. The selected samples are then replaced by the value v(x, y).

It is worth noting that the ViBE method requires very few parameters. The authors
proposed the following values: N = 20 (number of samples in the model), R = 20 (the
radius of the sphere, value for greyscale images), #min = 2 (the minimum number of
samples, which must lie within the sphere) and the update probability (1/16).

In the paper [3] the authors of the ViBE algorithm discussed its properties in the case
of video sequences acquired with a moving camera. They concluded that the proposed
background model, which has some ”spatial blur” (i.e. the ability to propagate samples
from adjacent locations), allows to compensate for small movements and camera shaking.
Moreover, they presented a modification to the method, that allows for proper segmenta-
tion in case of large displacement such as the use of PTZ or freely moving cameras. To
calculate the relative displacement between successive frames the average optical flow
obtained from the Lucas-Kanade [18] algorithm was used. The motion vectors were de-
termined only on a regularly spaced grid. The background model was shifted according
to the obtained vector. This was done in the context of a model constructed for the whole
scene (global model). Locations that appeared for the first time were initialized using the
above described one frame procedure. The presented in the paper preliminary results, as
well as provided exemplary videos indicated that the method is very promising and able
to obtain good segmentation results.

4. The proposed solution

The results presented by the authors of the ViBE algorithm [3], became the starting point
for the development of the proposed hardware system. It consists of two parts: the cam-
era displacement estimation module and modified ViBE algorithm module. It is worth
noting that the proposed solution allows operation in either static (the original version
of the ViBE algorithm) and moving camera scenarios (displacement compensation and
modification to ViBE to reduce segmentation errors).

1622 Tomasz Kryjak et al.

4.1. Camera displacement estimation

To compute the displacement between two consecutive frames a classical block matching
technique is used. Some preliminary tests showed, that in most cases, it can be assumed,
that the displacement is identical for almost all pixels of the analysed image. To simplify
the computations ,it is not determined for every pixel, but only for the most distinguish-
able (good to track) pixels from a 32 × 32 rectangular block (i.e. a sparse optical flow
is calculated). This approach differs from those proposed in the work [3], where the flow
was calculated for arbitrarily selected locations (nodes on a rectangular grid). After pre-
liminary research the Harris-Stephens corner detector [12], which represents a reasonable
compromise between computational complexity and results quality was selected. Addi-
tionally it can be relatively easily realized in an FPGA device. Since the image size is
assumed as 720 × 576 pixels, 22 × 18 = 396 pixels are tracked from frame to frame. The
resultant displacement vector for the whole frame is computed as median of the particular
flow vectors.

First, a square grid of size 32 × 32 pixels is overlaid on the image. Within each of
the squares the maximum corner detector response is determined. If it exceeds a pre-
determined threshold, the point is used to calculate the optical flow. This process takes
also place within the 32 × 32 square. A 3 × 3 context surrounding the selected pixel is
compared with patches of equal size from the previous frame. As a similarity measure
the sum of absolute difference (SAD) is used. The final displacement is calculated as the
difference between the current location and the best match from the previous one (with
minimum SAD distance). The final movement is determined as the median of the resulting
optical flow vectors calculated separately for axis x and y. An example motion estimation
is presented in Figure 1.

The method has been tested on several video sequences registered with a moving
camera. It turned out that after median filtering the obtained displacement vectors were
in most cases correct. However, this approach has also some limitations. Firstly, it works
properly only in the presence of a sufficient number of interest points on the static part of
the scene. In case of a homogeneous background and the lack of an explicit texture it is not
possible to reliable determine the displacement using only video processing algorithms.
Another difficult situation is the presence of multiple moving objects in the scene. In such
case it is possible that over 50% of the detected corners will be associated with moving
object, which often differ from the background and have strong edges. Therefore, the
calculated median flow will not correspond to the actual camera movement.

It should also be noted that the method has a limited resolution – it determines dis-
placements in the range of -32 to 32 for each axis with a precision of one pixel. If the
source video sequence will be acquired with 50 or more frames per second, then the up-
per maximum displacement of 32 pixels seems to be sufficient in most cases. In contrast,
the resolution of 1 pixel is a significant limitation when the camera movement is slow.
One possible solution is the use of sub-pixel estimation, which will be investigated in
future research.

Moreover, in the current version, the full homography transformation between two
frames is not realized. Only the vertical and horizontal displacement compensation is
implemented in hardware. Others, such as camera rotation or zooming, are not supported.
The most important part of future research should consider a hardware image warping

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1623

a) b)

c) d)

Fig. 1. Example of the proposed motion estimation method. a) current frame, b) previous frame, c)
result of corner detection in 32 × 32 context – red dots detected corners, d) result of sparse optical
flow; previous location (green) and current location (red). The estimated displacement – [0 , -3].
Image sequence from an old DARPA challenge (video available on-line).

module. This would allow to achieve proper object segmentation with any camera motion,
zoom and rotation.

