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Abstract. In this paper, a method of semantic representation of multi-platform 3D
content is proposed. The use of the semantic web techniques enables content repre-
sentation that is independent of particular content presentation platforms and may
facilitate content creation based on different ontologies and knowledge bases. The
proposed method significantly simplifies building 3D content presentations for mul-
tiple target platforms in comparison to the available approaches to 3D content cre-
ation.
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1. Introduction

Widespread use of interactive 3D web technologies—also on mobile devices—has been
recently enabled by the significant progress in hardware performance, the rapid growth in
the available network bandwidth as well as the availability of versatile input-output de-
vices. 3D technologies become increasingly popular in various application domains, such
as education, training, entertainment and social media, significantly enhancing possibili-
ties of presentation and interaction with complex data and objects.

However, reaching large groups of recipients of 3D content on the web requires sup-
port for a diversity of hardware and software systems and—thereby—support for a multi-
tude of available 3D content presentation platforms. Currently, wide coverage of different
hardware and software systems by 3D content presentations is typically achieved by pro-
viding separate implementations for particular content browsers and presentation tools
available on individual systems, which is generally problematic.

Conversely, compatibility of 3D content representations with various presentation en-
vironments could improve the reuse of common 3D content components and the over-
all use of 3D content. In such an approach, once 3D content is created, it can be pre-
sented using multiple platforms in different hardware and software systems. Moreover,
such approach does not require users to install additional software, but it can leverage
well-established 3D content browsers and presentation tools that may already be installed
on the users’ systems (e.g., Adobe Flash Player and WebGL or X3DOM-compliant web
browsers). Although several standardization efforts have been undertaken in the field of
3D content representation, development of 3D platforms is driven by large industry play-
ers in a competitive environment and the issue of cross-compatibility of 3D content is still
neglected, resulting in fragmentation of content and presentation technologies. This is an
important obstacle preventing the mass use of 3D content technologies on the web.
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Compatibility of 3D content with different presentation platforms can be achieved by
the use of the semantic web standards for content modeling. The research on the semantic
web aims at evolutionary development of the current web towards a distributed semantic
database linking structured content and documents of various types, such as text, im-
ages, audio, video and 3D content. The semantic description of web content makes it
understandable for both humans and computers achieving a new quality in building web
applications that can ”understand” the meaning of particular components of content and
services as well as their relationships, leading to much better methods of searching, rea-
soning, combining and presenting web content. However, the use of the semantic web
standards is not only limited to content description, but may as well cover content cre-
ation.

The main contribution of this paper is a method of semantic representation of multi-
platform 3D content. The method encompasses a semantic content model and a semantic
content transformation that permit flexible and efficient creation of 3D content for a vari-
ety of target presentation platforms, including visualization tools, content representation
languages and programming libraries. In the presented method, once the representation of
3D content is designed, it can be automatically transformed into different final presenta-
tion forms, which are suited to different 3D content presentation platforms. The selection
of the target platforms to be used is an arbitrary decision of the system designer, and it
does not affect the content design process. Referring to the semantics of particular 3D
content components and conformance to the well-established semantic web standards en-
ables 3D content representation that is independent of particular browsers and presenta-
tion tools, and permits reflection of complex dependencies and relations between content
components. Moreover, the proposed method is intended for creating content that is to
be further accessed and processed (indexed, searched and analyzed) by different content
consumers on the web, as the content may be represented with common ontologies and
knowledge bases.

The remainder of this paper is structured as follows. Section 2 provides an overview
of selected approaches to semantic and multi-platform representation of 3D content. Sec-
tion 3 introduces the new method of representing multi-platform 3D content. Section 4
outlines the implementation of the method. Section 5 explains an illustrative example of
the creation of a multi-platform 3D presentation. Section 6 presents and discusses the re-
sults of the evaluation of the method. Finally, Section 7 concludes the paper and indicates
the possible directions of future research.

2. State of the Art

The background of the proposed method covers issues related to both semantic modeling
of 3D content and multi-platform 3D content presentation, which are combined in the
proposed solution to enable efficient creation of multi-platform content presentations by
using semantic web techniques. In this section, several works conducted in both fields are
discussed.

2.1. Semantic Description and Modeling of 3D Content
Numerous works have been devoted to semantic description and semantic modeling of
3D content. The first group of works are mainly devoted to describing 3D content with
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semantic annotations to facilitate access to content properties. In [26], an approach to
designing interoperable RDF-based Semantic Virtual Environments, with system-inde-
pendent and machine-readable abstract descriptions has been presented. In [5, 6], a rule-
based framework using MPEG-7 has been proposed for the adaptation of 3D content,
e.g., geometry and texture degradation, and filtering of objects. Content can be described
with different encoding formats (in particular X3D), and it is annotated with an indexing
model. In [31], integration of X3D and OWL using scene-independent ontologies and the
concept of semantic zones are proposed to enable querying 3D scenes at different levels
of semantic detail.

The second group of works are devoted to modeling of different aspects of 3D content,
including geometry, appearance and behavior. In [19], an ontology providing a set of ele-
ments and properties that are equivalent to elements and properties provided in X3D has
been proposed. Moreover, a set of semantic properties for coupling VR scenes with do-
main knowledge has been introduced. Although the use of semantic concepts enables rea-
soning on the content created with the approach, the semantic conformance to X3D limits
the possibilities of the exchange of entire content layers including different components
and properties related to a common aspect of the modeled 3D content, e.g., appearance or
behavior.

In [36], a method of creating interactive 3D content on the basis of reusable elements
with specific roles, which enables 3D content design by non-IT-specialists has been pro-
posed. However, the solution does not employ semantic web techniques, which could fur-
ther facilitate content creation by domain experts using domain-specific ontologies and
knowledge bases. In [7, 33, 34], an approach to generating virtual words upon mappings
of domain ontologies to particular 3D content representation languages (e.g., X3D) has
been considered. The solution stresses spatial relations (position and orientation) between
objects in the scene. It enables mapping between domain-specific objects and 3D content
components, but it does not address logically complex relationships between domain-
specific concepts and 3D content components and properties, such as compositions of
low-level content properties and relations between content components by high-level
(e.g., domain-specific) elements (properties, individuals and classes) and combinations
of such high-level elements.

Several works have been conducted on modeling behavior of VR objects. In [35],
the Beh-VR approach and the VR-BML language have been proposed for the dynamic
creation of behavior-rich interactive 3D content. The proposed solution aims at simpli-
fication of behavior programming for non-IT-specialists. However, the solution does not
enable specifying and verifying semantics of particular content components, which limits
its usage. Another method facilitating modeling of content behavior [28, 29] provides a
means of expressing primitive and complex behaviors as well as temporal operators. Tool-
-supported design approach to defining object behavior in X3D scenes has been presented
in [30]. Finally, a rule-based ontology framework for feature modeling and consistency
checking has been explained in [40]. This ontology-based approach addresses mainly
modeling of elementary content animations.

The third group includes works devoted to the use of semantic descriptions of 3D con-
tent in artificial intelligence systems. The idea of semantic description of 3D worlds has
been summarized in [21]. In [4], diverse issues arising from combining AI and virtual en-
vironments have been reviewed. In [8, 23], abstract semantic representations of events and
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actions in AI simulators have been presented. In [20, 22, 39], a technique of integration
of knowledge into VR applications, a framework for decoupling components in real-time
intelligent interactive systems with ontologies and a concept of semantic entities in VR
applications have been discussed.

