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Abstract. A special class of recurrent neural network, termed Zhang neu-
ral network (ZNN) depicted in the implicit dynamics, has recently been
proposed for online solution of time-varying matrix square roots. Such a
ZNN model can be constructed by using monotonically-increasing odd ac-
tivation functions to obtain the theoretical time-varying matrix square roots
in an error-free manner. Different choices of activation function arrays may
lead to different performance of the ZNN model. Generally speaking, ZNN
model using hyperbolic sine activation functions may achieve better per-
formance, as compared with those using other activation functions. In
this paper, to pursue the superior convergence and robustness proper-
ties, hyperbolic sine activation functions are applied to the ZNN model for
online solution of time-varying matrix square roots. Theoretical analysis
and computer-simulation results further demonstrate the superior perfor-
mance of the ZNN model using hyperbolic sine activation functions in the
context of large model-implementation errors, in comparison with that us-
ing linear activation functions.

Keywords: Zhang neural network, global exponential convergence, hy-
perbolic sine activation functions, time-varying matrix square roots, imple-
mentation errors.

1. Introduction

The problem of solving for matrix square roots is considered to be an impor-
tant special case of nonlinear matrix equation problem, which widely arises in
many scientific and engineering fields; e.g., control theory [1], optimization [2],
and signal processing [3]. In general, the solution of matrix square roots, which
can usually be a fundamental part of many solutions, can be achieved via ma-
trix equations solving. Thus, many numerical algorithms/methods have been
presented and developed for online solution of matrix square roots [1-6]. Gen-
erally speaking, it may not be efficient enough for most numerical algorithms
due to their serial-processing nature performed on digital computers [2, 3]. For
large-scale online or real-time applications, the minimal arithmetic operations
of such numerical algorithms are usually proportional to the cube of the ma-
trix dimension n, i.e., O(n?) operations [7]. To remedy inherent weaknesses
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of such numerical approaches, many parallel-processing computational meth-
ods, including various dynamic-system approaches, have been developed and
implemented on specific architectures [8—14]. The neural-dynamic approach is
thus now regarded as a powerful alternative to online computation in view of
its high-speed parallel-distributed processing property and the convenience of
hardware realization [8]. Besides, it is worth mentioning that most reported com-
putational schemes are theoretically/intrinsically designed for time-invariant (or
termed, static, constant) problems solving currently, which are usually related
to the traditional gradient-based methods [8, 14-18].

Since March 2001, a special recurrent neural network, termed Zhang neural
network (ZNN), has been formally proposed by Zhang et al [9, 11, 12] for time-
varying problems solving (e.g., time-varying Sylvester equation solving, time-
varying matrix inversion and optimization). The design of the ZNN is based
on a matrix/vector-valued error-function, instead of a norm-based scalar-valued
energy-function usually associated with gradient-based neural networks (GNN).
In addition, ZNN is depicted in an implicit dynamics which arises frequently in
analog electric circuits and systems due to Kirchhoff’s rules [11], instead of an
explicit dynamics that usually depicts a GNN model.

In the hardware implementation of neural networks, there always exist some
realization errors, which are more complicated than the ideal situation. For ex-
ample, the incapacity of electronic components would limit the performance
of the ZNN, and generate various errors (e.g., differentiation error and model-
implementation error [15]). Due to these realization errors, the solution of the
circuit-implemented ZNN may not be accurate. In this case, robustness analysis
of the proposed ZNN would be important and necessary. This paper presents
the general framework of the ZNN model solving for time-varying matrix square
roots, and, by using a special type of monotonically-increasing odd activation
functions (e.g., hyperbolic sine activation functions), the ZNN model with supe-
rior robustness in the context of large implementation errors, is analyzed and
investigated, which is compared with the ZNN model activated by linear func-
tions.

The rest of this paper is organized as follows. Section 3 introduces the novel
problem formulation and investigates the convergence properties of the ZNN
model for online solution of time-varying matrix square roots. Section 4 presents
the robustness analysis of the ZNN model with hyperbolic sine activation func-
tions in the context of (very) large model-implementation errors. In Section 5,
illustrative simulative results are shown to verify the superior convergence and
robustness of the ZNN model using hyperbolic sine activation functions for time-
varying matrix square roots finding, which further substantiate the theoretical
analysis. Finally, conclusions are drawn in Section 6. To the best of the authors’
knowledge, there is almost no others’ literature dealing with such a specific
problem of online solution of time-varying matrix square roots at present stage,
and the main contributions of the paper lie in the following facts.

- This paper presents a recurrent neural network (i.e., ZNN) for online so-
lution of time-varying matrix square roots. To pursue the superior conver-
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gence and robustness properties, a special type of activation functions (i.e.,
hyperbolic sine activation functions), which is compared with the linear acti-
vation functions, is applied to the ZNN model. This is also the main motiva-
tion of the work.