4.2. The Modifications Proposed to the ViBE Algorithm

In the first stage of the research on the ViBE method, the paper [25], in which the authors
propose a series of improvements to the algorithm was examined in detail. Unfortunately,
implementing most of the presented ideas cause huge difficulties or seems to be impossi-
ble in reconfigurable resources in a pipeline data processing scheme.

A software model of the algorithm was implemented in C++ using the OpenCV li-
brary [19] and examined on the IEEE Workshop on Change Detection [11] database to
evaluate the accuracy of the proposed hardware version. The database contains sequences
divided into six categories: basic, dynamic background (e.g. flowing river), camera jitter,
intermittent object motion, shadows and thermal images. In each of them 4 to 6 videos are
included. It can be concluded that the database contains sequences which cover a large
part of the situations occurring in surveillance system which are problematic to back-
ground generation algorithms. However, the main advantage of the database and a feature
that distinguishes it from other collections (e.g. Wallflower [24]), is a large number of
manually annotated reference frames (ground truths) with areas divided into 4 categories:
background, shadow, unknown, motion (foreground). This allows for a reliable assess-
ment of the algorithms in different situations. Furthermore, performance results for the

1624 Tomasz Kryjak et al.

Fig. 2. Sample test images from the changedetection.net database. Upper row – input im-
ages, bottom row column – groundtruth. First column – overpass sequence (movement in back-
ground), second column – pedestrians, third column – library (thermal image).

most state of the art algorithms are available on-line (http://www.changedetection.net/).
Sample images are presented in Figure 2.

The methodology used in the experiments can be described as follows. The object
mask computed by the algorithm was compared with the reference mask (so-called ground
truth). Because the ViBE method does not contain a build-in shadow detection proce-
dure, only two categories were considered: foreground (movement) and background. The
shadow and unknown areas were omitted in the analysis.

The following rates were calculated:

– TP (true positive) – pixel belonging to a foreground object classified as a pixel be-
longing to the foreground,

– TN (true negative) – pixel belonging to the background classified as a background
pixel,

– FP (false positive) – pixel belonging to the background classified as a pixel belonging
to the foreground,

– FN (false negative) – pixel belonging to a foreground object classified as a back-
ground pixel.

Then, based on the calculated parameters, two measures were determined: the per-
centage of wrong classifications:

PWC =
FN + FP

TP + FN + FP + TN
× 100% (2)

and precision:

P =
TP

TP + FP
(3)

One of the modifications proposed in [25] was the use of another colour space. There-
fore, three possibilities were examined: greyscale, RGB and CIE Lab. In the first two

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1625

cases the Manhattan (L1) distance metric was used. Additionally for RGB the Euclidean
(L2) metric was calculated. In the case of CIE Lab the following formula was used:

dCIELab = α · |LI − LB |+ β · (|aI − aB |+ |bI − bB |) (4)

where: LI , aI , bI – current pixel in CIE Lab colour space, LB , aB , bB – background
model sample in CIE Lab colour space, α, β - weights (in the experiments set to α = 1,
β = 1.5). The analysis of the CIE Lab colour space was performed due to good segmen-
tation results obtained in a previous work [17]. The mean performance for the whole test
database is summarized in Table 1.

Table 1. Performance of the ViBE algorithm depending on the used colour space.

Colour space Distance PWC [%] P
Greyscale L1 3.78 0.67 %

RGB L1 2.71 0.62 %
RGB L2 2.28 0.69 %

CIE Lab Eq. (4) 2.18 0.71 %

The only modified algorithm parameter was theR threshold. It was set experimentally
to obtain best PWC and P ratios. The results indicate a slight advantage of the CIE
Lab over the RGB (L2 metric and L1 metric) colour space. In addition, the hardware
implementation of Equation (4) is much easier than the Euclidean distance calculation
(square and the square root operations require large amounts of FPGA logic resources).
Therefore, in the final hardware module it was decided to use the CIE Lab colour space,
which is a modification to the original proposal from [3].

As post-processing the binary median filter (square window, size 7× 7) was selected.
It is worth noting than adding the filter significantly improves the results obtained by the
algorithm. An example is presented in Table 2.

Table 2. The impact of the post-processing median filtering on the algorithms performance. Mean
results for the whole database.

Post-processing PWC [%] P
none 2.18 0.71 %

median 7× 7 1.76 0.88 %

4.3. Adapting ViBE to moving camera

In the case of background generation for a moving camera a frequently used strategy
involves generating a ”global model” of the background, and thus covering the entire

1626 Tomasz Kryjak et al.

camera field of view. However, in this study it was decided to use a solution with lower
memory complexity, that involves storing a background model, which size corresponds to
the resolution of the processed video stream and realize a dynamic shifting.

