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Abstract. The effectiveness of K-means clustering algorithm for image 
segmentation has been proven in many studies, but is limited in the 
following problems: 1) the determination of a proper number of 
clusters. If the number of clusters is determined incorrectly, a good-
quality segmented image cannot be guaranteed; 2) the poor typicality 
of clustering prototypes; and 3) the determination of an optimal number 
of pixels. The number of pixels plays an important role in any image 
processing, but so far there is no general and efficient method to 
determine the optimal number of pixels. In this paper, a grid-based K-
means algorithm is proposed for image segmentation. The advantages 
of the proposed algorithm over the existing K-means algorithm have 
been validated by some benchmark datasets. In addition, we further 
analyze the basic characteristics of the algorithm and propose a 
general index based on maximizing grey differences between 
investigated objective grays and background grays. Without any 
additional condition, the proposed index is robust in identifying an 
optimal number of pixels. Our experiments have validated the 
effectiveness of the proposed index by the image results that are 
consistent with the visual perception of the datasets. 

Keywords: electrical tomography; number of pixels; image 
ronconstruction. 

1. Introduction 

Image processing plays an important role in a variety of applications such as 
robot vision, object recognition, and medical imaging [1][2][3]. Image 
segmentation is naturally a clustering course on the basis of pixels such as 
grey, veins, color and so on. As a result, the clustering analysis is widely 
applied in image segmentation.  

With the rapid development of fundamental studies, more stringent 
demands are brought out for image segmentation. Under these 
circumstances, process tomography (PT) finds its unique role in studying the 
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multiphase flow phenomena encountered in chemical engineering fields, 

involving a number of tomographic techniques, such as X-ray, -ray, optical, 
ultrasonic, electrical, and nuclear magnetic resonance imaging. Among X-ray 
computed tomography (XCT) and electrical tomography (ET), an important 
issue of resolution in the XCT imaging process is to determine a proper 
number of pixels. Zhao et al. [4] proposed a multi-parameter method 
(includes area error and image centre position error) for the electrical 
capacitance tomography image evaluation. Graham and Adler [5], [6] defined 
the resolution in terms of fuzzy radius, and adopted the ratio between the 
radius of the interested region and that of the imaging region, the axial error 
and the image energy to evaluate the quality of reconstructed images. To 
date, however, none of the existing methods provides a universally 
acceptable solution to the number of pixels in any reconstructed x-ray 
images. In fact, these existing methods have many limitations. First, the 
methods to determine the number of pixels are often subjective with little 
satisfaction. Second, the objects under evaluation are binary images or gray-
scale images. Third, some prior information such as image error resolution 
and duty ratio are considered in the evaluation process. The last but not the 
least, the evaluation process itself is not objective enough. For example, a 
known mesh of pixels is used during the whole image reconstruction process.  

On the other hand, the K-means is one of the most frequently used 
methods for image segmentation [7] and its success chiefly attributes to the 
introduction of the belongingness of each image pixels. However, there are 
some key issues unsolved when using K-means clustering algorithm to deal 
with image segmentation, such as the determination of the number of 
clusters in a data set, the precise position of the cluster prototype, the real-
time performance and initialization problem related to local optimization. 
Some research studies have attempted to overcome the above problems [8], 
[9]. Recently, an efficient grid-based k-means (G-K-means) algorithm for 
clustering has been proposed [10]. The G-K-means algorithm can efficiently 
overcome the above problems and take advantage over the existing K-
means algorithms. In this paper, we further analyze the basic characteristics 
of the G-K-means algorithm, and demonstrate its advantages over the 
traditional K-means algorithm in image segmentation. Finally, we apply the 
G-K-means algorithm to image reconstruction in the x-ray field. 

In this paper we propose a robust index to determine an optimal number of 
pixels based on maximizing grey differences between investigated grays and 
background objective grays. Results obtained by the finite element method 
(FEM) and Gent 4

@
 software are also given. These experiments are 

conducted to validate the effectiveness and robustness of the proposed 
index. 

2. Related work 

In the following we present the main steps of both the K-means algorithm and 



Application of Grid-based K-means Clustering Algorithm for Optimal Image 
Processing 

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1681 

the G-K-means algorithm in terms of their iterative process and major 
problems in applications. 

2.1. K-means algorithms 

Let  X={xi | i=1, 2, …,n} n data distributed in c clusters. The 
objective function of the K-means algorithm can be stated as 

min  1..,
11 1

   
K
i ij

K
i

n
j ijij utsdu ,   (1) 

 where | || | ijij vxd  , iv  is the prototype of the i-th cluster, uij is the 

membership degree of the j-th data object to the i-th cluster, taken as either 0 
or 1. In terms of the Lagrange optimization method, the optimal prototypes 
for Eq.(1) are 

1 1
/ .

n nm m

i ij j ijj j
v u x u

 
   , i=1, 2, …, c  (2) 

Depending on the group of prototypes, the K-means algorithm assigns 
each object to the most similarity cluster based on the similar measure; 

The above process is repeated and the algorithm stops if a convergence 
criterion is met. For the K-means algorithm, all membership degrees are 

expressed in a cn  matrix U=[ iju ].  