- Together with the theoretical analysis, this paper presents the convergence
properties of the proposed ZNN model, which substantiate the superior per-
formance of the ZNN model using hyperbolic sine activation functions, in
comparison with that using linear activation functions.

- For potential hardware/circuit implementation and considering its related
uncertain realization errors, the robustness property of ZNN model is inves-
tigated in the context of large implementation errors, which demonstrates
the efficacy and superiority of the proposed ZNN model activated by hyper-
bolic sine functions.

- The simulative results of different illustrative and representative examples
are presented, where different activation functions [i.e., hyperbolic sine func-
tions and linear functions] are exploited in the ZNN model for online solution
of time-varying matrix square roots, and the superior convergence and ro-
bustness of the proposed ZNN model are thus verified evidently.

2. Related work

Newton iteration [2] has been investigated as an useful method for matrix
square roots finding. Similar iterations have been designed and studied differ-
ently, such as the Denman and Beavers (DB) method [19] based on the matrix
sign function iteration, the Meini iteration based on a cyclic reduction (CR) al-
gorithm [1] and the iteration derived from Newton (IN) method [20]. However,
all of those methods, which are designed intrinsically for static matrix square
roots finding, may generate large lagging errors in time-varying applications. As
a novel class of recurrent neural network (RNN), ZNN has been formally pro-
posed and investigated for the online solution of various time-varying problems.
Detailed comparisons between the ZNN model and the four numerical meth-
ods (i.e., Newton iteration, DB iteration, CR iteration, and IN iteration) for online
solution of static matrix square roots can be found in [21]. Furthermore, the tra-
ditional GNN model, which is also designed intrinsically for static matrix square
roots finding, is simulated and compared with the ZNN model in [22] for online
solution of time-varying matrix square roots.

Moreover, this paper investigates the matrix-valued nonlinear time-varying
problem, i.e., the time-varying matrix square roots finding, which is quite dif-
ferent from the authors’ previous work (e.g., the linear time-varying problems
solving [9, 11, 12, 23, 24]). To further pursue the superior convergence and ro-
bustness properties, a special type of activation functions, i.e., hyperbolic sine
activation functions (which is compared with the linear activation functions), is
applied to the ZNN model. It is worth pointing out that the method of using
hyperbolic sine activation functions has seldom been proposed and studied be-
fore, which is one of the main motivations of the work.
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3. Problem formulation and neural-network solver

In the ensuing subsections, the problem formulation of time-varying matrix
square roots is introduced firstly, and then the ZNN model is developed and
analyzed for time-varying matrix square roots finding.

3.1. Problem formulation

Let us consider the following time-varying matrix square roots (TVMSR)
problem (which can also be viewed as a time-varying nonlinear matrix equa-
tion problem):

X2(t) — A(t) =0, t€[0,+00), (1)

where A(t) € R™*™ denotes a smoothly time-varying positive-definite matrix,
which, together with its time derivative A(t), are assumed to be known numer-
ically or could be measured accurately. In addition, X (¢) is the time-varying
unknown matrix to be solved for, and our objective in this work is to find X (¢) €
R™™ so that (1) holds true for any ¢ > 0.

Before solving (1) in real time, the following preliminaries [1, 3, 25, 26] are
provided as a basis for further discussion.

DEFINITION 2.1. Given a smoothly time-varying matrix A(t) € R™*", if ma-
trix X () € R™ " satisfies the time-varying nonlinear equation X?(¢) = A(t),
then X (t) € R™*" is a time-varying square root of matrix A(t) € R™*™ [or to
say, X (t) is a time-varying solution to nonlinear equation (1)].

Square-root existence condition.  If smoothly time-varying matrix A(t) €
R™*™ is positive-definite (in general sense [26]) at any time instant ¢ € [0, +00),
then there exists a time-varying matrix square root X (¢t) € R™*™ for A(t).

In addition, it follows from Kronecker-product and vectorization technique
[9,27] that time-varying nonlinear matrix equation (1) could be written as

(I® X(t))vec(X(t)) — vec(A(t)) =0, 2

where symbol @ denotes the Kronecker product [9, 27], and operator vec(-) :
Rmxn _y Rrix1 [e.g., vec(A(t))] generates a column vector obtained by stack-
ing all column vectors of the input matrix argument [e.g., A(¢)] together.

3.2. Zhang neural network

To solve for time-vary matrix square root A/2(t), by Zhang et al's method
[9,11,12], the following matrix-valued error function could be defined firstly:

E(t) = X*(t) — A(t) € R™™.

Secondly, the error-function’s time-derivative £(t) € R™*" could be made
such that every entry e;;(t) € R of E(t) € R"*™ converges to zero, i,j =
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— — — linear function
—— hyperbolic sine function f(eiz)

v

Fig. 1. Activation function f(-) used in the neural network.