The aforementioned approaches address different aspects of semantic description and
semantic creation of 3D content, but they lack general solutions for comprehensive con-
ceptual modeling of 3D content, its components, properties and relations, at an arbitrarily
high (conceptual) level of semantic abstraction, which is a key to enable content modeling
by domain experts with the use of domain ontologies.

2.2. Multi-platform Presentation of 3D Content

Several works have been devoted to 3D content presentation across different hardware
and software platforms. In [24], a specific 3D browser plug-in for different web browsers
has been described. In [9], an approach to multi-platform 3D content presentation based
on MPEG-4 has been explained. In [2], an approach to multi-platform visualization of
2D and 3D tourism information has been presented. In [32], an approach to adaptation
of 3D content complexity with respect to the available resources has been proposed. In
[16], the architecture of an on-line game with 3D game engines and a multi-platform
game server has been presented. In [18], an approach to integrated information spaces
combining hypertext and 3D content have been proposed to enable dual-mode user inter-
faces, embedding 3D scenes in hypertext and immersing hypertextual annotations into 3D
scenes—that can be presented on multiple platforms on the web. In [12], an approach to
building multi-platform virtual museum exhibitions has been proposed.

The aforementioned works cover the development of 3D content presentation tools
and environments as well as contextual platform-dependent content adaptation. However,
they do not address comprehensive and generic methods of content transformation to
enable creation of multi-platform 3D content presentations.

3. Method of Multi-platform 3D Content Representation

Although several solutions have been proposed for creating multi-platform 3D content
representations (cf. Section 2.2), they do not enable general and flexible transformation
of 3D content into different content representation languages, to present it with various
content browsers and presentation tools. On the one hand, the available approaches to
multi-platform content presentation focus mainly on particular use cases (e.g., tourism
information), tools (e.g., web browsers) and formats (e.g., MPEG-4). On the other hand,
the available parsers and plug-ins to 3D modeling tools are specific to particular input
and output formats of content, and they do not provide comprehensive and generic solu-
tions for generating platform-independent content representations, in particular when the
content must be created ad-hoc or adapted to a specific context of use.

In this paper, a method of multi-platform 3D content representation is proposed.
The method enables generation of 3D content for a variety of content presentation plat-
forms. The presented solution leverages semantic web techniques to provide a generic
3D content representation that is platform-independent and to enable flexible descrip-
tion of transformation of content representations. The method includes two elements: the
Multi-Platform Semantic 3D Content Model and the Semantic Transformation of generic
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platform-independent content representation to final platform-specific content represen-
tations, which can be presented using diverse content presentation tools. The paper de-
scribes both the model and the transformation. These elements are used in combination
to provide a comprehensive method for creating multi-platform 3D presentations.

The proposed method is a part of the SEMIC (Semantic Modeling of Interactive 3D
Content) approach, which aims at automation and simplification of the 3D content cre-
ation process [14]. A key element of SEMIC is the Semantic Content Model (SCM) [10,
11, 13]. SCM is a collection of ontologies that enable platform-independent semantic rep-
resentation of 3D content at different levels of abstraction—low-level concrete content
representation, which reflects elements that are directly related to 3D content, and ar-
bitrarily high-level conceptual content representation, which reflects elements that are
abstract in the sense of their final representation and not directly related to 3D content.
The representations are linked by semantic representation mappings.

Concrete content representations conform to the Multi-layered Semantic Content Model
(ML-SCM – proposed in [10]), which is a part of SCM. ML-SCM represents 3D con-
tent (objects or scenes) using semantic concepts, which are specific to 3D modeling and
which are grouped into several partly dependent layers—geometry layer, structure layer,
appearance layer, scene layer, animation layer and behavior layer—enabling separation of
concerns between distinct aspects of 3D content modeling. The model encompasses con-
cepts (classes and properties) widely used in well-established 3D content representation
languages and programming libraries, such as X3D, VRML, Java3D and Away3D.

An outline of the proposed method of multi-platform 3D content representation is
presented in Fig. 1. Platform-independent 3D content representations (PIRs) are seman-
tic knowledge bases, which conform to ML-SCM. PIRs are processed by a compiler that
implements semantic transformation of PIRs to platform-specific 3D content represen-
tations (PSRs). PSRs are documents encoded with arbitrarily selected 3D content rep-
resentation languages, thus PSRs may be presented using various 3D content browsers
and presentation tools. A transformation of PIRs to PSRs, which need to be compatible
with a particular content presentation platform, is performed with regards to a transfor-
mation knowledge base (TKB) and a template base (TB) that have been designed for this
platform. A TKB describes transformation rules that allow for the creation of final PSRs
based on primary PIRs. A TB is a set of parametrized templates (fragments of code) of
a content representation language, which are combined during content transformation to
produce a final PSR (encoded in the language). In the proposed method, once a PIR is
created, it may be automatically transformed to PSRs, which are presentable on different
platforms, for which appropriate TKBs and TBs have been developed.
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The following two subsections describe the proposed method in detail. First, the
Multi-Platform Semantic 3D Content Model is presented, then the Semantic Transfor-
mation (which is implemented in the compiler) is explained.

3.1. Multi-Platform Semantic 3D Content Model

The Multi-Platform Semantic 3D Content Model (MP-SCM) (Fig. 2) extends the concepts
proposed in [10, 13, 15] and enables representation of 3D content that may be presented
using various content browsers and presentation tools. While ML-SCM provides com-
ponents and properties that are related to various aspects of 3D content, MP-SCM pro-
vides data structures that enable transformation of content representations into different
encoding formats. The model consists of four parts—platform-independent content rep-
resentations (PIRs), transformation knowledge bases (TKBs), template bases (TBs) and
platform-specific content representations (PSRs). The particular elements of the model
are described in the following subsections.

Transformation knowledge bases. A transformation knowledge base (TKB) is the pri-
mary entity of MP-SCM, which is responsible for semantic transformation of content.
A TKB incorporates transformation rules that allow for transformation of PIRs to the
corresponding PSRs, which are to be presented on a common target platform. An indi-
vidual TKB is created for a particular presentation platform or a group of presentation
platforms that use a common content representation language or different languages that
have equivalent structures of documents, thereby enabling the use of common transfor-
mation rules. Since the proposed method is generic and based on elementary operations
on code, TKBs for different—either declarative (e.g., VRML, X3D) or imperative (e.g.,
ActionScript, Java)—content representation languages may be introduced.
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The primary entity of a TKB is a statement pattern (SPt). Every SPt is a seman-
tic pattern that matches a group of possible statements (Ss) in a PIR. Matching a group
of Ss by an SPt is enabled by semantic generalization. A generalization may pertain to
the subject, the property or the object of Ss. For instance, a possible generalization (an
SPt) of the S [object scm:color "red"] in terms of property, is the S [object
scm:appearanceProperty "red"], while a possible generalization of the S [ob-
ject rdf:type scm:Mesh3D] in terms of object, is the S [object rdf:type
scm:GeometricalComponent].