Although the K-means algorithm has been succeeded in many 
applications, it suffers largely from the following problems. First, the 
clustering results of the K-means algorithm greatly depend on its initialization, 
and are prone to fall into a local solution without a good initialization partition. 
Second, since the data assigning problem in the K-means algorithm is not 
optimal, and thus they are not suitable for applications where the membership 
degrees are assumed to represent typicality/compatibility with an elastic 
constraint, or are applied in noise circumstances. Third, the number of 
clusters must be known in advance when the FCM algorithm is used for 
clustering a dataset. In the past decades, many studies have been presented 
to overcome these problems, but these algorithms are little satisfied in image 
segmentation application except the G-K-MEANS algorithm as introduced 
below. 

2.2. G-K-means algorithms 

The G-K-means algorithm firstly divides the minimum closed set containing 
the data into optimal grid structures according to the optimal partition index 
[8], and then divides the grid structures into the online grid (to participate in 
the current iteration) and the offline grid (not to participate in the current 
iteration) as follows.  
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Definition 1. Mean center and geometric center. The mean center of a 
cluster is the arithmetic average of all object vectors in the cluster, while the 
geometric center of a cluster is the center of a minimal hypersphere that 
encloses all objects in this cluster. 

 Usually, the geometric center and the mean center of any cluster are 
different but are very close to each other if the cluster is symmetric (e.g. 
sphere(ellipsoid)-shaped). 

Definition 2. On line grid and off line grid. Let J be an integer and S be a 
set of grids. A grid is called an online grid if the grid is one of top K high-
density grids in S. Any grid that is not an online grid in S is called an offline 
grid. 

All J grids in S are assigned into two sets },...,{ 211 KGGGX   and 

2 +1 +2={G , ,..., }K K JX G G  such that  

K+1 +2|G | | | ,..., | |K J  G G .   (3) 

Thus X1 is the set of online grids and X2 is the set of offline grids. 
Next, the steps which are similar to the K-means algorithm but have 

different mechanisms are carried out with the following objective function:  

Max  
K

i iii VGGGG
1 121 /|...|

 
 . (4) 

The G-K-means algorithm can work without the number of clusters K but 
with a database containing n objects based on the following six steps:  

1.  Choose K geometric centers of online grids as the initial mean centers, 
v1, v2, …, vK ; 

2.  
  
Repeat;  

3.  (Re)assign objects to Gi that is centralized on vi,    for  i = 1, 2, …, K; 
4.   Update cluster centers by 

Kiuxuv
iG

j ijjiji ,...,2,1,/
||

1
     

(5) 

 5.   Go to step 6 if a convergence criterion is met; Otherwise, go to Step 2. 
Stop if there are no overlapping grids in X1; Otherwise, add the offline grid 

with the highest density into X1; go to Step 2. 
The G-K-means algorithm can work under two states. If the number of 

clusters is known a priori, the value of K remains invariant in each iteration. 
Otherwise, Step 6 can automatically determine the final number of clusters. 
As opposed to the K-means algorithm, the G-K-means algorithm tends to find 
cluster centers in high-density areas while K-means cannot guarantee this 
point. Therefore, the cluster quality should be better from the viewpoint of 
density. Moreover, the algorithm assigns objects to grids, which needs much 
less computation than that of the Euclidean distance widely applied in many 
algorithms such as the K-means algorithm. 
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3. Basic characteristics of the G-K-means algorithm   and 

optimal number of pixels 

In the following, we first explore two key problems using the G-K-means 
algorithm in applications in terms of their basic characteristics and 
convergence domains. Then an index to determine an optimal number of 
pixels is proposed in image segmentation and X-ray image processing. 

3.1.  Basic characteristics and convergence of the G-K-means 

algorithm 

◆    Objective function: The objective functions from the K-means to the 

G-K-means algorithm satisfy  

1 1

K n

ij iji j
u d min

 
    

  
K

i iii VGGGG
1 121 /|...|  

(6) 

In (6), the objective function of the K-means algorithm is reformulated by a 
grid-based form in the G-K-means algorithm. Consequently, the maximum of 
the objective function in the K-means algorithm is attained by maximizing the 
average density of a group of online grids, Gi, i = 1, 2 , …, K. Thus the 
objective function in the K-means algorithm is data-object-based while the 
one in the G-K-MEANS algorithm is grid-based. 