1,2,---,n; in mathematics, to choose ¢;;(t) such that lim;_, e;;(t) = 0, Vi, j €
{1,2,---,n}. A general form of E(t) is given by Zhang et al as

dE(t
—di ) =-I'F(E(t)), 3
where design parameter I" and activation-function array 7 (-) are described as
follows.

— I' € R™*" is a positive-definite (diagonal) matrix used to scale the conver-
gence rate of the neural network. For simplicity, I" can be ~I with scalar
~v > 0 € R and I denoting the identity matrix. I" (or vI), being a set of recip-
rocals of capacitance parameters in the hardware implementation, should
be set as large as the hardware would permit (e.g., in analog circuits or
VLSI [15]), or selected appropriately for experimental and/or simulative pur-
poses.

- F(-) : R™*™ — R™*"™ denotes an activation-function matrix array of the neu-
ral network. In general, any monotonically-increasing odd activation function
f(-), being the ijth element of F(-), can be used for the construction of the
neural network. In this paper, the following two types of activation functions
are discussed and compared (which are shown in Figure 1):

o linear activation function f(e;;) = e;;, and
¢ hyperbolic sine activation function f(e;;) = exp(&e;;)/2 — exp(—Ee;;)/2
with design parameter £ > 1.
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Thirdly, expanding ZNN design formula (3) leads to the following implicit
dynamic equation of the ZNN model for online matrix square roots finding via
nonlinear time-varying equation (1) solving:

XMX(t) + X ()X (1) = —F (X2(t) — A(t)) + A(t), (4)

where X (t), starting from an initial condition X (0) € R"*", is the activation
state matrix corresponding to theoretical time-varying matrix square root X *(t)
of A(¢). It is worth mentioning that, when using a linear activation function array
F(-), the general nonlinearly-activated ZNN (4) reduces to the following linearly-
activated one:

X)X (1) + X)X () = —vX2(t) +vA(t) + A(t). (5)

For simulative purposes, based on the Kronecker-product and vectorization
technique [9, 27], the matrix differential equation (4) can be transformed to a
vector differential equation. We thus obtain the following theorem.

THEOREM 2.1. The matrix-form differential equation (4) can be reformu-
lated as the following vector-form differential equation:

(I®X+ X" ®I)vec(X)=—+F((I ®X)vec(X) — vec(A4)) + vec(4), (6)

where superscript T denotes the transpose of a matrix or a vector, and activation-
function array F(-) in (6) is defined as before except that its dimensions are
changed to be R"**! — R"**1_In the simulation, M (t,z) := I® X + X7 ® I de-
notes the nonsingular mass matrix of a standard ordinary-differential-equation
(ODE) problem.

Proof. See Appendix A for details.

In addition, for ZNN (4) which solves for the time-varying matrix square root
of A(t), we have the following theorems on its convergence.

THEOREM 2.2. Consider smoothly time-varying matrix A(t) € R™*™ in non-
linear equation (1), which satisfies the square-root existence condition. If a
monotonically increasing odd activation-function array F(-) is used, then error-
function E(t) = X?2(t) — A(t) € R"*" of ZNN (4), starting from randomly-
generated positive-definite (or negative-definite) diagonal initial state-matrix
X (0) € R"*™, can converge to zero [which implies that state matrix X (¢) €
R™™ of ZNN (4) can converge to theoretical positive-definite (or negative-
definite) time-varying matrix square root X *(t) of A(t)].

Proof. From the compact form of ZNN design formula E(t) = —I'F(E(t)), a set
of n? decoupled differential equations can be written equivalently as follows:

éij(t) = = f (e (1)), (7)

forany i € {1,2,3,---,n}and j € {1,2,3,--- ,n}. Thus, to analyze the equiv-
alent ijth subsystem (7), we define a Lyapunov function candidate v;;(¢t) =
e7;(t)/2 > 0 with its time-derivative

dvgt(t) = €;j (t)elj (t) = —7ei; (t)f (eij (t)) .
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As mentioned previously, f(-) is a monotonically-increasing odd activation func-
tion; i.e., f(—e;;(t)) = —f(ei;(¢)). Then, the following result is obtained:

>0, ife;(t) #0,
()1 e35 (1)) {_ 0, if es(t) = 0,
which guarantees the final negative-definiteness of v;; (i.e., v;; < 0 for e;; #
0 while v;; = 0 for e;; = 0 only). By Lyapunov theory [28], equilibrium point
ei; = 0 of (7) is asymptotically stable; i.e., e;;(t) converges to zero, for any
i€{1,23,---,n}and j € {1,2,3,--- ;n}. In other words, the matrix-valued
error-function E(t) = [e;;(t)] € R"*™ is convergent to zero. In addition, we have
E(t) = X2%(t) — A(t); or equivalently, X2(t) = A(t) + E(t). Since E(t) — 0 as
t — +oo, we have X2%(t) — A(t) [i.e., X(t) — X*(t)] as t — +oo. That is,
state matrix X (¢) of ZNN model (4) can converge to the theoretical time-varying
matrix square root X *(t) of A(t).