SPts include entities that semantically determine the structure of code that is selected
for Ss during the transformation. An SPt may include a template set pattern (TSPt) with a
number of template patterns (TPts), each of which may contain a number of template pa-
rameter patterns (TPPts). These concepts correspond to the entities of the parametrized
code, which are used for generation of PSRs: template sets (TSs), templates (Ts) and
template parameters (TPs), respectively. However, they do not explicitly indicate any
platform-specific entities. In a TKB, the level of generality of SPts may be high to cover
a wide range of Ss in a PIR. For instance, the SPt [?subject scm:dataProperty
?value.] may cover the Ss [?subject scm:intensity "10".] and [?sub-
ject scm:color "red".]. In a PSR, each of these Ss needs to be represented by a
different T. Hence, the selection of a T can be done only for a particular S given. However,
the general structure of both Ts may be known in advance and specified at the semanti-
cally generalized level (in a TKB). For instance, the aforementioned Ts may be specified
as [$object.intensity = $data] and [$object.color = $data], thus
having the same object and data TPs.

Since transformation of content representations is performed on templates (Ts), which
are fragments of code associated with statements (Ss), which form PIRs, the following
elementary operations need to be performed on Ts:

(1) setting common values of TPs,
(2) nesting Ts into other Ts,
(3) ordering Ts.

The operations are enabled by statement collection patterns (SCPts): operations (1)
and (2)—by statement set patterns (SSPts), while operation (3)—by statement list pat-
terns (SLPts). Every SCPt includes multiple SPts. As an SPt matches a single S, an SCPt
matches a group of Ss in a PIR.

For instance, the SLPt [?subject rdf:type ?type. ?subject ?proper-
ty ?value.]matches the pair of Ss [?light scm:intensity "10". ?light
rdf:type scm:DirectionalLight.]. A common subject (the light parame-
ter) and the reverse order needs to be set for an imperative final content representation lan-
guage (e.g., ActionScript), while the T of the first S needs to be nested into the T of the sec-
ond S for a declarative final content representation language (e.g., X3D). The resulting ex-
ample imperative code is [DirectionalLight light = new Directional-
Light(); light.intensity = 10;]. To enable linking TPs and nesting Ts be-
tween different Ss of an SCPt, appropriate semantic statements are specified for TPPts
and TPts (which reflect TPs and Ts) at the level of the SCPt.

Platform-independent content representations. A platform-independent content rep-
resentation (PIR) is a knowledge base that conforms to ML-SCM, thus it is presentation
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platform agnostic. However, PIRs can be presented on different platforms when trans-
formed with appropriate TKBs and TBs. A PIR includes semantic 3D content compo-
nents, which are described by semantic 3D content properties. Both the components and
the properties reflect different aspects of 3D content, such as geometry, structure, appear-
ance, scene, animation and behavior.

The primary entity of a PIR, in terms of the semantic content transformation, is a
statement (S), which is matched by a SPt in a TKB. During the transformation, Ss are
gathered into statement collections (SCs), which are dynamically created by the compiler.
Assembling Ss into SCs allows to perform the elementary operations (setting TPs, nesting
Ts and ordering Ts) on Ts that are associated with the Ss. SCs are assembled from Ss
that match appropriate SCPts, which are declared in the TKB. Two types of SCs are
distinguished: statement sets (SSs) and statement lists (SLs), which are built with respect
to SSPts and SLPts, respectively.
Template bases. A template base (TB) is a set of parametrized fragments of code that
may be combined to create PSRs on the basis of PIRs. The primary entity of a TB is a
template set (TS), which may include a number of templates (Ts), which are parametrized
fragments of code—may include a number of template parameters (TPs). TBs may lever-
age various 3D content representation languages (e.g., X3D, Java), programming libraries
(e.g., Java3D, Away3D) or game engines (e.g., Unity, Unreal). In the proposed method,
every S in a PIR may be linked with a TS. Linking is dynamic and based on the actual sig-
nature of the S processed, which is a triple [class of the subject, property,
class of the object]. For every S, the TS whose signature matches the S is se-
lected. Since the selection of a TS requires a particular S, the link between TSs and Ss
cannot be given in a TKB on the level of SPts.

Every TS may include a number of Ts that need to be individually processed, e.g.,
injected into different TPs of a parent T. The processing of particular Ts, which are in-
cluded is a TS, is specified in the TKB. For instance, for a presentation platform that uses
an imperative content representation language without navigation implemented, it may be
necessary to inject a T implementing proper functions next to the main function and to
inject another T switching on the functions within the main function.

An individual TB and its corresponding TKB are created once every time a new pre-
sentation platform that uses a new content representation language is added to the system.
Since a TB and a TKB are introduced, they may be used for the development of various
3D presentations that are presentable on the new platform.
Platform-specific content representations. A platform-specific representation (PSR) is
a set or a sequence of instructions encoded in a selected content representation language.
A PSR is generated automatically by the compiler, and it is a composition of code frag-
ments (CFs), which are automatically created upon Ts by setting the values of their TPs.
Once created, a PSR may be presented on the selected 3D content presentation platform.

3.2. Semantic Transformation of Content Representations

In the proposed method, PIRs are transformed to PSRs by a transformation algorithm
(TA). The general idea of the TA is based on the elementary operations on Ts, which have
been introduced in Section 3.1 and are presented in detail below:

1) setting common values of TPs that are associated with different Ss included in com-
mon SSs,
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2) nesting Ts into other Ts that are associated with different Ss included in common SSs,
3) ordering Ts that are associated with different Ss included in common SLs.

The operations are performed regarding the description of the transformation, which
is included in the appropriate TKB (the TKB associated with the selected target content
representation language). Due to the use of only basic operations on fragments of code,
the proposed method is generic and it can be applied to specify transformations for var-
ious target content representation languages, which may conform to either imperative or
declarative programming paradigms. The TA has five phases, each of which comprises
several steps. First, semantic queries are created on the basis of SSPts specified in the
TKB. Second, the queries are issued against a PIR to create SSs. Third, the values of TPs
associated with the Ss that are included in the SSs are set. Next, Ts associated with the Ss
are nested one into another. Finally, Ts are enumerated in a specific order. For each phase,
its computational complexity has been determined. The following notation has been used:

– N(SSPt) – the total number of SSPts in the TKB,
– N(SLPt) – the total number of SLPts in the TKB,
– N(SPt) – the total number of SPts in the TKB,
– N(S) – the total number of Ss in the PIR,
– N(SPt/SSPt) – the average number of SPts per SSPt,
– N(TP/S) – the average number of TPs per S,
– N(T/S) – the average number of Ts per S.

Creation of queries. In this phase, semantic queries to knowledge bases (PIRs) are cre-
ated on the basis of the appropriate TKB (that is specified for the selected 3D content
representation language). Each query corresponds to an individual SSPt, as its clauses
(triples [subject, property, object]) correspond to particular SPts that are
included in the SSPt. The following step is performed in this phase:

1. For every SSPt from the TKB, create a query (e.g., in the SPARQL query language)
as follows:

(a) Create an empty query,
(b) For every SPt from the SSPt, which is given as [?subject ?property

?object.]:
i. Append the following clause (given in the pseudo code) to the query [?prop
rdfs:subPropertyOf ?property.],

ii. If the object of the SPt is a literal or an individual, append the following
clause to the query [?subject ?prop ?object.],

iii. If the object of the SPt is a class, append the following clauses to the query
[?subject ?prop ?obj. ?obj rdfs:subClassOf ?object.].

Inserting the rdfs:subPropertyOf and the rdfs:subClassOf properties to a
query enables not only the use of this query to search for Ss of a PIR that exactly match the
SPt (its property and its object), but also to search for Ss that use sub-properties
and sub-classes of the property and the class that are specified in the SPt.