◆  Object assigning principle: Let each cluster be enclosed by a separate 

minimal hypersphere. When an object falls in a hypersphere, the object 
usually is closer to the geometric center of the hypersphere than any other 
geometric centers. In the K-means algorithm, the object is assigned to the 
cluster based on the hyperspheres. Consequently, the object assigning 
principle is to iteratively find K minimal hyperspheres that enclose K clusters 
respectively such that the geometric centers of these hyperspheres can be 
well-determined (see Fig.1).  

Contrarily, the G-K-means algorithm iteratively applies K online grids that 
are centralized on v1, v2, …, vK in place of K hyperspheres to enclose those 
objects in each clusters. Namely, an object is assigned to the i-th cluster if the 
object uniquely falls into the grid Gi that stands for the cluster, for i = 1, …, K. 
Finally, the G-K-means algorithm assigns all remaining objects that are not 
covered in any grid to their closest centers. 
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(a)                                                              (b) 

Fig. 1. Comparison of the assigning principle of the K-means and the G-K-MEANS 
algorithms. (a) Grid-shaped and sphere-shaped neighborhoods; (b) All Euclidean 
distances in two partially overlapped clusters. 

◆   Center update: Any new mean center in the G-K-means algorithm is 

locally computed by these objects limited to the related grid. In contrast, any 
mean center in the K-means algorithm may be affected by any object no 
matter how far it is from its involved center. In the G-K-means algorithm, if 
the distance between two mean centers of any two online grids is less than a 

threshold , the two online grids is considered as the same cluster. The low-
populated one in the two online grids is removed from X1 and the most high-
populated offline grid in X2 is added into X1 in the next iteration. All iterations 
are terminated if the difference of the objective function values between two 

consecutive iterations is smaller than the threshold  and |X1|=K. Fig. 2 shows 
the flowchart of the G-K-means algorithm.  

Comparing the convergence of the G-K-means algorithm with that of the 
K-means algorithm, we explain the problem as follows. The local 
convergence is an indicator which measures the risk for algorithms falling 
into a local minimum but it is difficult to theoretically analyze its 
characteristics. For the G-K-means algorithm and the K-means algorithm, the 
definitions of convergence are as follows.  

Definition 3. Convergence domain. Choose a group of points as the initial 
clustering prototypes of the G-K-means or the K-means algorithms. Starting 
from the group of points, if the G-K-means algorithm or the K-means 
algorithm can converge to a local optimum, the group of points is called the 
convergence points of the algorithm. The set of all convergence points is 
called a convergence domain for the corresponding algorithm.  

For example, we introduce a set of two-dimensional data points distributed 
in six irregular clusters data set to illustrate the concept of convergence 
domain, and to directly analyze the convergence of the experimental results. 
All data points are enclosed by a minimal closed set in which any point 
serves as a candidate of a convergence point to examine. The two algorithms 
group all data points over the minimum closed set which contains the space 
that minimizes the objective function. Denote Omax as a sufficiently small 
number (say 10

-5
). For any group of initial points, if the difference between the 

final iteration is less than Omax , we denote these data as convergence points. 
The set of all the convergence points consists of a convergence domain. Fig. 
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2 (b) and (c) show that the convergence of the G-K-means algorithm covers 
almost all the high-density areas (the yellow areas), only a small part of the 
high-density areas is uncovered, which is due to the impact of other clusters. 
It has no effect on the clustering results because the small part of the high-
density online gray area is affected by adjacent clusters. Thus, they deviate 
from the high-density areas and become offline grids. Fig. 2 (a) clearly shows 
that the convergence domain of the K-means algorithm is less than that of G-
K- means. This means that it is greater risk for the former than the latter to 
minimize the objective function. In particular, once the iteration point falling 
out of the domain of convergence there exists at least one cluster that is 
incorrectly distinguished because of lacking a flexible mediation mechanism 
between online and offline grids (pixels).  

 

 
(a) 

 
(b)  

(c) 

Fig.2. The convergence domain of different algorithms. (a) The convergence domain 
of K-means algorithm (b) The convergence domain of the G-K-MEANS algorithm with 
16 initial grids. (c) The convergence domain of the G-K-MEANS algorithm with 32 
initial grids. 