The result of camera displacement estimation between adjacent frames is the vector
[dx, dy]. On that basis, the background model is shifted according to:

MN (x, y) =MN−1(x+ dx, y + dy) (5)

As a result, a part of the model is discarded. For another part it is necessary to perform
an initialization. The proposed in paper [2] approach involves filling the buffer M(x, y)
with randomly selected samples from the 3 × 3 spatial context. Using this solution for
initializing the area after the shift operation would be inconvenient, as the displacement
values are usually rather small (1 or 2 pixels). In such a case, it is impossible to determine
a full 3 × 3 context. Furthermore, the handling of this case, would result in quite com-
plex FPGA logic. Therefore, it was decided to use a simpler approach and fill the buffer
M(x, y) with current pixel values I(x, y).

The ViBE algorithm is well suited for use in foreground segmentation of sequences
registered with a moving camera. This is due to the specific background model, which
can consist of samples not only from the actual location, but also from neighbouring
ones (originally a 3 × 3 context). It results in a ”spatial blur” and allows to significantly
eliminate two problems related to shifting the background model: inaccurate displacement
calculation and geometric distortions related to the movement of the camera’s viewpoint.
The described version of ViBE with shifting the background model will be referred to as
mViBE.

In addition, to further reduce the negative impact of both factors it was decided to
introduce a modification to the background model update rule. Originally, in the ViBE
method a conservative approach is used, i.e. an update (modification) is preformed only
in locations considered as background. In the proposed solution this condition was weak-
ened in case when camera motion is detected (mViBE+). 1 Then, each of the samples from
the background model may be replaced by a sample from a model in a 3×3 neighbour-
hood. The update decision, as well as the selection of samples from the context is random.
The mechanism reduces segmentation errors in edge areas, mainly by ”blurring” the back-
ground model. It also accelerates penetration of foreground objects into the background,
which should be considered as a negative phenomenon.

Object segmentation in the presence of camera motion was evaluated on 10 sequences.
They were divided into three categories:

– no foreground objects, only the camera movement (C1),
– the foreground object moves, as well as the camera (C2),
– the object enters the scene and stops, then the camera starts to move (C3).

Each category allows to evaluate other property of the algorithm. In the first case the
ability to properly initiate and model the background is tested. Camera movement should
not result in object detection. The second category is typical for PTZ cameras and allows

1 a configurable delay in switching off the mechanism is introduced. For example, it runs for
10 iterations (frames) after the last detected movement. This enables to eliminate segmentation
errors more effectively.

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1627

to check the correctness of the displacement estimation in presence of a moving object,
as well as the foreground segmentation. In the last case, it is checked to what extent
the proposed update rule modification causes penetration of foreground objects into the
background model.

For each sequence a selected frame was manually annotated. In this way a reference
mask was obtained. Three options were considered: ViBE with no motion compensation
(ViBE), ViBE with motion compensation (mViBE) and ViBE with motion compensation
and additional update (mViBE+). The evaluation was performed using the same method-
ology as in 4.2. Additionally to the precision (P - Equation (3)) and percent of wrong
classifications (PWC - Equation (2)), two others measures were used, recall (R):

R =
TP

TP + FN
(6)

and F-Measure (F).

F =
2 · P ·R
P +R

(7)

The obtained results are summarized in Table 3. Sample frames and foreground object
masks from the test dataset are presented in Figure 3.

Table 3. Evaluation of the proposed solution for sequences with camera movement. Mean results
for the whole database. C1, C2, C3 – sequence category, P, R F, PWC – classification performance
measure. Both explained in text.

C1 C2 C3
P R F PWC P R F PWC P R F PWC

ViBE 0.00 — — 36.66 0.03 0.73 0.06 32.83 0.05 0.85 0.09 30.75
mViBE 0.00 — — 17.64 0.06 0.90 0.12 20.67 0.06 0.75 0.11 23.31

mViBE+ 0.00 — — 0.07 0.74 0.79 0.76 0.75 0.95 0.58 0.72 0.83

In the category C1 the proposed mViBE+ method works very well. This is evidenced
by the low PWC coefficient value and sample results presented in C1 column in Figure 3.
The case is specific, as it does not contain any foreground objects in the reference mask.
This results in a value of TP = 0 and FP = 0 and the impossibility to compute the param-
eters R and F. The other methods, ViBE and mViBE, generate significant errors. Particu-
larly interesting is the observation that only shifting the background model (mViBE) does
not provide a correct mask. The cause of errors are the previously mentioned, difficult to
avoid, inaccuracies when calculating the displacement and distortions associated with the
perspective.

