
DOI: 10.2298/CSIS120218056T

Formal Verification of Signature-monitoring
Mechanisms by Model Checking

Lanfang Tan, Qingping Tan, Jianjun Xu, and
Huiping Zhou

School Computer, National University of Defense Technology,
410073 Changsha, China

{tanlanfang1022, eric.tan.6508, jjun.xu, icent}@gmail.com

Abstract. In recent decades, reliability in the presence of transient faults
has been a significant problem. To mitigate the effects of transient
faults, fault-tolerant techniques are proposed. However, validating the
effectiveness of fault-tolerant techniques is another problem. In this pa-
per, we present an original approach to evaluate the effectiveness of
signature-monitoring mechanisms. The approach is based on model-
checking principles. First, the fault tolerant model is proposed using
step-operational semantics. Second, the fault model is refined into a
state transition system that is translated into the input program of the
symbolic model checker NuSMV. Using NuSMV, two reprehensive sig-
nature-monitoring algorithms are verified. The approach avoids the state
space explosion problem and the verification was completed with practi-
cal time. The verification results reveal some undetected errors, which
have not been previously observed.

Keywords: software fault-tolerance, model checking, formal verification,
fault tolerance, signature monitoring mechanisms.

1. Introduction

In recent years, with the growing demand for high availability and reliability of
computer systems, validating the effectiveness of fault-tolerant techniques
constitutes a significant problem [1]. Fault injection techniques have been
instinctively proposed, in which faults are injected into target systems to see
whether the fault tolerant procedures could properly behave [2]. However,
fault injection techniques have a common drawback, which is their failure to
cover all fault scenarios. These techniques also tend to be very time consum-
ing. Therefore, the development of efficient verification techniques for fault-
tolerant systems is urgent. Given that the formal verification technique can
target all possible "corner cases," which may be missed by conventional fault
injection methods, the verification technique for fault-tolerant systems be-
comes a promising candidate solution. A few methods for formal verification of
fault-tolerant techniques have been proposed. Generally, these methods can
be classified into two categories:

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1432 ComSIS Vol. 9, No. 4, Special Issue, December 2012

 Deductive verification: a technique that proves the correctness of fault-
tolerant systems using axioms and proof rules [3]. The intrinsic ad-
vantage of the deductive technique is its ability to reason out all nonde-
terministic errors. However, it can only be used by experts who are edu-
cated in logical reasoning and have considerable experience. Deductive
verification also cannot be automatically performed.

 Model checking: In earlier research [4][5][16-18], model checking was
proposed to evaluate the reliability of fault-tolerant systems. It explores
all possible system states to cover all fault scenarios. However, it may
suffer from the state space explosion problem.

Though model-checking techniques are promising, many theoretical ques-
tions remain. In particular, a general approach based on model checking for
the evaluation of fault-tolerant techniques has not been formulated. An ap-
proach is usually specialized for a specific system, and different techniques
need different validation paradigms. For example, Nicolescu et al. verified a
control-flow checking technique by constructing a hypothetical program that
augmented the technique, and then checks the program for undetected errors
[4]. For other detection mechanisms, construction of similar programs is diffi-
cult.

In this paper, we propose a general approach to evaluate the effectiveness
of signature-monitoring techniques [9-11] using model checking. It aims at
formally proving the capacity of the signature-monitoring techniques to detect
errors over a general class of possible applications. In other words, can we
verify that some control-flow errors (CFEs) can be detected by the signature-
monitoring technique, while some CFEs cannot? The purpose is to catch all
undetected CFEs that potentially escape from conventional detection. The
main contributions of our work are highlighted as follows:

 An original approach for the evaluation of signature-monitoring tech-
niques is proposed, which provides a universal validation paradigm for all
signature-monitoring mechanisms.

 A fault tolerant model is proposed to describe the execution of the as-
sembly program that is strengthened by the signature-monitoring mech-
anism. A state transition system is refined and a procedure on how to
translate the state transition system into the input program of the model
checker NuSMV is explained in detail. The translation procedure can be
applied to all cases.