3.2. X-ray imaging principle 

The principle of the radiation attenuation is the first foundation of XCT. 
Assuming that the X-rays are monoenergetic from a parallel beam, the 
residual intensity of X-rays is attenuated by the materials that the X-rays pass 
through: 


 L mdl

eII


0    (7) 

where m is the mass attenuation coefficient (m2/kg) mainly due to the 
photoelectric, Compton and pair production effects; and dl represents 
infinitesimal thin layer of the object (m). The corresponding expression of the 
projection data is 


L

mL ds
I

I
b )ln( 0     (8) 

where  is the density of the object (kg/m3). The image reconstruction 
techniques use the measured projection data as the input to calculate the 
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density distribution of the desired cross-section of the investigated sample as 
the output. Accordingly, the 2D image of the desired cross-section can be 
obtained. The mostly applied reconstruction techniques are divided into two 
categories, the back-projection reconstruction and the iterative 
reconstruction. As an example of the back-projection reconstruction 
technique, the filtered back-projection (FBP) technique is used in most 
commercial medical scanners and has proved to be extremely accurate and 
amenable to fast implementation. This technique can give a rather 
straightforward intuitive rationale because each projection represents a nearly 
independent measurement of the object.  

 

Fig.3. Illustration of the principle of XCT 

As shown in Fig. 3, a 2D object is placed between the X-ray source and the 
detector. The investigated area is discretized by rectangular girds or 
triangular ones. The mathematical expression of the tomographic problem is 
given by the equations: 

AXb  , i.e., Kkab
NM

j kjk ,...,2,1,
1





 (9) 

where K is the total number of the projections, M × N is the total number of 
pixels across the area, akj means the weighting factor for the contribution of 
pixel j to the projection element bk. The goal is to determine the unknown 

image X when the experimental projections b  are available. The weighting 

factor, akj , is calculated based on the geometrical consideration as the 
intersection length/area of the kth projection ray with the image pixel j. In the 
discrete form, the aim of image reconstruction for the X-ray field is to find 
the unknown X from the known  b  by using Eq. (10), that is   

bAX 1     (10) 

However, the direct analytical solution for Eq. (9) does not exist since the 
inverse problem is both nonlinear and ill-posed, little noise in the measured 
data could cause large errors in the estimated conductivity. Consequently, it 
is necessary to use numerical techniques to approximate S

−1
 as accurate as 
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possible after applying some residual criterion. One efficient criteria is 
minimal least error defined as 

min| || | 2
2  AXb      (11) 

Eq. (11) is used to identify the optimal values of X. Many variants of Eq. 
(11) have proposed to solve the ill-posed problem among which the most 
used ET image reconstruction algorithms are the linear back projection 
(LBP). In the LBP algorithm the conductivity distributions are assumed to 
comprise a number of discrete regions within the measurement space such 
that the conductivity within each region is constant. According to Eq. (10),  

]1...,,1,1[..,/   utsuABAX TT    (22) 

Eq. (12) shows that the grey values of any pixels are calculated using a 
weighted form in the algorithm [13].  

In this paper, we first use the LBP algorithm for X-ray imaging 
reconstruction to examine the optimality of space resolutions of X-ray 
imaging under various numbers of pixels. Different from the existing LBP 
algorithm, these calculated values by Eq. (12) are indirectly applied to 

reconstruct any images. Inversely, we denote X   as the set of all values of X 
from Eq. (12) and then the G-K-means algorithm is applied to cluster all 

members in X . Finally, these members in different clusters are endowed to 
different gray while the members in the same cluster have the same gray. 
These gray degrees over all pixels thus reflect the information of the spatial 
distributions of the investigated materials. 

When applying the existing K-means clustering algorithm, one needs to 
predefine the number of clusters K. Currently, there are two applicable ways 
to determine the number of clusters. First, in some cases, there is a priori 
knowledge of the actual number of clusters since the multiphase flows in a 
measured field consists of determined components such that these 
multiphase flows  consist of as the gas, water, and oil in a crude oil 
transmission pipe. Thus we take the number of clusters that is larger than 
three since the X-ray imaging inevitably contains the trail traces that have to 
be represented by some additional clusters of more than three. Second, if 
there is no prior number of clusters available, the issue of determining the 
number of clusters falls into the category of clustering validity indices in a 
given dataset [14], i.e., the number of clusters can be determined by a proper 
function called the clustering validity index [15], [16]. There are some 
efficient validity indices in fuzzy clustering such as the partition entropy (PE) 
proposed by Bezdek [17], the Xie-He index [18], etc. As the running time 
increases, these indices work well for some datasets. However, these 
methods to determine the number of clusters have their limitations. 
Essentially, most of them are specifically designed to the K-means-like 
algorithm. As compared, the G-K-means algorithm can automatically suggest 
an optimal number of clusters and overcome most limitations of the existing 
K-means clustering algorithm in image segmentations. 