In the second case, the results are similar. The ViBE and mViBE variants are charac-
terized by low precision (P) and a large value of PWC. The coefficients R and F require
a comment. The first of them reaches quite high values in each case, in addition greater in
mViBE than mViBE+. This coefficient (cf. Equation (6)) favours a mask with an excess
of objects (in particular, if the entire mask is regarded as an object, then this measure will
be 1). Therefore the F measure is more often used, as it combines precision and recall. It
takes values in the range [0, 1], where 1 represents the best performance of the evaluated

1628 Tomasz Kryjak et al.

method. The results from column C2 in Table 3 show that the value F for mViBE+ is by
far the largest.

Sequences from the third category (C3), despite the fairly good performance, show
a drawback of the proposed approach. If the object is stationary and there is camera move-
ment, an intrusion of foreground pixels into the background model can be observed. This
can be confirmed by the visual analysis of frames and the value of the parameter R, which
for the C3 set is only 0.58. The intrusion results from the modification of the conservative
update approach. When camera movement is detected the whole model is updated, also
the locations with stationary objects. These increases the number of false negative. On
the other hand, keeping the conservative approach results in much more false detections
(false positives). This can be clearly seen in Figure 3, in Column C3 when comparing
rows mViBE and mViBE+. Therefore, further research is required to eliminate this phe-
nomenon, while retaining the good properties of the approach in cases C1 and C2. The
work should concentrate in several areas: improving the camera displacement calculation
(e.g. sub-pixel estimation), adding a perspective transform (reduction of errors associated
with this phenomenon), improving the background update mechanism, as well as adding
feedback from the detection or analysis modules. Especially the last approach seems very
promising, as for example object detection using HOG + SVM (Histogram of Oriented
Gradients and Support Vector Machines) [14] should allow to significantly reduce or even
eliminate the intrusion of foreground objects (detected and recognized as e.g. human or
car) into the background model.

5. Hardware Implementation of the Proposed System

This section discuses the issues related to the hardware implementation of the foreground
object segmentation for video sequences registered with a moving camera. In particular,
consideration about implementing ViBE in FPGA devices, diagram of the entire system,
as well as descriptions of each designed component are presented.

5.1. Considerations About Implementing ViBE in Hardware

One of the main problems with implementing background generation algorithms in hard-
ware is providing a quick access to the external memory resources, where the background
model is stored [17]. In the case of the ViBE algorithm it is necessary to ensure a transfer
rate at the level of 2580 MB/s for a colour video stream with resolution 720× 576 and 50
fps (pixel clock 27 MHz). Therefore, a hardware platform equipped with an fast external
DDR3 RAM was chosen – the VC707 from Xilinx. A more detailed discussion about this
issue is presented in [15].

The ViBE method can be quite easily implemented in hardware. The distance calcu-
lation between the current pixel and the samples in the model is possible to realize in
parallel. Other operations, including the pseudo-random number generation are also fea-
sible. Quite complex is only the propagation of the current pixel value to neighbouring
models mechanism, which requires the generation of a very wide (more than N ×B bits)
context and therefore large number of delay lines - usually implemented in Block RAM
memory resources.

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1629

C1 C2 C3

input

ground
truth

ViBE

mViBE

mViBE+

Fig. 3. Sample frames, ground truth and segmentation results for each category.

5.2. Overview of the system

Schematically, the proposed system is presented in Figure 4. It consists of an HDMI
source (camera or graphic card), HDMI display (LCD screen), Avnet FMC DVI IO mod-
ule (FPGA Mezzanine Card) with HDMI input and output and VC707 development board
with Virtex 7 FPGA device (XC7VX485T) from Xilinx. The board is also equipped with
an external DDR3 RAM. In the following subsections all hardware modules are described
in detail.

1630 Tomasz Kryjak et al.

HDMI
camera rgb2grey

rgb2lab

displacement
computation

visualize
displacement

mem
ctrl

shift
background

vibe

fifo

median
filter

visualize
mask

LCD
monitor

external
DDR3 mem FPGA

FMC
DVI IO

Fig. 4. Block diagram of the designed hardware video stream processing system.

add address
within

32x32 block

frame
Harris
corner
detector

find harris
max

in 32x32
blocks

buffer
(x,y,3x3 ctx)
prev frame

fifo

gather
3x3

context

skip one
frame

extend
point

to 32x32
block

sum of absolute
differences from
two 3x3 windows

dx,dy SAD

find SAD min in 32x32 block

median x
from all blocks

median y
from all blocks

x,y
diff

Fig. 5. Scheme of the block matching based displacement vector computation module.

5.3. Camera Displacement Computation Module

The block schematic of the camera displacement computation module is presented in
Figure 5. It is using the well known block matching technique. Since the displacement of
pixels between two frames has to be computed, the module needs to store the information
between two frames. For every frame, the Harris-Stephens corner detector is used to ob-
tain points which are good to track. Each pixel is assigned a measure which is denoting
its probability of being a corner. In the same time, a 3 × 3 context of a given pixel is
gathered (classical two delay line setup is used) and its address within a 32 × 32 block is
computed.