 Two reprehensive signature-monitoring algorithms are evaluated. Some
undetected errors that have not been found before are revealed. Espe-
cially for the dynamic signature-monitoring (DSM) technique, which can
detect all illegal interblock errors [4][9], four kinds of errors that escaped
detection were found.

The remainder of this article is organized as follows. Section 2 lists the re-
lated work . Section 3 describes the basic principle of the signature-monitoring
mechanism. Section 4 presents the fault tolerant model for the assembly pro-
grams that are strengthened by the signature-monitoring mechanism. Section
5 describes the state transition system refined by the fault tolerant model and
the translation of the state transition system into the input language of the

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1433

model checker. In Section 6, two representative algorithms are verified and
the verification results are analyzed. Section 7 lists the comparisons. Section
8 states the conclusions and future works.

2. Related Work

Some earlier formal verification techniques have been proposed to evaluate
the system dependability. Nicolescu et al. [4] proposed an original approach
to evaluate the system reliability with respect to transient errors. Based on a
generic model over a general class of all possible applications, the proposed
validation approach allows exploring all fault scenarios. The validation con-
firms that DSM technique satisfies the property that if an error corrupts the
control flow execution, it will ultimately be detected. Our approach verifies the
DSM technique and the comparisons are illustrated in Section 7.

Tomoyuki et al. [5] proposed a symbolic model checking method for verifi-
cation of fault tolerance of systems. At first the fault tolerant system is speci-
fied in the form of a guarded-command program. A modeling language suited
for describing guarded-command programs is defined, and then a translation
method from the modeling language to the SMV language is proposed. By
specifying the fault tolerance property as a CTL formula, the examples were
verified to demonstrate the usefulness of the proposed method. The differ-
ence with our work is the target fault model. The faults in [5] mainly are crash
faults and byzantine faults, while our study focuses on transient faults [19].

Arora and Gouda [16] first gave a formal definition of “fault tolerance” for a
system, which consists of a safety requirement, closure and convergence.
Then a formal framework for reasoning about fault-tolerant system was pro-
posed, which enables reasoning independent of technology, architecture and
application considerations. Similar to the work in [5], this method deals with
the stuck-at, crash, failstop, omission and byzantine faults.

John [17] presented a methodology that can ease the formal specification
and assurance of critical fault-tolerant system. The functional program is first
transformed into an untimed synchronous system and then into its time-
triggered implementation. The first step is specific to the algorithm concerned,
but the second is generic and its correctness was proved. This proof was for-
malized and mechanically checked with the PVS verification system. This
work is applicable to the critical real-time applications.

Daniel and Ruben [18] proposed a method of first using aspect oriented
programming (AOP) to add fault tolerance to software, and then formally veri-
fying the fault tolerance property of a program. Meng et al. [20] analyzed the
impact on formal verification effort and testing effort due to adding different
fault tolerance mechanisms to baseline systems. By comparing the experi-
mental results of different designs, they concluded that re-execution (time
redundancy) was the most efficient mechanism, followed by parity code, dual
modular redundancy (DMR), and triple modular redundancy (TMR). Moreover,
the ratio of verification effort to testing effort to assist designers in their trade-

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1434 ComSIS Vol. 9, No. 4, Special Issue, December 2012

off analysis when deciding how to allocate their budget between formal verifi-
cation and testing was defined, which could be used in practical industrial
production.

3. Signature-monitoring Mechanisms

In this paper, the target errors to be tolerated are transient errors [19], which
emerge from external events such as energetic particles striking the chip due
to the shrinking chip size and increasing transistor density of the modern pro-
cessors. Transient faults do not cause permanent damage, but may result in
incorrect program executions by altering signal transfers or stored values. In
terms of effects, transient errors can be classified into data errors and CFEs.
Data errors appear when the contents of variables in the memory or in the
microprocessor registers are altered. CFEs refer to deviations from the pro-
gram’s normal instruction execution flow, such as upsets to the target ad-
dresses of branch instructions or the program counter (PC). Studies have
shown that CFEs account for 33% to 77% of all transient errors [7]. Therefore,
computer systems must be equipped with CFE detection mechanisms.