An optimal index to determine the optimal number of pixels  
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The optimal number of pixels plays an important role in image processing. 
When applying the G-K-means algorithm, the number of pixels is determined 
by the grid size; that is, the grid size can affect the partitions of the G-K- 
means algorithm. An overlarge grid may contain two or more clusters while 
too small grid may lead to too many online grids to be assigned to the same 
cluster and a significant increase of CPU possessing runtime. Basically, a 
cluster consists of the centric high-density grids while the surrounding low-
density grids and empty grids separate the given data structure into different 
groups (clusters) that aggregates similar data objects (see Fig. 4). All 
nonempty grids are ordered into three sets of grids: D(t), t = 1, 2, 3, satisfying 
that the object number of any grid in D(t) is larger than any other grid in 
D(t+1, j), t = 1, 2. The two classes of high and low populated grids 
respectively cover the center and margin areas of all clusters. The larger 
differences between the two classes of grids are, the easier identification of 
different clusters by a clustering algorithm is. This is the core idea hidden in 
(10). It has been demonstrated that there must be an optimal value of the 
ration between D(1) and D(3) for any dataset with any cluster structure, and 
the optimal value indicates that most of the clusters in the dataset have been 
broken by the partitioned grids [9]. Consequently, the ration can act as the 

upper bound of initial number of grids and predict the optimal grid size. 
 

 
(a) 

 
(b) 

 
(c) 

Fig.4. Three classes of grids under different grid sizes in D(1), D(2) and D(3) from 
high to low density correspond to center, inner, and margin areas of most clusters in 
a dataset with three clusters. (a)–(c) corresponds to three classes of grids, 
respectively. The same color indicates the same class of grids 

Accordingly, if the number of pixels can be incorrectly determined, a good-
quality segmented image cannot be guaranteed. We thus propose a general 
index based on maximizing grey differences between investigated objectives 
and background as follows.  

Consider a pixel dataset M = ],...,,[ 21 nxxx ndR  , where each column of M, 

ix  dT

idii Rxxx ),...,,( 21 , is a singleton data object in a d-dimensional data 

space. For example, when the number of ray resources is 16, d=16. Let max  

and min  be the maximal and minimal distances between any pair of data 

objects in M respectively and ],[ maxmin   . We take a number of 

equidistant breaking points ss  ,,....,, 121   from 1  to s  to partition  , 
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min1   , max s , where s is the number of breaking points. A breaking 

point ks  can be characterized as 

skkk ,...,2,1,)1(1      (33) 

where  is the distance between any two adjacent breaking points. Let 

)( jxN
k

be the subset of the data objects in the k -neighborhood of 

jx , njsk ,...,2,1;,...,2,1  . Group all subsets of jx  into three sets of grids: 

D(s, k ), s = 1, 2, 3, such that the density of any subset in D(t, k ) is greater 

than any other subset in D(t+1, k ), t = 1, 2. Hereafter, |  | denotes the 

number of data objects in the contained set. The optimal neighborhood size, 

say GPI, is determined by maximizing the ratio of |D(1, k )| and |D(3, k )|; 

that is, 

GPI=
k

maxarg {|D(1, k )| / |D(3, k )|}, (44) 

Hereafter GPI is called a general partitioning index (GPI) in this paper. The 

two classes of subsets in D(1, k ) and D(3, k ) correspond to the centric and 

margin locations of all clusters. If 
min

  each data point will have no 

neighborhood and =1
OPT
  while 

max
  , the space will degenerate to a 

subset. The differences between any pair of subsets will disappear and 

=1
OPT
 . Consequently, there must be at least one maximum on Eq. (8) 

without any additional conditions. In the experiments, we will graphically show 
these maximums. 

GPI in (9) aims at maximizing grey differences between investigated 
objectives and background since the investigated objectives respond to these 
pixels whose components have larger values while the background responds 
to these pixels whose components have smaller values.  

Fig.5 shows the flowchart of our proposed approach in image 
segmentation application. 

Find a minimal 

closed set for input 

set

(Re)partition cross-

section to grids
Generating online grids

Accepted results?Eq.(9) holds?
Output optimal 

segment results

Compute mean 

centers of 

online grids

Reassign objects 

into all grids

YesYes

No No

 Fig.5. Flowchart of the proposed approach in image segmentation application. 
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4. Experiments 

In this section we conduct two groups of experiments to validate of the 
effectiveness of the G-K-means algorithm and GPI respectively. In addition, 
we apply the K-means algorithm to the experiments under various numbers 
of pixels using the same datasets. These experiments are performed in the 
X-ray sensitiveness fields and analyzed by space resolution. Here the space 
resolution refers to the relative error of all n pixels in a partitioned image as 

 


n

j *
j

*
jj

g

)g-g(

n 1

1
       (55) 

where  gj  is the reference grey degree of the j-th pixel, that is the real grey 
value;  gj*  is the grey value of the j-th pixel in the reconstructed image, j=1, 
2,…, n; and   is the average of all errors of  K  pixels.  