The first step in the camera displacement module is the Harris corner detector [12],
presented in Figure 6. It requires determining the so-called Harris matrix:

H =

[
I2x ⊗G IxIy ⊗G
IxIy ⊗G I2y ⊗G

]
(8)

where: Ix , Iy – first order partial derivatives (horizontal and vertical), ⊗G convolution
with a smoothing Gaussian filter. First the derivatives are computed with a Prewitt edge

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1631

detector. Next, the obtained values are squared or multiplied, which requires 3 multi-
plications. The DSP48 multipliers, available in an Xilinx FPGA device are used. Then,
a Gaussian smoothing filter is applied for each value (I2x,IxIy ,I2y). Both Prewitt and Gaus-
sian filtering modules are implemented with the use of typical delay line scheme.

The detector response is defined as:

R = det(A)− k · trace2(A) (9)

where: k – a scaling factor (typically 0.02 - 0.2).
Computing the determinant and scaled square trace of the matrix H requires four mul-

tiplications, one addition and two subtractions. Too avoid overflow, values after Gaussian
filtering where divided by 210. The performed experiments proved that this approach does
not affect the final corner detection much and it allows to save hardware resources.

Based on the Harris detector output, the most probable point in a 32 × 32 pixel block
is found and its position within given block together with its 3×3 context window (9 pixel
values) are stored in a buffer register. If it is the first frame of the sequence, the operation
of the whole module is terminated. If however, the FIFO already stores points to match
from the previous image, they are read from the buffer and extended to a 32 × 32 block,
so that it can be compared with every 3 × 3 neighbourhood of all pixels from the new
32 × 32 block (from current image). The sum of absolute differences is computed and
the minimum is found. The position difference of the point to match from the previous
frame and its best match from the current frame is obtained ([dx, dy]). After processing
all blocks, the displacements are transferred to two modules that compute the median for
both dx and dy separately.

The proposed module is fully pipelined, only a single BRAM based FIFO is used to
store the best points to match (their 3× 3 context and position) between two frames. Since
only one pixel in the 32 × 32 block from the previous image is compared to all pixels
from the current image 32 × 32 block, the module requires only one sum of absolute
difference unit to allow uninterrupted data flow. Thanks to this, the module is fast and
resource efficient. It can however be noticed, that the tracked point may be found outside
the 32 × 32 block between two frames, which makes the matching impossible. This is
why, the module also allows to choose a point only from a 16 × 16 pixel block inside the
32 × 32 block. However, during experiments it turned out, that such situations are rare
(compared to all correct matches) and the median filter efficiently removes this error from
final displacement computation.

Median filtering of the displacement vectors is carried out using an histogram based
approach. This choice was dictated by two factors: a high maximum number of samples
(at the resolution of 720× 576 – 396), and the changing number of samples (due to differ-
ent response of the corner detector for successive frames). The use of a sorting network,

PIXEL

Prewitt
X

Prewitt
Y

mult

mult

mult

Ix
2

Iy
2

Ixy

G

G

G /2^10

/2^10

/2^10

mult

mult

add mult

sub

multR(k)

D

sub
R

Fig. 6. Scheme of the Harris-Stephens corner detector

1632 Tomasz Kryjak et al.

DIST

DIST

DIST

D

D

PIXEL

MODEL

SUM
20

MASK

RNG

AKT

P0 P0 P0

AKT AKT

AKT

P0 P1 P0

AKT_C AKT

AKT

P0 P0 P0

AKT AKT

720-3 x D

720-3 x D

UPDATED
MODEL

MEDIAN 7x7
MASK

RANDOM

P0 P1

DISPLACEMENT
INIT

MODEL

Fig. 7. Block diagram of the ViBE foreground segmentation module.

which works well in the case of context median filtering (compare section 5.4), would
require too much logical resources. In addition, the majority of them would be unused,
because normally the number of suitable corners is much less than 396.

Calculating the median value using a histogram is done in two steps. The first creates
a histogram of the displacement values ([dx, dy]). The true dual port Block RAM memory
available in FPGA devices is used. In parallel, the number of samples is counted. In the
second step, data are read from the histogram memory and added together. The median
value is the index at which the sum of the histogram values is greater or equal than half
of the number of all samples.

5.4. ViBE Foreground Segmentation Module

The ViBE module consists of three sub-modules: one responsible for the initialization of
the background model during start or restart of the system, second allowing foreground
segmentation and model update and a random number generator.