Furthermore, when state matrix X (¢) of ZNN model (4) starting from a
randomly-generated positive-definite diagonal initial state-matrix X (0), it can
converge to the positive-definite time-varying matrix square root A'/2(t) [i.e.,
a form of X*(¢)]. This can be proofed by contradiction. Suppose that state
matrix X (t) starting from a positive-definite diagonal initial state-matrix X (0)
converges to the negative-definite TVMSR —A'/2(t) [i.e., the other form of
X*(¢)], then state-matrix X (¢) must pass through at least one 0-eigenvalue,
which leads to the contradiction that the left and right hand sides of ZNN (4)
can not hold. So, starting from a randomly-generated positive-definite diago-
nal initial state-matrix X (0), state matrix X (¢) of ZNN model (4) can converge
to the positive-definite time-varying matrix square root A'/2(t). Similarly, it can
proved that, starting from a randomly-generated negative-definite diagonal ini-
tial state-matrix X (0), state matrix X (¢) of ZNN model (4) can converge to the
negative-definite time-varying matrix square root —A'/2(t). The proof is thus
complete.

THEOREM 2.3. In addition to Theorem 2.2, if a linear activation function ar-
ray F(-) is used, then the matrix-valued error-function E(t) = X2(t) — A(t) €
R™™ of ZNN (4), starting from a randomly-generated positive-definite (or
negative-definite) diagonal initial-state-matrix X (0) € R"*™, can exponentially
converge to zero with convergence rate ~, which corresponds to the conver-
gence of state matrix X (¢) € R"*™ of ZNN (4) to X*(t). Moreover, if the hyper-
bolic sine activation function array is used, then the superior convergence can
be achieved for ZNN (4), as compared to the linear activation case.

Proof. 1) If the linear activation function f(e;;) = e;; is used, from the ijth
subsystem (7), we have é;; = —ve;;, and thus e;;(t) = exp(—~t)e;;(0). In other
words, the matrix-valued error-function E(t) € R™*™ can be expressed explicitly
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as
S
By = | exp(oat) = B(0) exp(—).

€1 (0) €n3(0) - enn(0)

This evidently shows that the error function E(t) exponentially converges to
zero with convergence rate ~ for the ZNN (4) activated by the linear activation
function array. In addition, we have E(t) = X?(t)— A(t) and then X2(t) = A(t)+
E(t),i.e., X%(t) = A(t)+E(0) exp(—~t). Since E(0) exp(—~t) — 0 exponentially
ast — +oo, we have again X?(t) — A(t) and X (t) — X*(t) as t — +oo. That
is, state matrix X (¢) of ZNN (4) can converge to the theoretical time-varying
matrix square root X *(t) of A(t).
2) Define a Lyapunov function candidate

V = ||E(t)||2/2 = trace(ET(t)E(t))/2 = vecT(E(t))vec(E(t))/2 > 0 for ZNN
(4). Since

VeC(E(t)) = [611,"' s €nl1, €12, yER2, L CIn, " ,enn]T —0

is equivalent to E(t) — 0, then we use vec(E(t)) instead of E(t) to analyze the
Lyapunov function candidate and its time derivative. Thus, defining e; as the ith
element of vec(E(t)), we have

Vi(t) = Z e;(t)/2, and V(t) = Zei(t)éi(f) = —VZei(t)f(ei(f))-

i=1 =1 =1
So, if linear activation functions are used, we have

n2

V(t)in = nZe?(t)/2 >0, and V(t)jn = —vze?(t) < 0.

i=1

This implies that the matrix-valued error-function E(t) of linearly-activated ZNN
model (5) can converge to zero according to the aforementioned discussion and
Lyapunov theory [28].

On the other hand, if hyperbolic sine functions are used, the correspond-
ing Lyapunov function candidate is still v(t)ns = v(¢t)in = 0. By Taylor series
expansion, the aforementioned hyperbolic sine function is formulated as

flei) = [exp(&ei) — exp(—Eei)] /2

3 5
= [2(€e;) +2- (53) +2. (g;) +--1]/2
3 5
— i+ (5;) + (5;) 4.
+oo §2r—1(ei)2r—l
T4 2 -1
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Thus, we have the following derivation:

hs = =7 Y eif(es)
=1

n® oo €21 ()21
‘erl;ﬂ
n® 400 pop._ 1 2r
f
TL2

< —WZ e; = o(t)in < 0.