4.1. Image segmentation in a group of benchmark datasets 

We apply the color and grey templates of the well-known Lena image as 
original images, and use the K-means and G-K-means algorithms for image 
segmentation. For the original Lena color images, the information is kept into 

3nm data matrix. We give each element in term of the array of pixel 

values as red(G) blue(B), green(G). Assuming the matrix I stored the 
information of Lena color pixel, we can get the color value of each pixel, 

denoted as )1:,(:,IIR  , )2:,(:,IIG  , )3:,(:,IIB  . A three-dimensional matrix 

are firstly constructed by RI , GI  and BI , and then we make use of the above 

two algorithm for image segmentation. The segmentation quality is measured 
by the following two indices: 

1)The mis-segmented number of pixels. It is an important index to 
evaluate the segmented images in practice and is further formulated as Eq. 
(15).  

2) Time cost. The runtime of an algorithm decides its applicable range. In 
case of most situations with the real-time demands, the K-means algorithm is 
too slow to be applied.  

Fig. 5 and Fig. 6 visually show the segmented images by the above two 
algorithms. These results of the two algorithms are obtained under two 
conditions: (1) the number of clusters is selected from 2 to 12, and the best 
segmented image is shown in Figs. 5(b) and 5(c), and Figs. 6(b) and 6(c) 
respectively. (2) Four times of initializations are implemented in order to 
overcome the local minimum when we apply the K-means algorithm. In 
contrast to the two original images in Fig. 6 and Fig. 7, the segmented 
images from the G-K-means algorithm are clearer and tidier than those from 
the K-means algorithm, and more close to the real templates. Table 2 further 
verifies that the two statistical indices of the G-K-means algorithm are 
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superior to those of the K-means algorithm. In particular, the G-K-MEANS 
algorithm is rather stable and robust, and hardly is affected by the 
initialization problems that often are encountered in the applications of the K-
means algorithm.  

 

                        
(a)                                       (b)                                      (c) 

 Fig.6. Segmented results of standard Lena image. (a) Original Lena image template. 
(b) K-means.  (c) G-K-means.  

                            
(a)                                  (b)                                      (c) 

Fig.7. Segmented results of standard Lena image by the two algorithms. (a) Lena 
image template. (b) K-means (c) G-K-means. 

Table 1. Comparison of the image segmentation quality  by two algorithms. 

4.2. Image segmentation in X-ray fields  

The datasets of this set of simulations are obtained from Geant4 [19]. The 
tested original images are five and twenty-five circles with continuously 
distributed materials, as shown in Table 3(a) and Table 4(a).  

These circles have the same material component and thus should be 
shown as the same gray degree. The background must respond to two kinds 
of different grey degrees since there is a class of trail traces at least. We 
perform the LBP algorithm with various numbers of pixels (e.g., grids in the 
FEM) for image reconstruction, while the values of GPI are computed to find 

Algorithms Mis-segmented pixel 
number 

Relative 
error 

Runtime 
(Seconds) 

K-MEANS 1177 0.2619 0.2349 

G-K-means 1026 0.1914 0.0143 
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its maximum for the optimal number of pixels. For comparison, the space 
resolutions of Eq. (10) are computed. As the number of pixels gradually 
decreases, these images of different space resolutions are obtained. It can be 
observed that GPI can clearly attain their maximums and, at the same time, 
the space resolution of the images that respond to the maximum by Eq. (10) 
attains its maximum. Please note that Eq. (10) is a subjective evaluation of 
space resolution due to dependence of necessary reference image. Inversely, 
GPI works well without any other information except the reconstructed image 
itself. Consequently, GPI perfectly is an objective evaluation index. After 
calculating these values of Eq. (7) for all pixels, we apply the G-K-MEANS 
algorithm to cluster all members in the set of the obtained values. When GPI 
attains its maximum, the corresponding number of pixels is optimal. In fact, 
the trail traces in a reconstructed image of the maximum of GPI is minimal, 
and the boundary of investigated objectives (see Table 3 (f) and Table 4 (d)). 
It can visually be observed that the trail traces in other images, whose values 
of GPI are far away from the maximum, are widely distributed, and even 
some circles are incorrectly connected to the same area or some circles 
cannot be found. Thus, these images show that GPI can better distinguish the 
optimal X-ray images by the determination of the optimal number of pixels. 
Table 3 gives the quantitative description of the imaging results of these two 
algorithms. Table 3 shows that all the space resolutions of the G-K-MEANS 
algorithm by Eq. (10) are superior to those of the K-means algorithm, while 
the time cost is far less that of the K-means algorithm.  