The first module consists of a 3×3 context generator, which uses a delay line approach
andN (N = 20) multiplexers responsible for the selection of the appropriate sample from
the context (1 out of 9). The selected value is then stored in the background model. The
multiplexers are controlled using a vector obtained from the random number generation
module, thus the model is randomly initialized.

The detailed diagram of the main ViBE foreground segmentation module is presented
in Figure 7. The inputs are: RNG (pseudo-random number vector), PIXEL (current pixel
in the CIE Lab colour space), MODEL (background model read from the external RAM)
and the DISPLACEMENT flag.

In the first step, in case of camera displacement (DISPLACEMENT flag set to 1),
the ”new” locations are initialized with PIXEL value in the INIT MODEL module. Then,
the distances between the current pixel and the samples from the model are calculated
and compared with the value R (DIST – realization of Equation (4)). Afterwards, it is
checked whether the number of distances less than R exceeds the #min threshold. In
the next stage, the 3 × 3 context consisting of the following signals PIXEL, MODEL
and MASK (foreground object mask) is generated. It is worth noting the significant re-
source usage of this solution – it requires the use of 28 block memory modules (Block
RAM). The delay block D allows synchronizing the pipeline. The ACT module has both

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1633

a function of a single delay and contains logic that implements the update procedure of
neighbouring models. The ACT C module is responsible for update of the model at the
central location in the context. It is actually an ACT module with additional logic used in
the proposed update mechanism working in case of camera displacement. The substitu-
tion of a background model sample with the current pixel is controlled by the variable P0
(for neighbouring pixels) or P1 (for the central pixel) and depends on the random factor
(see Section 3) which is schematically illustrated in the form of the RANDOM module.

Pseudo-random number generation (RNG) was realised using the concept described in
[23]. It is worth noting that the authors made the VHDL code of different RNG versions
available, which easy integrates with the project.

The last stage of the process is the median filtering (MEDIAN 7 × 7). The mod-
ule consists of two elements: configurable context circuit based on a delay line setup
and a sorting unit. The Batcher odd-even merge sort algorithm [13] is used for this task.
The required sorting net, supporting the desired number of input elements, is automati-
cally generated from previously developed software version of the algorithm, which stores
the input and output arguments of consecutive comparisons. This information is used by
a Matlab script, which is generating a VHDL file with the right comparator instances and
connections between them. Such approach allows an automatic generation of a median
filter that can support various window sizes and different data widths and signedness.

The updated model is stored in the external RAM and the foreground mask is dis-
played on the LCD screen.

5.5. Auxiliary Modules

A few other auxiliary modules were used in the system:

– rgb2grey – colour space conversion from RGB to greyscale, since the displacement
estimation module works on intensity only,

– rgb2lab – colour space conversion from RGB to CIE lab. More details in [17],
– mem ctrl – a DDR3 memory controller with additional FIFOs. More details in [17],
– shift background – module responsible for shifting the background model according

to the calculated displacement [dx, dy],
– visualize displacement – module allows imposing bars, which correspond with the

calculated displacement, on the display,
– visualize mask – module allows to visualize the foreground mask on the LCD monitor.

5.6. System integration

The presented system was integrated and synthesized for the Virtex 7 FPGA device us-
ing the Xilinx ISE Design Suite 14.6. The maximum operating frequency (reported after
place & route) is 120 MHz, which is more than enough for processing a 720 × 576 @ 50
fps colour stream in real-time. The power dissipation estimated with the Xilinx XPower
analyser is 3.534 W (for a 27 MHz clock used for the test video stream). The computing
performance, determined using the methodology presented in the paper [10], is over 60
GOPS (almost 17 GOPS/W). All modules were developed in VHDL or Verilog hardware
description languages. FPGA resource usage is summarized in Table 4. It is worth noting
that due to the large context used in the design and buffers required for the DDR RAM

1634 Tomasz Kryjak et al.

Fig. 8. Working system. The operator rotates the HDMI camera, so that the moving person (in the
background) is always located in the centre of the image (the overlaid red line indicates the camera
direction). The foreground mask (segmentation result) is displayed on the LCD screen. The FPGA
development board is visible in front of the LCD.

controller, the BRAM 36 (Block RAM) utilisation is quite high. On the other hand, only
15 % of slices are used by the system. Therefore, it is possible to add other image process-
ing and analysis modules e.g. tracking, detection or recognition. The compatibility of the
hardware module with the software C++ model was confirmed using the ISim simulation
tool. The working system is presented in Figure 8.

The HDMI camera operator (person on the right) tracks (keeps in the centre of the
frame) the walking person. Both images were recorded at different camera positions, as
indicated by the red lines. The video stream from the camera has 720 × 576 pixels res-
olution and a frame rate of 50 fps. In is transmitted to the FPGA board (below the LCD
screen), where it is processed in real time. The foreground segmentation results are dis-
played on the LCD monitor.