In this phase, every SPt occurring in an SSPt is processed once to be included in a
query. Therefore, the computational complexity of this phase is polynomial and it is equal
to O(N(SSPt)*N(SPt/SSPt)).
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Creation of statement sets. In this phase, the queries created in Step 1 are issued against
a PIR to create SSs. Each resulting SS is a group of logically related Ss. The following
step is performed in this phase:
2. For every query created in Step 1:

(a) Issue the query against the PIR and create an SS incorporating all the Ss from the
PIR that are included in the result of the query,

(b) For every S, remember the SPt from the query that has been satisfied by the S.
The SSs created in this step will be further used for setting some common TPs for different
Ts and for nesting some Ts into other Ts.

Creation of SSs requires, in the worst case, for every SSPt (which determines a query),
checking every SPt included in this SSPt against every S, which is included in the PIR.
Therefore, the computational complexity of this phase is polynomial and it is equal to
O(N(SSPt)*N(SPt/SSPt)*N(S)).
Setting template parameters. In this phase, TPs of logically related Ts are fixed regard-
ing semantic dependencies between the Ss, the Ts are associated with. The following step
is performed in this phase:
3. For every SS created in Step 2:

(a) For every S, which is given as [?subject ?property ?object] and
which is included in the SS:

i. Load a TS whose signature matches the semantic pattern determined by the
S—the concatenation of the name of the class, the subject belongs to, the
name of the property and the name of the class, the object belongs to.

ii. Query the TKB of TPPts that are included in the TPts that are included in the
TSPt linked to the SPt that is associated with the S processed
[?TPPt tkb:isParameterOf ?TPt. ?TPt tkb:isIn ?TSPt.
?TSPt tkb:isTemplateSetOf ?SPt.].
Remember the template parameter pattern set (TPPtS) associated with the
S.

iii. For every TPPt1 that is included in the TPPtS and that has not yet been set:
A. Set a unique value of the TPPt1,
B. If the TPPt1 is a literal parameter of the S, replace the TP that is reflected

by the TPPt1 and is included in a T with the literal of the S,
C. Query the TKB of TPPts that are equal to the processed TPPt1 and that

are linked to SPts that occur in a common SSPt with the SPt that is asso-
ciated with the S
[?TPPt1 tkb:equalTo ?TPPt2. ?TPPt2 tkb:isParame-
terOf ?TPt. ?TPt tkb:isIn ?TS. ?TS tkb:isTempla-
teSetOf ?SPt2. ?SPt2 tkb:isIncludedIn ?SSPt.
?SPt tkb:isIncludedIn ?SSPt.],

D. For every TPPt2 found, set the value of the reflected TP (which is in-
cluded in a T) to the value of the primary TPPt1 processed and recur-
sively go to Step 3(a)iiiC. A T whose all TPs are set is a CF.

As the result of this phase, Ts have TPs set to proper values (literals) and common iden-
tifiers of variables. Recursive processing of TPs ensures assigning a common value to all
equal TPs across different Ts.

In this phase, every TP must be set. Therefore, the computational complexity of this
phase is polynomial and it is equal to O(N(S)*N(TP/S)).
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Nesting platform-specific templates. In this phase, Ts are nested one into another cre-
ating a hierarchical structure. Nesting is indicated by assigning Ts to TPs. The following
step is performed in this phase:

4. For every SS created in Step 2:
(a) For every S that is included in the SS and that has not yet been processed:

i. For every TPPt from the TPPtS (determined in Step 3(a)ii) that is associated
with the SPt associated with the S:
A. Query the TKB of TPts that are equal to the TPPt and that are assigned

to SPts included in a common SSPt together with the SPt of the S
[?TPPt tkb:equalTo ?TPt. ?TPt tkb:isIn ?TS.
?TS tkb:isTemplateSetOf ?SPt2. ?SPt2 tkb:isInclu-
dedIn ?SSPt. ?SPt tkb:isIncludedIn ?SSPt.],

B. For every TPt found, go recursively to Step 4(a)iA,
C. Replace all the TPs that are reflected by the TPPts with the appropriate

Ts that are reflected by the TPts and produce CFs.
Like the previous phase, nesting Ts is performed recursively—processing of a T continues
until all Ts that are to be nested in the T are processed (its appropriate TPs are set to
appropriate Ts).

In this phase, in the worst case, every T must be nested into another T by a TP. There-
fore, the computational complexity of this phase is polynomial and it is equal to
O(N(S)*N(T/S)).

Ordering platform-specific templates. In this phase, Ts linked with mutually dependent
Ss, that need to occur in the final PSR at the same level (without nesting one T into
another) are set in the PSR in a suitable order. In this phase, the global list (sequence) of
SPts is created and the Ss of the PIR are sorted with respect to this list. The following
steps are performed in this phase:

5. Create the global SLPt list. Perform the steps until all SPts that are included in differ-
ent SLPts are included in the global SLPt:
(a) If the SPt is not yet included in the global SLPt, but it is included in any SLPts

and there are no other SPts that precede the SPt in at least one SLPt, add the SPt
to the end of the global SLPt.

6. Add the remaining SPts (the SPts that are not included in any SLPts) to the end of the
global SLPt in an arbitrary order.

7. Browse the global SLPt in the reverse order and for every SPt included in the list:
(a) Find Ss in the PIR that match the SPt and add their CFs (generated in the previous

phases) at the beginning of the generated PSR.
Creation of a global SLPt requires, in the worst case, checking every SPt against

every SLPt for all SPts included in the TKB. Therefore, the computational complexity of
Step 5 is equal to O(N(SLPt)*N(SPt)*N(SPt)). Adding Ts to the generated PSR
requires processing of every S for every SPt. Therefore, the computational complexity of
Step 7 is O(N(SPt)*N(S)) and the overall computational complexity of this phase is
polynomial. Since the complexities of the consequent phases of the TA are polynomial,
the overall computational complexity of the proposed TA is also polynomial.
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4. Implementation

Implementation of the proposed method is discussed in terms of final content representa-
tion, the description of transformation rules and the transformation software.

4.1. Final 3D Content Representation

The following languages have been selected for final content representation: ActionScript
with the Away3D library, VRML, and X3D with XML encoding. 3D content represen-
tations encoded in ActionScript are presented using Adobe Flash Player, while represen-
tations encoded in VRML and X3D are presented using VRML and X3D browsers, e.g.,
Cortona3D and Bitmanagement BS Contact, respectively. The languages have been cho-
sen because of the following two reasons. First, they are implemented by a wide range of
tools for 3D content presentation. Second, the languages differ in the syntaxes and the ap-
proaches to 3D content representation. ActionScript is an imperative language, which per-
mits specification of steps to be accomplished to obtain desirable presentational effects,
whereas VRML and X3D are declarative languages, which permit direct specification of
desirable presentational effects to be obtained, without specifying steps that must be per-
formed to achieve the effects. Covering different syntaxes and programming paradigms
allows for a more thorough evaluation of the proposed method.