Fig. 8 summarizes the curve of GPI values in the above two groups of X-
ray images. It can be seen from Fig. 3 that the two maximums are dominantly 
larger than other values. Thus GPI can clearly predict the optimal number of 
pixels and evaluate the X-ray image of the best space resolution. GPI can 
represent different physical meanings and can work objectively without any 
additional information. Specifically, to measure the robustness of GPI, the 
radiuses of these images in the two sets are taken by a group of very 
different values. Fig. 7 shows that the maximums of GPI are encountered in 
most radiuses. This demonstrates GPI is useful and efficient in most 
datasets. Indeed, in some datasets, GPI is inefficient and thus there still is a 
necessity to improve its performance.  

Table 2. Original and reconstructed images that correspond to the original image of 
five circles.  

 
(a)Original image 

 
(b)ξ=0.44,GPI=0.83 

 
(c)ξ=0.38, GPI=0.66 

 
(d)ξ=0.34,GPI=0.94 
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(e)ξ=0.39,GPI=1.1

4 

 
(f)  ξ=0.25, GPI=2.12 

 
(g)ξ=0.27, GPI=1.97 

(h)ξ=0.27, PI=1.91 

 

Table.3. Original and reconstructed images that correspond to the original image of 
twenty-five circles. 

(a) Original image 
 

(b)ξ=0.38,GPI=1.8
5 

 
(c)ξ=0.36, GPI=2.83   

 
(d)ξ=0.27, PI=3.12 

 
(e)ξ=0.34,GPI=1.8

9 

 
(f)ξ=0.41, 

GPI=1.64   

 
 (g)ξ=0.49,GPI=2.81 

 
(h) ξ=0.42, GPI=2.82 

 
 

 
(a) 

 
(b) 

Fig. 8. Maximums of GPI in reconstructed images under different numbers of pixels 
from the LBP algorithms. (a) and (b) correspond to the two sets of  three and twenty-
five circles, respectively. The signs “R×” stand for a group of various radii. 
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Table.4. Comparison of the image segmentation quality  by two algorithms  

Algorithms Mis-segmented 
pixel number 

Relative error Runtime 
(Seconds) 

K-MEANS 2387 0.3697 0.2590 

G-K-MEANS 2011 0.2273 0.0875 

5. Conclusion 

Image segmentation is the foundation of image analysis, image 
understanding and pattern recognition. However, due to the lack of 
fundamental measures to deal with the problem of image segmentation, the 
current common clustering algorithms cannot achieve unsupervised 
clustering. In this paper we apply the G-K-means algorithm to image 
segmentation applications. The G-K-means algorithm has not only linearly 
computational complexity but also simple and effective operation. The 
advantage of the G-K-means algorithm over the existing K-means algorithm 
has been demonstrated by its fast convergence and clustering performance. 
Our experimental results have validated that the proposed index for 
determining the optimal number of pixels is effective and comprehensible in 
its reconstructed images of high spatial resolution.   

 
Acknowledgment. This work is supported by the National Science Foundation of 
China under Grant No. 61774014, 60572065, 60772080 and the National Science 
Foundation of Tianjin under Grant N0.08JCYBJC13800. 

References 

1. Zhang Y.: Image segmentation. Beijing: Science Press. (2001). 
2. Olson C. F.: Maximum-Likelihood Image Matching,  IEEE Trans. Patt. Anal. 

Mach. Intell., vol. 24, no. 6, pp. 853-891. (2002) 
3. Pham D.L.: Partial models for fuzzy clustering, Computer Vision and Image 

Understanding, vol.84, pp.285-297. (2001) 
4. Dudukovic, M.P.: Opaque multiphase flows: experiments and modeling. 

Experimental Thermal and Fluid Science, vol. 26, no.3, pp. 747-753. (2002) 
5. Ahmed M. N., Yamany S M, and Mohamed N.: A modified fuzzy C-means 

algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. 
Medical Imaging, vol.21, no.3, pp.193~199. (2002) 

6. Banholzer, W.F., Spiro, C.L., Kosky, P.G., Maylotte, D.H.: Direct imaging of time-
averaged flow patterns in a fluidized reactor using X-ray computed tomography. 
Industrial & Engineering Chemistry Research 26, 763-770. (1987) 

7. Bartholomew, R.N., Casagrande, R.M.: Measuring solids concentration in 
fluidized systems by Gamma-ray absorption. Industrial & Engineering Chemistry, 
vol.49, pp.428-436. (1957) 

8. Zhao J, Fu W and Hu Q.: Investigation of evaluating method for reconstructed 



Application of Grid-based K-means Clustering Algorithm for Optimal Image 
Processing 

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1695 

image quality of electrical capacitance tomography system. Journal of Guangxi 
University (Science), Vol. 28, pp. 61-64 (2003) 