Table 4. FPGA resource usage – Xilinx Virtex 7 (XC7VX485T) FPGA device.

Resource Used Available Percentage
FF 29318 607200 4 %

LUT 6 27359 303600 9 %
SLICE 11964 75900 15 %

BRAM 36 363 1030 35 %
DSP48 83 2800 2 %

6. Conclusion

The article presents the research results on foreground object segmentation for sequences
registered with a moving camera. On the basis of preliminary experiments, as well as
analysis of previous works, a solution based on the camera displacement determination
between two consecutive frames and objects segmentation using background modelling
was proposed.

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1635

The system consist of many elements, of which the most important are: the Harris-
Stephens corner detector, a sparse optical flow calculation method utilizing a correlation
approach in 32 × 32 pixels window, histogram based median filtering of flow vectors,
background modelling with the ViBE method and median filtering of the foreground ob-
ject mask. Moreover, a modification to the background update rule in the ViBE algorithm,
that significantly improves its performance in the case of camera displacement, was pro-
posed

All modules were implemented in VHDL or Verilog hardware description language,
integrated and tested on the hardware platform VC707 with Virtex 7 FPGA device from
Xilinx. A HDMI camera was the source of a 720 × 576 @ 50 fps video stream, which
was then processed in real-time in the FPGA and the foreground mask was displayed on
the monitor. The systems performs over 60 GOPS/s with a power dissipation below 4 W.
To our best knowledge, this is the first hardware implementation of this kind of video
processing system.

In the future, further work on the system in the following areas would be advisable:
improving the displacement estimation through the use of more sophisticated interest
points detectors (SIFT, SURF) and features used in tracking (e.g. supporting SAD with
Census transform), replacing the median filtering with RANSAC algorithm, the addition
of sub-pixel estimation, adding projective transform, developing a better model update
rule and adding a feedback from a detection module. The improved system should have
a very good segmentation accuracy, especially in the case of moving human silhouettes.

Implementing the algorithm on a specialized hardware system allows to obtain real-
time performance in a small embedded device with has a low power consumption. In ad-
dition the reprogramability of FPGAs enables the continuous development and improve-
ment of the design. The proposed solution can be used in advanced, automated video
surveillance systems and other application which require a reliable foreground mask and
real-time image processing, especially for a moving camera installed on autonomous ve-
hicles or in driver assistance systems.

Acknowledgments. This work was supported by the AGH University of Science and Technology
grants no. 15.11.120.330 (first author), 15.11.120.356 (second author) and 11.11.120.612 (third
author).

References

1. Amri, S., Barhoumi, W., Zagrouba, E.: A robust framework for joint background/foreground
segmentation of complex video scenes filmed with freely moving camera. Multimedia Tools
and Applications 46(2-3), 175–205 (2010)

2. Barnich, O., Van Droogenbroeck, M.: ViBE: A powerful random technique to estimate the
background in video sequences. In: IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). pp. 945–948 (2009)

3. Barnich, O., Van Droogenbroeck, M.: ViBE: A universal background subtraction algorithm for
video sequences. IEEE Transactions on Image Processing 20(6), 1709–1724 (2011)

4. Cristani, M., Farenzena, M., Bloisi, D., Murino, V.: Background subtraction for automated
multisensor surveillance: A comprehensive review. EURASIP Journal on Advances in Signal
Processing 2010, 43:1–43:24 (2010)

1636 Tomasz Kryjak et al.

5. Elhabian, S.Y., El-Sayed, K.M., Ahmed, S.H.: Moving Object Detection in Spatial Domain
using Background Removal Techniques - State-of-Art. Recent Patents on Computer Science 1,
32–34 (2008)

6. Gallego, J., Pardas, M., Solano, M.: Foreground objects segmentation for moving camera sce-
narios based on SCGMM. In: Computational Intelligence for Multimedia Understanding. Lec-
ture Notes in Computer Science, vol. 7252, pp. 195–206. Springer Berlin Heidelberg (2012)

7. Genovese, M., Napoli, E.: An FPGA-based real-time background identification circuit for
1080p video. In: Eighth International Conference on Signal Image Technology and Internet
Based Systems (SITIS). pp. 330–335 (2012)

8. Genovese, M., Napoli, E.: FPGA-based architecture for real time segmentation and denoising
of HD video. Journal of Real-Time Image Processing 8(4), 389–401 (2013)

9. Genovese, M., Napoli, E.: ASIC and FPGA implementation of the gaussian mixture model
algorithm for real-time segmentation of high definition video. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems 22(3), 537–547 (2014)

10. Gorgon, M.: Parallel performance of the fine-grain pipeline FPGA image processing system.
Opto-Electronics Review 20(2), 153–158 (2012)

11. Goyette, N., Jodoin, P., Porikli, F., Konrad, J., Ishwar, P.: Changedetection.net: A new change
detection benchmark dataset. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW). pp. 1–8 (2012)