From the aforementioned analysis procedure, we see that Lyapunov function
candidate v(t)ns can diminish to zero when hyperbolic sine activation func-
tions are used, with much faster convergence rate than that using linear activa-
tion functions. This implies that, when hyperbolic sine functions are exploited,
nonlinearly-activated ZNN model (4) possesses superior convergence in com-
parison with linearly-activated ZNN model (5). The proof is thus completed.

REMARK 2.1. The construction of ZNN (4) allows us to have many more
choices of different activation functions. In many engineering applications, it
may be necessary to investigate the impact of different activation functions in
the RNN, in view of the fact that nonlinearity always exists. Even if the linear
activation function is used, the nonlinear phenomenon may appear in its hard-
ware implementation, e.g., in the form of saturation and/or inconsistency of the
linear slope, or due to truncation and round-off errors of digital realization [15].
The investigation of different activation functions may give more insights into
the imprecise-implementation problem of neural networks.

REMARK 2.2. One more advantage of using the hyperbolic sine function
over the linear function lies in the extra design parameter &, which is an effec-
tive factor of the convergence rate. When there is an upper bound on ~ due
to hardware implementation, the parameter ¢ will be another effective factor
expediting the ZNN (4) convergence. The convergence for the hyperbolic sine
activation functions can be much faster than that for the linear activation func-
tions, when using the same level of design parameters £ and ~. This is because
the error signal e;; = [X? — AJ;; in (4) is amplified by the hyperbolic sine acti-
vation function for the whole error range (—oo, +00) (i.e., the larger slope and
absolute value of the hyperbolic sine activation function in the whole error range
as shown in Figure 1).

4. Robustness analysis

In the analog implementation or simulation of recurrent neural networks, we
usually assume that it is under ideal conditions. However, there always exist
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some realization errors in hardware implementation. The differentiation errors
of A(t), and the model-implementation error appear most frequently in the hard-
ware realization. For these realization errors possibly appearing in model (4),
we investigate the ZNN robustness by considering the following matrix-valued
ZNN design formula perturbed with a large model-implementation error:

XX () + X)X (t) = —F(X2(t) — A(t)) + A(t) + Aw, (8)

where Aw € R™*™ denotes the general model-implementation errors [including
the differentiation errors of matrix A(t) as a part]. For these errors, the follow-
ing lemmas on the robustness of largely-perturbed ZNN model (8) could be
achieved [23, 24].

LEMMA 3.1. Consider the above perturbed ZNN model with a large model
implementation error Aw € R™*™ finally depicted in equation (8). If 0 < || Aw||r <
e < oo forany t € [0, +oc], then the steady-state residual error lim;_, || E(t)||r
is always uniformly upper bounded by some positive scalar, provided that the
design parameter v > 0 is large enough (the so-called design-parameter re-
quirement). Furthermore, the steady-state residual error lim;_, . [le(t)|r de-
creases to zero as ~ tends to positive infinity.

LEMMA 3.2. In addition to the general robustness results given in Lemma
3.1, the largely-perturbed ZNN model (8) possesses the following properties.

— With linear activation functions used, the steady-state error lim;_, || E(¢)||r
can be written out as a positive scalar under the design parameter require-
ment.

— With hyperbolic sine activation functions used, the superior convergence
and robustness properties exist for the whole error range (—oo, +00); i.e.,
the design-parameter requirement can be removed in this case and the
steady-state residual error lim;_,, ||E(¢)||r can be made (much) smaller
[which can be further done by increasing v and/or £], as compared to the
situation of using linear activation functions.

5. lllustrative examples

The previous sections have presented the convergence and robustness re-
sults of ZNN model (4) [together with a largely perturbed ZNN model (8)] for
online solution of time-varying matrix square root problem (1). In this section,
computer-simulation results and observations are provided to verify the supe-
rior characteristics of using hyperbolic sine activation functions to those of using
linear activation functions.

Example 1. For illustration and comparison, let us consider equation (1) with
the following time-varying matrix A(t):

|16 + sin 4t cos 4t 7sin4t
Alt) = 7 cos4t 9 + sin4t cos4t| ©)
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x11(t) w1 (t)

wlz(t)

(a) linear activation functions (b) hyperbolic sine functions (¢ = 3)

Fig. 2. Online solution of time-varying matrix square root problem (9) by ZNN (4) with
~ = 1, where the neural-network solutions X (¢) are denoted by solid blue curves, and
the theoretical time-varying square root Al/z(t) is denoted by red dash-dotted curves.