9. Dyakowski T., Edwards, R.B., Xie, C. G. Williams, R.A.: Application of 
capacitance tomography to gas solid flows. Chemical Engineering Science , 
vol.52, pp.2099-2112. (1997) 

10. Grassler, T., Wirth, K.E.: X-ray computer tomography—potential and limitation for 
the measurement of local solids distribution in circulating fluidized beds. Chemical 
Engineering Journal, vol. 77, pp.65-73. (2000) 

11. Harvel G.D., Hori, K., Kawanishi, K., Chang, J. S.: Real-time crosssectional 
averaged void fraction measurements in vertical annulus gas liquid two-phase 
flow by neutron radiography and X-ray tomography techniques. Nuclear 
Instruments and Methods in Physics Research Section A, vol.371, no.3, pp.544-
554. (1996) 

12. Harvel, G.D., Hori, K., Kawanishi, K., Chang, J.S.: Cross-sectional void fraction 
distribution measurements in a vertical annulus two-phase flow by high speed X-
ray computed tomography and real-time neutron radiography techniques. Flow 
Measurement and Instrumentation, vol. 10, no.4, pp.259-266. (1999) 

13. Xie X.L., Beni G.: A validity measure for fuzzy clustering, IEEE Trans. Pattern 
Anal. Mach. Intell., vol.13, no.8, pp. 841–847, 1991. 

14. Yue S., Wang J., Gao T., Wang H.: An unsupervised grid-based approach for 
clustering analysis, Science China-Information Science. vol.53, no.6, pp. 1372-
1384. (2010) 

15. Yue S., Wei M., Wang J., Wang H.: A general grid-clustering approach, Patt. 
Recognition Letter, vol.29, no.9, pp.1372-1384. (2008) 

16. Kai, T., Misawa, M., Takahashi, T., Tiseanu, I., Ichikawa, N., Takada, N.: 
Application of fast X-ray CT scanner to visualization of bubbles in fluidized bed. 
Journal of Chemical Engineering of Japan, vol.33, no.6, pp.906-911. (2000) 

17. Kantzas, A., Kalogeraki, N.: Monitoring the fluidization characteristics of polyolefin 
resins using X-ray computer assisted tomography scanning. Chemical 
Engineering Science 51 (10). (1979) 

18. Kantzas, A., Wright, I., Kalogerakis, N.: Quantification of channeling in 
polyethylene resin fluid beds using X-ray computer assisted tomography (CAT). 
Chemical Engineering Science, vol. 52, no.13, pp.2023-2033. (1997) 
Http://geant4.slac.stanford.edu/installation/ 

 
 
 
Tingna Shi received the B.Sc. and M.S. degrees in the Electrical 
engineering department from Zhjiang University in China, respectively. In 
2009 she received the Ph.D degree in the School of electrical engineering 
and automation from Tianjin University in China. And she works in the School 
of electrical engineering and automation from Tianjin University as an 
associate professor from 2003 to 2012 and a professor now. Her research 
interests include wind power, electrical technique, and intelligence control.   
 
Penglong Wang received the B.Sc. degree in the Automation department 
from Tianjin University of Technology in China. From 2011 till now he studies 
as a student for the M.S. degree in the Tianjin University in China. His 
research interests include pattern recognition, information fusion and 
intelligence control. 

http://geant4.slac.stanford.edu/installation/


Tingna Shi, Penglong Wang, Jeenshing Wang, and Shihong Yue 

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1696 

Jeenshing Wang received the B.S and M.S. degrees in electrical 
engineering from the University of Missouri, Columbia, in 1996 and 1997, 
respectively, and the Ph.D. degree from Purdue University, West Lafayette, 
IN, in 2001. He is currently an Associate Professor with the Department of 
Electrical Engineering, National Cheng Kung University, Tainan, Taiwan. His 
research interests include computational intelligence, intelligent control, 
clustering analysis, and optimization. 
 
Shihong Yue received the B.Sc. degree in the mathematics department 
from Yili Normal University, Xinjiang in China. And the M.S. and Ph.D degree 
in application mathematics from the Xi`An University of Technology and in 
the mathematics department from Xi`An Jiaotong University, in 1997 and 
2000, respectively. From 2000 till 2004, he works in Institute of Industrial 
process control from Zhejiang University as a postdoctoral and received 
deputy professor in July 2001. As a visiting professor, he works in the 
department of computer science and Information engineering, Taiwan, in 
2002. From 2004 till now, he works as a professor in the School of Electrical 
Engineering and Automation from Tinjin University. His research interests 
include pattern recognition, information fusion and intelligence control. 
 
 
Received: January 26, 2012; Accepted: November 17, 2012. 

 