4.2. Transformation Description

TKBs for the languages have been implemented using the semantic web standards—the
Resource Description Framework (RDF), the Resource Description Framework Schema
(RDFS) and the Web Ontology Language (OWL). Similar schemes of VRML and X3D
documents have allowed for the development of a common TKB for these languages,
while a separate TKB has been developed for ActionScript. SSPts and SLPts are encoded
as RDF bags and RDF sequences, respectively, while the SPts are encoded using
RDF reification. TSPts, TPt and TPPts are encoded as instances of appropriate OWL
classes and they are linked by OWL properties. Ts, which are included in TBs, are pa-
rameterized documents. The signature of a T is specified by its name. Ts with the same
signatures create a common TS. TPs, which occur within Ts, are indicated by specific
symbols. The implemented TKBs and TBs cover the main elements of ML-SCM, such
as shapes and meshes (geometry layer), groups of objects, size, position and orientation
(structure layer), textures, materials and light sources (appearance layer) as well as navi-
gation (scene layer). The conformance of the TKBs to the semantic web standards enables
transformation of PIRs with a semantic query language (e.g., SPARQL). This permits, in
contrast to a typical grammar analysis, processing of PIRs with regards to complex se-
mantic dependencies between particular Ss of the PIR.

4.3. Compiler

The compiler, which is an implementation of the TA, has been developed. The compiler
performs transformation of PIRs, which are compatible with ML-SCM, to PSRs, which
are compatible with the selected content representation languages. The compiler has been
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written in Java and it leverages additional software libraries. The Pellet OWL reasoner
[27] is used in Step 1 of the Semantic Transformation to discover implicit Ss, which have
not been explicitly specified in the processed PIRs, but may be inferred and are necessary
for building complete final PSRs. The Apache Jena SPARQL engine [3] is used in the
next steps of the transformation to execute queries to PIRs and TKBs when discovering
SSs, SLs as well as links between TPts and TPPts.

5. An Example of Building a Multi-platform 3D Presentation

An example of a PIR representation of a scene, which is encoded the ML-SCM/RDF-
Turtle format, was created and transformed to PSRs, which are encoded in VRML, X3D/XML
and ActionScript (Fig. 3-5). The particular representations are described in Fig. 6. Equiv-
alent fragments of code of the representations are marked with common numbers. Some
content components and properties, which are not crucial for the presented example, have
been omitted in the representations.

Fig. 3. The VRML
representation presented in
Cortona3D

Fig. 4. The X3D
representation presented in
Bitmanagement BS Contact

Fig. 5. The ActionScript
representation presented in
Adobe Flash Player

The scene includes a PointLightSource and three geometrical components: a
cube, a sphere and a mesh. The components are the elements of some Structural-
Components—the sphere and the cube are included in the complexObject, while
the complexObject, the mesh and the light are directly included in the scene.
Since the components are assembled into StructuralComponents, they have spa-
tial properties (e.g., position) specified. In addition, materials with some properties
and components describing appearance (e.g., colors, textures) are assigned to the cube,
the sphere and the mesh.

The PIR was transformed using two TKBs. In Fig. 7, an example of an SLPt, which
is included in the TKB for the Adobe Flash Player presentation platform, is presented.
Equivalent fragments of code are marked in gray. The SLPt includes two SPts. The
subject type component SPt specifies the pattern that matches each S that is a
declaration of an object in the created scene.

The subject type component SPt is to be matched by Ss whose subject is
any semantic individual, predicate is a sub-property of the rdf:type property and
object is a sub-class of the scm:Component. Every S that matches the SPt is required
to be linked to a single TS with a single T that includes a single TP with the name equal to
"obj". The subject dataproperty value SPt specifies the pattern that matches
each S that is an assignment of a literal value to a property of an object in the scene. The
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ML-SCM Representation 

 

1) ex:scene 

      a scm:Scene ; 

      scm:includes ex:complexObject ,  

        ex:mesh , ex:light. 

2) ex:complexObject 

      a  scm:StructuralComponent; 

      scm:includes ex:sphere , ex:cube . 

3) ex:cube 

      a scm:Box ; 

      scm:material ex:cube_material ; 

      scm:position ex:cube_pos . 

   ex:cube_pos 

      a scm:PosVector ; 

      scm:isPositionOf ex:cube ; 

      scm:x   "5.0"^^xsd:float ; 

      scm:y   "5.0"^^xsd:float ; 

      scm:z   "5.0"^^xsd:float . 

4) ex:sphere 

      a scm:Sphere ; 

      scm:material ex:sphere_material. 

   ex:sphere_material 

     a scm:TextureMaterial ; 

     scm:diffuseMap "texture.jpg". 

5) ex:mesh 

      a scm:Mesh3D ; 

      scm:meshData "statue.obj" ; 

      scm:isPartOf ex:scene. 

6) ex:light 

      a  scm:PointLightSource ; 

      scm:intensity "10.0"^^xsd:float . 

 

ActionScript Representation 

 
package { //imports public class Main extends Sprite { 
    private    var view: View3D; 
1)  private    var var2:Scene3D 
5)  private    var single1: Loader3D; 
    private    var single3: Mesh; 
    [Embed(source = "texture.jpg")] 
    public static    var df52: Class; 
    [Embed(source = "statue.obj", mimeType="...")] 
    private static    var single2: Class; 
    private function single4(event: LoaderEvent): void { 
      single3 = Mesh(single1.getChildAt(0)); 
      var2.addChild(single3); } 
    public function Main(): void { 
1)    var2 = view.scene; 
4)    var var5: Mesh = new Mesh(new SphereGeometry()); 
3)    var var3: Mesh = new Mesh(new CubeGeometry()); 
4)    var var4: TextureMaterial = new TextureMaterial(); 
6)    var var1: PointLight = new PointLight(); 
2)    var var0: ObjectContainer3D=new ObjectContainer3D(); 
3)    var3.x = -200.0; var3.y = -200.0; var3.z = 200.0; 
6)    var1.brightness = 10.0; 
2)    var0.addChild(var5); 
1)    var2.addChild(var0); 
2)    var0.addChild(var3); 
4)    var5.material = var4; 
1)    var2.addChild(var1); 
4)    var tx52720:BitmapTexture=Cast.bitmapTexture(df52); 
      var4.texture = tx52720; 
5)    //3D mesh loader initialization    }  }} 

VRML Representation 

 

2)Transform { 

   children[ 

3)  Transform { 

      translation 5.0 - 5.0 5.0 

      children[ 

        Shape { 

          appearance Appearance { 

            material Material { 

              transparency 0.5 }} 

          geometry Box {}}]} 

4)  Transform { 

      children[ 

        Shape { 

          appearance Appearance { 

            texture ImageTexture { 

              url["weave_normal.jpg"]  } 

            material Material {}} 

          geometry Sphere {}}]}]} 

5)  Transform { 

    children[ 

      Shape { 

        appearance Appearance { 

          texture ImageTexture { 

            url "…"}} 

        geometry IndexedFaceSet {  

          coord Coordinate { 

            point[...]        } 

          texCoord TextureCoordinate { 

            point[...]        } 

          coordIndex[...] 

          texCoordIndex[...]}}]} 

6) DEF light103717750 PointLight { 

     intensity 10.0 } 

X3D Representation 

 

<X3D …> <head></head> 

1)  <Scene> 

2)    <Transform> 

5)      <Shape> 

          <Appearance> 

            <Material/> 

            <ImageTexture url="…"/> 

          </Appearance> 

          <IndexedFaceSet coordIndex="..."  