Simple manipulations may verify that a theoretical time-varying matrix square
root X*(t) of A(t) could be

s | 4 sindt
X7(t) = [cos4t 3 ]’

which is used to check the correctness of the neural-network solution X (¢).
Based on the aforementioned vector-form ZNN model (6) proposed in The-
orem 2.1, we can obtain the simulated ZNN state X (¢) by using ODE rou-
tine “ode23t” [25]. As illustrated in Figure 2, starting from randomly-generated
positive-definite diagonal initial-state X (0) € [0,2]2*2, neural state X (¢) of ZNN
(4) using hyperbolic sine activation functions converges to the theoretical time-
varying solution much faster, compared to that using linear activation functions.
Furthermore, in order to further investigate the convergence performance, we
monitor and show the residual error || E(t)||r during the problem solving process
of ZNN. As seen from Figure 3, the residual errors | E(t)||r of ZNN (4) all de-
crease rapidly to zero, where the convergence rate of ZNN (4) using hyperbolic
sine activation functions appears to be 5 times faster than that using linear acti-
vation functions. From these figures, we can confirm well the theoretical results
given in Theorems 2.2 and 2.3.

To show the robustness characteristics of the largely-perturbed ZNN model,
the following large model implementation error Aw is specially added in (8):

102 102}

Aw = {102 10°

As we can see from Figure 4, with the large model-implementation error, the
steady-state residual error lim; . [|E(t)||r of the perturbed ZNN (8) is stil
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(a) linear activation functions (b) hyperbolic sine functions (¢ = 3)

Fig. 3. Residual errors of ZNN (4) with v = 1 for TVMSR finding of (9).

bounded. In addition, with v = 1, ZNN (8) using linear activation functions re-
sults in large residual errors. This is shown evidently in Figure 4(a). In contrast,
as shown comparatively in Figure 4(a) and (b), when hyperbolic sine activation
functions are used, the convergence time of the perturbed ZNN (8) is faster
than that using linear activation functions, and the steady-state residual error
of the perturbed ZNN (8) is around 50 times smaller than that using linear ac-
tivation functions. Furthermore, Figure 4(b) is about using hyperbolic sine ac-
tivation functions with design parameter ¢ = 3, while Figure 5(a) and (b) are
about ¢ = 5 and ¢ = 7, respectively. It is observed that, by increasing &, the
steady-state residual error lim;_,, || E(t)||r of ZNN (8) is decreased very effec-
tively (e.g., for ¢ = 7, which is around 133 times smaller than that using linear
activation functions). In addition, comparing Figure 4(b) and Figure 6, we can
see that, as the design parameter ~ increases form 1 to 10 and then to 100,
the upper bound of the steady-state residual error is decreased effectively from
around 3.53 to 1.99 and then to 0.59. Note that, when ~ is much larger (e.g., 10°
or 10?), the steady-state residual error would become tiny. Besides, if the very
large model-implementation error (e.g., Aw;; = 10000 with 7,5 = 1, 2) is added
to the ZNN model, the robustness results are shown in Figure 7, from which the
same conclusion can be drawn; i.e., using hyperbolic sine activation functions
results in a much smaller steady-state residual error than using linear activation
functions [e.g., around 5000 times smaller, as seen comparatively from Figure
7(a) and (b)].

Example 2. In order to further investigate the efficacy of ZNN models [in-
cluding (4) and (8)] using hyperbolic sine activation functions, let us consider
equation (1) with the following symmetric positive-definite time-varying matrix
A(t) with its theoretical time-varying square root X *(t) given as well for com-
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Fig. 4. Residual errors of largely-perturbed ZNN (8) for time-varying matrix square roots
finding of (9) (with v = 1 and Aw;; = 10%,4,5 € {1,2}).

parison purposes:

540.2552 2s4+0.5¢ 4+0.25s x ¢
At) = 2s + 0.5¢ 4.25 2c¢+ 0.5s , (20)
440255 xc¢ 2c+0.55 5+ 0.25¢2

2 055 1
X*(t)=|05s 2 0.5c|,
1 05c 2

where s and ¢ denote sin(6t) and cos(6t), respectively.

As illustrated in Figure 8, starting from randomly-generated positive-definite
diagonal initial-state X (0) € [0,2]>*3, state matrix X (¢) of ZNN (4) using hyper-
bolic sine activation functions converges faster than that using linear activation
functions. In order to further investigate the convergence performance, we mon-
itor and show the residual error || E(t)||r during the problem solving process of
ZNN. From Figure 9, we observe that the residual errors || E(t)||r of ZNN (4) all
decrease rapidly to zero, where the convergence rate of ZNN (4) using hyper-
bolic sine activation functions is also 5 times faster than that using linear acti-
vation functions. These figures substantiate again the theoretical results given
in Theorems 2.2 and 2.3.