12. Harris, C., Stephens, M.: A combined corner and edge detector. In: In Proceedings of Fourth
Alvey Vision Conference. pp. 147–151 (1988)

13. Knuth, D.: The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-
Wesley (1998)

14. Komorkiewicz, M., Kluczewski, M., Gorgon, M.: Floating Point HOG Implementation for
Real-Time Multiple Object Detection. In: 22nd International Conference on Field Pro-
grammable Logic and Applications (FPL). pp. 711–714 (2012)

15. Kryjak, T., Gorgon, M.: Real-time implementation of the ViBe foreground object segmentation
algorithm. In: Federated Conference on Computer Science and Information Systems (FedC-
SIS). pp. 591–596 (2013)

16. Kryjak, T., Komorkiewicz, M., Gorgon, M.: Hardware implementation of the PBAS foreground
detection method in FPGA. In: Proceedings of the 20th International ConferenceMixed Design
of Integrated Circuits and Systems (MIXDES). pp. 479–484 (2013)

17. Kryjak, T., Komorkiewicz, M., Gorgon, M.: Real-time background generation and foreground
object segmentation for high defnition colour video stream in FPGA device. Journal of Real-
Time Image Processing 9(1), 61–77 (2014)

18. Lucas, B., Kanade, T.: An iterative image registration technique with an application to stereo
vision. In: In Proceedings of the International Joint Conference on Artificial Intelligence. pp.
674– 679 (1981)

19. OpenCV: Website: http://opencv.org/ (last acess: April 2014) (2013)
20. Rodriguez-Gomez, R., Fernandez-Sanchez, E., Diaz, J., Ros, E.: Codebook hardware imple-

mentation on FPGA for background subtraction. Journal of Real-Time Image Processing pp.
1–15 (2012)

21. Rodriguez-Gomez, R., Fernandez-Sanchez, E., Diaz, J., Ros, E.: FPGA Implementation for
Real-Time Background Subtraction Based on Horprasert Model. Sensors 12(1), 585–611
(2012)

22. Smith, S.: ASSET-2: real-time motion segmentation and shape tracking. In: Proceedings of the
Fifth International Conference on Computer Vision. pp. 237–244 (1995)

23. Thomas, D., Luk, W.: FPGA-Optimised Uniform Random Number Generators Using LUTs
and Shif Registers. In: International Conference on Field Programmable Logic and Applica-
tions (FPL). pp. 77–82 (2010)

Real-time Implementation of Foreground Object Detection From a Moving Camera ... 1637

24. Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of back-
ground maintenance. In: The Proceedings of the Seventh IEEE International Conference on
Computer Vision. vol. 1, pp. 255–261 (1999)

25. Van Droogenbroeck, M., Paquot, O.: Background subtraction: Experiments and improvements
for vibe. In: IEEE Change Detection Workshop. pp. 32–37 (2012)

26. Wang, Y.K., Chen, H.Y.: The design of background subtraction on reconfigurable hardware.
In: Eighth International Conference on Intelligent Information Hiding and Multimedia Signal
Processing (IIH-MSP). pp. 182–185 (2012)

27. Yao, B., Cai, X., Wei, B.: Long-term background reconstruction with camera in motion. In: 2nd
International Congress on Image and Signal Processing (CISP). pp. 1–5 (2009)

Tomasz Kryjak received MSc degree in Automatics and Robotics in 2008 and PhD de-
gree in Automatics and Robotics in 2013, both from AGH University of Science and
Technology in Krakow, Poland. From 2008 on permanent position at the Department of
Automatics and Biomedical Engineering AGH-UST, currently Assistant Professor. His re-
search is focused on image processing, analysis and recognition, advanced video surveil-
lance systems, reconfigurable FPGA systems, hardware algorithm acceleration and soft-
ware/hardware co-design. He is the author of more than 30 scientific papers.

Mateusz Komorkiewicz received MSc degree in Automatics and Robotics in 2010 from
AGH University of Science and Technology in Krakow, Poland. In the same year he
started PhD studies at the AGH-UST under the supervision of Prof. Marek Gorgon. His
main area of research is machine and computer vision with a special interest in accelerat-
ing vision algorithms using FPGA devices.

Marek Gorgon received MSc degree in Electronics and Control Engineering in 1988,
PhD in Automatic Control and Robotics in 1995 and DSc (habilitation) in 2007 all three
from AGH University of Science and Technology in Krakow, Poland. From 1994 on per-
manent position at the Department of Automatics and Biomedical Engineering AGH-
UST, currently Associate Professor. His research interests include image processing, re-
configurable devices and systems architecture, and FPGA devices and applications.

Received: December 18, 2013; Accepted: June 6, 2014.