            texCoordIndex="..."> 

            <Coordinate point="..."/> 

            <TextureCoordinate point="..."/> 

          </IndexedFaceSet> 

        </Shape> 

      </Transform> 

4)    <Transform > 

        <Transform> 

          <Shape> 

            <Appearance> 

              <ImageTexture url=' "texture.jpg" '/> 

              <Material /> 

            </Appearance> 

            <Sphere /></Shape> 

        </Transform> 

3)      <Transform  translation=' 5.0  5.0  5.0' > 

          <Shape> 

            <Appearance><Material/></Appearance> 

            <Box /></Shape> 

        </Transform>     

2)    </Transform> 

6)    <PointLight intensity='10.0' /> 

1)  </Scene> 

</X3D> 

Fig. 6. Content representations encoded in the selected languages

subject dataproperty value SPt is to be matched by Ss whose subject is any
semantic individual, predicate is a sub-property of the scm:DataProperty and
object is any literal value. Every S that matches the SPt is required to be linked to a
single TS with a single T that includes two TPs—a TP with the name equal to "obj" and
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Action 

Script 

Transfor-

mation 

Ontology 

SLP a rdf:Seq ; 

  rdf:first tkb:subject_type_component ; 

  rdf:rest 

(tkb:subject_dataproperty_value). 

 

tkb:subject_type_component a rdf:Statement; 

  rdf:object scm:Component ; 

  rdf:predicate rdf:type ; 

  rdf:subject tkb:variable ; 

  tkb:hasTemplateSetPattern tkb:tsp1 . 

 

tkb:tsp1 a tkb:TemplateSetPattern ; 

  tkb:hasTemplatePattern tkb:tp1 . 

 

tkb:tp1 a tkb:TemplatePattern ; 

  tkb:hasTemplateParameter tkb:obj_par1 . 

       

tkb:obj_par1 a tkb:TemplateParameter ; 

  tkb:name "obj" . 

tkb:subject_dataproperty_value 

  a  rdf:Statement ; 

  rdf:object "value" ; 

  rdf:predicate scm:DataProperty ; 

  rdf:subject tkb:variable ; 

  tkb:hasTemplateSetPattern tkb:tsp2 . 

 

tkb:tsp2 a tkb:TemplateSetPattern ; 

  tkb:hasTemplatePattern tkb:tp2 . 

 

tkb:tp2 a tkb:TemplatePattern ; 

  tkb:hasTemplateParameter tkb:obj_par2; 

  tkb:hasTemplateParameter tkb:data_par. 

 

tkb:obj_par2 a tkb:TemplateParameter; 

  tkb:name "obj" ; 

  tkb:equalTo tkb:obj_par1 . 

 

tkb:data_par a tkb:TemplateParameter; 

  tkb:name "value" ; 

  tkb:isLiteral "true" . 
 

Query SELECT DISTINCT * WHERE {  

 ?subject ?prop1 ?obj1. ?prop1 rdfs:subPropertyOf* rdf:type. ?obj1 rdfs:subClassOf* 

scm:Component.    

 ?subject ?prop2 ?value. ?prop2 rdfs:subPropertyOf* scm:DataProperty. }  

Template 

Sets 
Signature: rdf:type-scm:PointLight 
var $obj:PointLight = new PointLight();  

Signature: scm:intensity-value 
$obj.brightness = $value; 

Fig. 7. A fragment of the ActionScript TKB, a generated query and template sets

a TP with the name equal to "value". While the value of the data par TP is the literal
retrieved from the S that is dynamically associated with the SPt during the transformation,
the value of the obj par2 is set to the value of the obj par1 TP.

On the basis of the SLPt, a semantic query to a PIR is generated by the compiler. The
triples included in the query correspond exactly to the SPts included in the SLPt. Dur-
ing the transformation of a PIR, every pair of Ss that matches the SLPt is dynamically
combined into a new SS. Next, TSs are selected for the Ss regarding the equality of sig-
natures of TSs and Ss. For instance, the pair of Ss [light scm:intensity "10".
light rdf:type scm:PointLight.] matches the SLPt and the signatures of
TSs that are given in this example. The TPs of the Ss are set as indicated by the SLPt
and, in the resulting ActionScript PSR, the Ss are enumerated in the reverse order, which
is specified by the sequence of the Ss inclusion in the SLPt. Hence, the result of the trans-
formation is as follows: [var light:PointLight = new PointLight();
light.brightness = 10;].

6. Evaluation
The proposed solution has been evaluated in terms of the complexity of PIRs (seman-
tic content representations) and PSRs (final content representations), profits and costs of
the multi-platform method, and the efficiency of the implemented TA. The evaluation
covers primary PIRs, which are created by a content developer, and secondary PSRs,
which are generated automatically by the implemented compiler. PIRs are encoded in
the ML-SCM/RDF-Turtle format, while PSRs are encoded in the VRML, X3D/XML and
ActionScript languages.

The evaluation has been carried out for PIRs consisting of various numbers of content
components (related to geometry, structure, space and appearance) assembled into scenes.
The number of components has varied over the range of 5 to 50 with the step equal to
5. For every number of components, 20 random scenes have been generated and average
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results have been calculated. For each component, randomly selected properties have been
set to random values. The test environment used was equipped with the AMD Athlon II
X3 445 3.1 GHz processor, 4 GB RAM and the Windows 7 OS.

6.1. Complexity of Content Representations

The complexity of 3D content representations has been evaluated with the following met-
rics: the Structured Document Complexity Metric [25], the number of bytes, the number
of logical lines of code (LLOC) [1] and the Halstead Metrics [17]. While the first metric
measures the complexity of representation schemes (for both PIRs and PSRs), the other
metrics measure the complexity of particular PIRs and PSRs.

Structured Document Complexity Metric. The Structured Document Complexity Met-
ric has been used to measure the complexity of representation schemes regarding unique
elements and attributes, required elements and attributes as well as attributes that need to
be specified at the first position within their parent elements. The metric may be calculated
for XML- and grammar-based documents. The values of the Structured Document Com-
plexity Metric that have been calculated for the VRML, X3D, ActionScript and ML-SCM
representation schemes, are presented in Table 1.

Criterion VRML X3D ActionScript ML-SCM
Unique elements 15 15 24 24
Unique attributes 21 21 27 3
Required elements 1 1 1 12
Required attributes 8 8 5 3
Elements at position 0 0 0 0 0
Sum 45 45 57 42

Table 1. Structured Document Complexity Metrics of representation schemes

The results obtained for VRML and X3D are equal, because both standards use schemes
with equivalent basic elements and attributes. While in the VRML and X3D schemes, dif-
ferent hierarchical document elements have been classified as unique elements, in the
ActionScript scheme, different classes and data types (potentially corresponding to dif-
ferent elements in VRML/X3D) have been classified as unique elements. In the ML-SCM
scheme, unique elements cover different RDF, RDFS and OWL elements as well as se-
mantic properties of 3D content, which are encoded by document elements (according
to the RDF syntax). Unique attributes are different properties occurring in hierarchical
VRML/X3D elements or properties of objects in the ActionScript scheme. Since, in the
ML-SCM scheme the content properties are encoded using document elements, only a few
attributes, which are primary RDF, RDFS and OWL attributes, may be classified as unique
attributes in the ML-SCM scheme. In general, there have been no elements classified as
required for content representations except for the scene and view, which are roots of the
created scenes (representations). The calculated values of the Structured Document Com-
plexity Metric show that the complexity of the ML-SCM scheme is a little lower than the
complexity of the VRML/X3D schemes and it is much lower than the complexity of the
ActionScript scheme. Unlike in the ML-SCM, VRML and X3D schemes, in the Action-
Script scheme, several aspects need to be implemented with multiple instructions (e.g.,
texturing and navigation), which requires the use of additional unique elements (classes
and data types) as well as attributes (object properties) in the ActionScript scheme.
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Size Metrics. The number of bytes (Fig. 8) and the number of logical lines of code—
LLOC (Fig. 9)—without comments—have been used to measure the size of representa-
tions (scenes). The graphs present the metrics in relation to the number of components
included in the representations.