To comparatively show the robustness characteristics of the largely-
perturbed ZNN model, we exploit once more the large model-implementation
error Aw;; = 10%,4,j € {1,2,3}, which is added in ZNN model (8). With design
parameter v = 1 and two types of activation functions used, the robustness per-
formance of the largely-perturbed ZNN model (8) is shown in Figure 10, where
the steady-state residual errors lim;_, «, || E(¢)||r are all still bounded. In addition,
as shown in Figure 10(a) and (b), when hyperbolic sine activation functions with
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Fig.5. Residual errors of largely-perturbed ZNN (8) using hyperbolic sine activation func-
tions with different values of ¢ (still with v = 1 and Aw;; = 10%,4,5 € {1,2}).

¢ = 5 are used, the convergence time of the largely-perturbed ZNN (8) is faster
than that using linear activation functions, and the steady-state residual error of
the largely-perturbed ZNN (8) is around 100 times smaller than that using lin-
ear activation functions. In summary, compared to the situation of using linear
activation functions, superior robustness performance is achieved for the ZNN
models by using hyperbolic sine activation functions.

Example 3. In order to further investigate the efficacy of ZNN model (4)
using hyperbolic sine activation functions for larger-dimension matrices, let us
consider equation (1) with the following time-varying Toeplitz matrix A(t):

ai(t) az(t) as(t) - an(t)
ag (t) al(t) ag (t) e anfl(t)
Aty = [as3(t) ax(t) ai(t) - an-a(t)| ¢ grxm, (11)

n(8) a1 (8) an_a(t) - ar(t)

Leta;(t) = n+sin(5t), and ay(t) = cos(5t)/(k—1) with k = 2,3, --- ,n. Figure 11
shows the simulation results of ZNN model (4) using hyperbolic sine activation
functions for time-varying square roots finding of the above Toeplitz matrix A(t)
in the situation of n = 4 and n = 10. As seen from Figure 11(a) and (b), the
residual errors || E(¢)||r of ZNN (4) for factorizing Toeplitz matrices with different
dimensions (i.e., R*** and R'°*19) both diminish to zero, which implies that
their corresponding state matrices always converge to the time-varying square
roots of A(t). These further substantiate the efficacy of the ZNN model (4) using
hyperbolic sine activation functions on solving for time-varying square roots of
larger-dimension matrices.
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Fig. 6. Residual errors of largely-perturbed ZNN (8) using hyperbolic sine activation func-
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Before ending this section, it is worth noting that, because of the similarity of
the results and figures to the above ones, the corresponding simulations of ZNN
models starting from negative-definite initial states are not presented (though
they have done successfully and consistently with the theoretical results given
in the theorems and lemmas of the paper). Besides, comparisons between ZNN
model (4) and other methods can be seen in Appendix B.

6. Conclusions

In this paper, the convergence and robustness properties of Zhang neural
network using hyperbolic sine activation functions have been investigated, an-
alyzed and verified for the online solution of time-varying matrix square roots.
Other computer-simulation results of using different activation functions (e.qg.,
sigmoid activation functions, hard-limiting activation functions, piecewise-linear
activation functions, and hyperbolic tangent activation functions) have been
omitted due to the similarity and the space limitation, and thus hyperbolic ac-
tivation functions have only been compared with linear activation functions in
this paper. Theoretical analysis has demonstrated that superior convergence
and robustness can be achieved readily for ZNN models even in the context
of (very) large model-implementation errors by using hyperbolic sine activation
functions, as compared to those using linear activation functions. Computer-
simulation results have further substantiated the efficacy and superiority of the
ZNN models using hyperbolic sine activation functions for time-varying matrix
square roots finding.
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Appendix A

Proof of Theorem 2.1
By vectorizing ZNN model (4) based on the Kronecker-product and vector-
ization technique, the left hand side of equation (4) is

vec(X X + X X) = vec(X X) + vec(X X)
= (I ® X)vec(X) + (X7 @ Ivec(X)
=(I®X+X"®I)vec(X),

where argument ¢ is dropped for presentation convenience. The right hand side
of (4) is

vec( — 7 F (X2 — A) + A) = —vec(F(X? - A) + A)
= —yvec(F(X? — A)) + vec(A). (12)

Note that the aforementioned activation function array F(-) could also be vec-
torized, i.e., being from R"**1 to R"**!. Thus, we have

vec(F(X?* — A)) = F(vec(X? — A))
= F(vec(X?) — vec(A))
= F((I ® X)vec(X) — vec(A)). (13)

Combining (12) and (13) yields the vectorization of the right hand side of equa-
tion (4):

vec( — 7 F (X2 - A) + A) = —F((I ® X)vec(X) — vec(A)) + vec(A).
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Fig. 8. Online solution of time-varying matrix square root problem (10) by ZNN (4) with
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the theoretical time-varying square root A*/2(¢) is denoted by red dash-dotted curves.
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Evidently, the vectorization of both sides of matrix-form differential equation (4)
should be equal, which generates the vector-form differential equation (6). The
proof of Theorem 2.1 is thus completed.