Fig. 8. The size of representation (bytes)
in relation to the number of its
components

Fig. 9. The size of representation
(LLOC) in relation to the number of its
components

The differences between the languages are relatively high in terms of both the number
of bytes and the number of LLOC. In both comparisons, VRML is the most concise
language, while ML-SCM/RDF-Turtle is the most verbose language—even a little more
than ActionScript.

Halstead Metrics. Halstead metrics have been used to measure the complexity of repre-
sentations (scenes). The calculated Halstead metrics cover: the vocabulary and the length
of content representations, the volume corresponding to the size of the representations,
the difficulty corresponding to error proneness of the representations, the effort in imple-
mentation and analysis of the representations as well as the estimated time required for
the development of the representations. The particular Halstead metrics in relation to the
number of components included in a representation are presented in the graphs in Fig.
10-15. VRML and X3D representations have been presented together, because both stan-
dards have the same values of the metrics, since they use schemes with equivalent basic
elements and attributes.

Vocabulary (Fig. 10), which is the sum of unique operators (n1) and unique operands
(n2):

Voc = n1 + n2,
is highest for VRML/X3D, because of a high number of unique operands, which are
individual scene graph nodes. In contrast to the other languages, in VRML/X3D, a rela-
tionship between two components in a generated representation is reflected by nesting one
component in another component with specifying all intermediate nodes, which are also
classified as unique operands, e.g., applying a Material to a Shape requires an inter-
mediate Appearance node to be nested in the Shape node. In the other languages, such
associations are more frequently described directly—without using intermediate nodes.

Length (Fig. 11), which is the sum of the total number of operators (N1) and the total
number of operands (N2) of a representation:

Len = N1 + N2,
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is lowest for VRML/X3D. In the VRML/X3D representations, as opposed to the other
representations, operands typically occur once and all references to them are specified by
the nesting of attributes and other nodes. Therefore, the operands do not require to be ad-
ditionally explicitly indicated (e.g., by proper instructions or statements), and the length
of VRML/X3D representations is lower than the length of the other representations, in
which all references to operands must be explicitly declared by referring to their identi-
fiers. ML-SCM representations are shorter than ActionScript representations because of
the possibility to syntactically gather similar statements that share a common subject, e.g.,
[shape rdf:type scm:AppearanceComponent , scm:Box].

Fig. 10. The vocabulary of representation
in relation to the number of its
components

Fig. 11. The length of representation in
relation to the number of its components

The graph of volume (Fig. 12), which depends on the length and the vocabulary:
Vol = Len * log2(Voc),

is similar to the graph of length.
In contrast to the other Halstead metrics discussed, difficulty (Fig. 13), which is given

by the formula:
Diff = n1 / 2 * N2 / n2,

has similar values independently of the number of components in the scene. It is lowest
for VRML/X3D representations (low error proneness) because of the relatively low values
of the number of distinct operators and the total number of operands and a relatively
high value of the number of distinct operands. A relatively high difficulty of ActionScript
representations (high error proneness) is caused by relatively high values of the first two
factors and a relatively low value of the third factor.

The effort (Fig. 14) and the time (Fig. 15) required for the implementation or analysis
of representations, which are the products of the difficulty and the volume:

Eff = Diff * Vol,
Time [h] = Eff / (18 * 3600),

are lowest for VRML/X3D representations because of the relatively low values of their
difficulties and volumes. The highest values of effort and time occur for ActionScript
representations.

6.2. Multi-platform Representation
The primary goal of the proposed method is to improve the development of 3D content
presentations for multiple platforms. The proposed method has been evaluated in terms
of the following four metrics.
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Fig. 12. The volume of representation in
relation to the number of its components

Fig. 13. The difficulty of representation
in relation to the number of its
components

Fig. 14. The effort in the implementation
of representation in relation to the
number of its components

Fig. 15. The time required for the
implementation of representation in
relation to the number of its components

The profit from automatic generation of PSRs. The profit from automatic generation
of PSRs for different platforms in relation to the number of components of the primary
representation (a PIR) has been calculated as the ratio of the overall size of the PSRs,
which have been generated on the basis of a primary PIR (implemented with ML-SCM)
and encoded with the selected content representation languages, to the size of the PIR:

Profit = Size(PSRs) / Size(PIR).
The metric shows, how much work on implementation can be saved when implementing
a PIR and using the proposed method to automatically generate the corresponding PSRs,
rather than implementing the desirable PSRs from scratch using the particular languages,
independently one from another. The profit is presented in Fig. 16.

The values of the profit vary predominantly in the range 1.7 to 2.1 for the size ex-
pressed in the number of bytes and from 1.9 to 2.3—for the size expressed in the number
of LLOC. Although, the profit values are decreased by the relatively high size of PIRs
in comparison to the corresponding PSRs, about 50% of work may be saved when us-
ing the proposed solution with the three presentation platforms. The higher number of
presentation platforms would result in the higher values of profit.

The cost of elementary changes in content representations. The cost of elementary
changes in content representations is the average size of code that is required to be added,
deleted or modified, to add, delete or modify a component or a property of a 3D content
representation. It is assumed that a change in a representation is related to at least one of



1574 Jakub Flotyński, Krzysztof Walczak

Fig. 16. The profit from automatic generation of PSRs

its basic elements. A basic element of a PIR is an S, while a basic element of a PSR that
corresponds to the PIR is a TS associated with an S from the PIR. Hence, the cost of an
elementary change in a content representation is the average size of an S (for PIRs) or the
average size of a TS (for PSRs):

Cost = AvgSize(S|TS).
The values of the metric have been calculated for the particular content representation
languages and they are presented in Table 2 (in bytes and LLOC).

In the proposed method, Ss of ML-SCM typically gather multiple instructions (multi-
ple LLOC) of the other content representation languages. ActionScript is the most verbose
of the selected languages, as to represent some aspects of 3D content on the Flash platform
(e.g., navigation), a number of LLOC need to be implemented to create an appropriate T.
The most concise language is VRML, which is equivalent to X3D in terms of the provided
level of abstraction. A slight difference between VRML and X3D in the number of bytes
is caused by the difference in their syntaxes—the syntax of VRML is more concise than
the chosen verbose XML-based syntax of X3D.

The cost of the introduction of a content presentation platform. The cost of the intro-
duction of a content presentation platform is the overall size of code that must be imple-
mented to introduce a 3D content presentation platform into the system. Hence, the cost
incorporates the size of the TKB, which describes the transformation of PIRs to PSRs,
and a TB, which corresponds to the language of the new platform introduced:

Cost = Size(TKB) + Size(TB).
The metric has been calculated and expressed in the number of bytes and the number
of LLOC for the selected content representation languages that determine the content
presentation platforms to be used (Table 3).

Size VRML X3D ActionScript ML-SCM
NoB 35 39 130 39
LLOC 2 2 4 1

Table 2. The cost of elementary
changes in content representations

VRML X3D ActionScript
NoB LLOC NoB LLOC NoB LLOC

TKB 22291 789 22291 789 25290 943
TB 1193 71 1312 71 4957 152
Sum 23484 860 23603 860 30247 1095

Table 3. The cost of the introduction of a
content presentation platform
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On the basis of the calculated values of the metric, an estimated cost of the introduc-
tion of a new platform into the system may be determined. A new platform whose func-
tionality (a set of content components and properties) needs to be equivalent to the already
implemented platforms, is anticipated to require about 860-1095 LLOC. The lower bound
is more probable for hierarchical declarative languages (e.g., XML3D), whereas the up-
per bound is more probable for structural and object-oriented imperative languages (e.g.,
Java3D). However, the exact value depends on the capabilities a particular target language
(and programming libraries) used. The more advanced are the capabilities of the language
and the libraries provided, the lower should be the cost. For example, a single instruction
may enable one of several available navigation modes.

The profit from code generation for a new platform. The profit from code generation
for a new platform is directly proportional to the number of PIRs that are available in the
system and that are to be transformed to PSRs compliant with the new platform, and the
size of the generated PSRs. The metric is given by the formula:

Profit = N * Size(PSR) / Cost(TKB + TB),
where: N – the number of PIRs that are available in the system and that are to be trans-
formed; Size(PSR) – the size of the PSR to be generated, estimated on the basis of
the generated PSRs; Cost(TKB + TB) = Size(TKB) + Size(TB) – the overall
size of the TB and the TKB that enable the transformation (calculated in the previous
subsection).

The metric has been calculated for the PIR size equal to 50 components. This value
has been determined on the basis of typical virtual museum scenes available in the ARCO
virtual museum system [37, 38]. However, there are several more complex scenes avail-
able in ARCO, for which the profit from transformation can be higher. The values of the
profit in relation to the number of PIRs are presented in the graphs in Fig. 17-18.

The profit increases linearly with the increase in the number of PIRs that are available
in the system and need to be transformed. The attainable profit is higher for the X3D and
ActionScript languages, as the size of X3D and ActionScript representations is typically
larger than the size of VRML representations.

Fig. 17. The profit from code generation
for a new platform (for PSR size in
bytes)

Fig. 18. The profit from code generation
for a new platform (for PSR size in
LLOC)

6.3. Transformation Algorithm

The efficiency of the proposed TA (which has been described in Section 3.2) has been
evaluated. The time of transformation of PIRs to PSRs has been measured for different
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sizes of PIRs. The size of PIRs is specified in the number of components contained in the
PIR and it changes over a range (Section 6). The results are presented in Fig. 19.
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Fig. 19. Time of PIR to PSR transformation

The graph presents polynomial time required for the transformation of PIRs, which
are encoded using ML-SCM/RDF-Turtle, to PSRs, which are encoded using the selected
languages. Transformation times for VRML and X3D are similar, as the languages are
supported by a common TKB and structurally equivalent Ts. Moreover, transformation
time for VRML and X3D is more than twice lower than the transformation time for Ac-
tionScript. The difference is caused by the remarkably different structures of VRML/X3D
and ActionScript representations. While transformation for VRML/X3D is based mainly
on nesting Ts, which is relatively low time-consuming, transformation for ActionScript is
based mainly on setting TPs, which is relatively high time-consuming, because the num-
ber of TPs is higher than the number of Ts—on average, more than two TPs are included
in a T.

6.4. Discussion

The results obtained show high profit from the implementation and the use of a new trans-
formation when adding a new platform in applications with a high number of scenes in
contrast to the implementation of the counterparts of the scenes with a new content repre-
sentation language supported by the new platform. The profit is also high when PSRs are
encoded using programming libraries that do not provide some required components and
properties, which need to be implemented from scratch. In such cases, the high profit is
the result of the high re-usability of such components and properties, which, once imple-
mented in Ts may be reused multiple times.

In the majority of tests related to the complexity of content representations, the results
obtained for ML-SCM are better than the results obtained for the ActionScript language
in terms of code analysis—it has a lower complexity of the scheme, vocabulary, length,
volume and difficulty of representations and its use requires less effort and time for un-
derstanding and implementing content representations. However, the size (in bytes and
LLOC) of representations encoded in ML-SCM/RDF-Turtle is higher than the size of
representations encoded with the other languages, because of the verbose syntax of the
RDF format, which is used in the ML-SCM representations. However, the cost of the PIRs
is compensated by the high profit from the automatic generation of multiple PSRs.
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The transformation algorithm uses the two implemented TKBs (for VRML/X3D and
for ActionScript) and the three implemented TBs (an individual for each language) to
transform PIRs to PSRs. The algorithm transforms PIRs in polynomial time. The test, car-
ried out using a moderately powerful computer, indicates relatively long time required for
transformation. However, the algorithm could be optimized, e.g., by using multi-threading
or by the employment of a more efficient SPARQL query engine.

7. Conclusions and Future Works

In this paper, a new method of building multi-platform 3D presentations has been pre-
sented. The method leverages the semantic web standards to provide a means of platform-
independent representation of 3D content and efficient generic transformation between
different 3D content representations, which goes beyond the current state of the art in the
field of multi-platform content presentation.

The presented solution has several important advantages in comparison to the avail-
able approaches to 3D content presentation. First, the use of the semantic web techniques
enables modeling complex dependencies and relations between content components as
well as rules of combining different components into composite objects and scenes. More-
over, it permits declarative conceptual content creation taking into account hidden knowl-
edge, which may be inferred and used in the modeling process. Second, the possible use
of well-established 3D content presentation tools, programming languages and libraries
liberates users from the installation of additional software, which can improve the dissem-
ination of 3D content. The method is convenient for environments, which cover various
hardware and software systems (such as the web), as the development of TKBs and TBs
requires less effort in implementation than the development of individual content presen-
tations for different presentation platforms or a specific presentation platform for different
systems. Third, in comparison to the available approaches, the proposed method can be
used to produce content that may be managed (indexed, searched and analyzed) in a sim-
pler way—due to the conformance to the semantic web standards.

Possible directions of future research incorporate several facets. First, the proposed
method can be extended with semantic transformation of declarative rule-based descrip-
tions of content behavior. Such transformation should be performed in a different manner
than the transformation of Ss, which are logical facts, as logical rules cannot be used
for inference before being transformed and executed. Second, the proposed method can
be combined with the approach to transformation of 3D content formats [12]. Next, se-
mantic queries to logical parts of the content can be used for 3D content creation. Fur-
thermore, a visual modeling tool supporting semantic 3D content creation can be devel-
oped. In comparison to typical semantic editors, such tool could significantly facilitate
design and enable efficient editing of semantic 3D scenes at different levels of abstrac-
tion, which are determined by the ontologies used. Finally, the method currently permits
only uni-directional transformation of PIRs to PSRs. To synchronize PIRs with their fi-
nal equivalents (PSRs) and enable decompilation of PSRs to their semantic prototypes
(PIRs), persistent link between the semantic objects of a PIR and the components of the
generated PSR should be maintained. Such link could also permit semantic management
and exploration of 3D content in real-time.
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