Appendix B

To keep the completeness of the paper and make interesting comparisons
with ZNN model (4), numerical methods are presented and investigated here
for the online solution of time-varying matrix square roots as well. Based on the
results in [5, 6], four numerical methods (i.e., Newton iteration, DB iteration, CR
iteration, and IN iteration) are used frequently to solve for static matrix square
roots, which is the constant case of (1). For comparison, the important iterative
formulas of the numerical methods are listed as follows in order to solve for the
time-varying matrix square roots.

— Newton iteration:
X Hy, + H X, = A, — X%,

(14)
X1 = Xy + Hyg,

where iteration index k¥ = 0,1,2,3,---. In addition, A(¢) is discretized by
the standard sampling method, of which the sampling gap is denoted by
T = txy1 — tx. FOr convenience and for consistency with X, we use Ag
standing for A(t = k7).
— DB iteration:
Xpp = (Xp +Y,71)/2, Xo = Ao,

5 (15)
YViyi =Y+ X,.7)/2, Yo=1,

where Ap = A(t = 0).
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Fig. 10. Residual errors of largely-perturbed ZNN (8) for time-varying matrix square roots
finding of (10) (with v = 1 and Aw;; = 10%,4,5 € {1,2, 3}).

— CRiteration:
Vi1 = =Y Z; 'Yy, Yo =1— Ay,
Ziy1 = Zg + 2Ypy1, Zo = 2(I + Ao), (16)
Xit1 = Zp41 /4
— IN iteration:
Xit1 = Xy + By, Xo = Ay, 17)
By = _EkX;:_&lEk/Z Eo = (I — Ag)/2.

According to the formulas above, the solving process of DB iteration (15), CR
iteration (16) and IN iteration (17) do not contain the information of Ay in the iter-
ation process [i.e., without Ay in the formulas], which implies that the sequences
{X} generated by these methods converge to the matrix square roots of Ay
(in view of the initial conditions) and then do not change [though the matrix A(t)
changes]. The three numerical methods are theoretically/intrinsically designed
for online solution of time-invariant (or termed, static, constant) matrix square
roots, but not aimed at finding the time-varying matrix square roots in real time
t. The three methods may be approximately effective, when the time-varying
problem can be divided into many static problems to solve via a short-time in-
variance assumption [i.e., to find the matrix square roots of A; separately and
successively], but this may not be accurate and may not be what solving a time-
varying problem in real time ¢t means. Therefore, DB iteration (15), CR iteration
(16) and IN iteration (17) are, generally speaking, not applicable to online solu-
tion of time-varying matrix square roots.

Different with the aforementioned three iterations, Newton iteration (14) con-
tains Ay in the formula, so the sequence {X;} generated by Newton iteration

ComsSIS Vol. 9, No. 4, Special Issue, December 2012 1621



Yunong Zhang, Long Jin, and Zhende Ke

IE@)e 1Bl
| 60

50
401
30

201

i 10
t(s) t(s)

@n=4 (b) n =10
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(14) can change with A correspondingly [e.g., X5 corresponds to the estima-
tion of the matrix square root of A, = A(t = 27)] and try to find the time-varying
matrix square roots in real time ¢. In addition, the relationship between the ZNN
model and Newton iteration for online solution of static matrix square roots is
presented in [21]. Considering Example 1 again, we apply Newton iteration (14)
to online solution of the time-varying matrix square root of (9). As illustrated in
Figure 12(a), the sequence {X} generated by Newton iteration (14) with the
sampling gap = = 0.01 could not fit well with the theoretical square root even
after a long period of time. Its residual error || Ey||r is depicted in Figure 12(b),
which shows that the error of the solution computed by Newton iteration (14) is
considerably large. Comparing Figures 2 and 3 with Figure 12, we can see that
the ZNN model (4) is more effective and more accurate than Newton iteration
(14) for online time-varying matrix square roots finding.

In addition to the above, the detailed comparison between the ZNN model
and the four numerical methods (i.e., Newton iteration, DB iteration, CR itera-
tion, and IN iteration) for online solution of static matrix square roots can refer
to [21]. Furthermore, the gradient neural network (GNN) model for online so-
lution of time-varying matrix square roots is simulated and compared with the
ZNN model in [22]. These results substantiate that the ZNN model (4), which
is theoretically/intrinsically designed for online solution of time-varying matrix
square roots, is thus more effective than the four numerical methods (i.e., New-
ton iteration, DB iteration, CR iteration, and IN iteration) and the GNN model for
online time-varying matrix square roots finding (or termed, time-varying matrix
quadratic factorization).
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