A multitude of CFE detection techniques have been proposed [8–11]. Sig-
nature-monitoring techniques are apparently the most universal and effective
techniques. Several signature-monitoring techniques have been developed
[9–11]. Control-flow checking by Software Signatures (CFCSS) [11] and DSM
[9] are two representative signature-monitoring techniques, which will be veri-
fied in Section 6. As a general characteristic, signature-monitoring techniques
are designed to detect illegal interblock transitions that are incorrect jumps to
other blocks corrupting the program control flow. Signature-monitoring tech-
niques are based on the partition of the program code into basic blocks (BB)
[12]. A basic block is a maximal set of sequential instructions that start from
the first instruction and terminate at the last instruction. No branch instruction
exists in a basic block except for the last instruction.

After dividing the program into BBs, a unique static signature is associated
to each BB during the pre-compilation phase. Some assistant signature varia-
bles are also introduced. Based on the signatures, checking instructions are
added. When a program is executed, a dynamic signature variable is comput-
ed and compared with the static signature of the current executing block. If
the dynamic signature equals to the static signature, no error occurs. Other-
wise, the checking instructions see the mismatch and detect the error.

Checking instructions can be classified into three kinds in terms of their ef-
fects. Generation instructions produce the dynamic signature for the current
block. Compare instructions identify whether the control has correctly reached
this block. Preparing instructions update signatures for the transfer of control
to the next block. For different signature-monitoring mechanisms, the loca-
tions and numbers of checking instructions are different. Fig. 1a shows an
abstract description of how checking instructions are added. For some algo-
rithms, preparing instructions may follow the original instructions. Whether

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1435

preparing instructions emerge before or after the original instructions, the
branch instruction should come last.

Fig. 1b illustrates how checking instructions are added in CFCSS. G and S
represent the dynamic signature and static signature, respectively. D and d
represent the assistant signatures. Two instructions “xor G,G,di” and “xor
G,G,D” [11] update the dynamic signature G. The compare instruction “bne G,
Si, error” compares the dynamic signature with the static signature. If they
mismatch, program control flow transfers to the error handler “error”. The in-
struction “xor D,Sh,Si” generates the assistant signature D to prepare for the
control flow transfer.

signature generation signature generation instruction

signature compare instruction

Block body

preparing instructions

for control flow transfer

branch instruction

signature compare

 xor G,G,di

 xor G,G,D

 bne G, Si, error

original instructions

 xor D,Sh,Si preparing control

flow transfer

 block body

branch instruction

(b)
(a)

branch

Fig. 1. (a) An abstract description of adding checking instruction in a basic block; (b)
Example of checking instructions in CFCSS algorithm

4. The Fault Tolerant Model

A control flow machine is introduced to describe the control flow transfer of
the fault tolerant program strengthened by signature-monitoring mechanism.
Suppose the hardware affected by transient faults is based on a simple RISC
architecture, the execution of the fault tolerant program strengthened by sig-
nature-monitoring mechanism can be specified using a step-operational se-
mantics, which maps a machine state to other machine states.

4.1. The Syntax of the Machine

Considering that signature-monitoring mechanisms only focus on CFE, opera-
tions on the data segment (general-purpose registers and memory) can be
abstracted from the machine. For clarity, we adopt a minimal assembly in-
struction set that is composed of control flow instructions jump (jmp) and con-
ditional branch (brz), as well as signature-generation (generate), signature-
compare (compare), and signature-preparing (prepare) instructions. Fig. 2
details the syntax of the machine states.

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1436 ComSIS Vol. 9, No. 4, Special Issue, December 2012

For clarity and elegance, assume that the values of signature and address
are integers. Meta-variable n generally ranges over integers. When we em-
phasize that an integer is used as an address, the meta-variable l is used.
Similarly, a meta-variable s is introduced to express the values of signature
variables. rz denotes the branch condition of the conditional branch instruc-
tions, with the value “true” and “false”. rt denotes the target address of the
control flow instructions.

Control flow instructions consist of jump instruction (jmp rt) and conditional
branch instructions (brz rz, rt). Checking instructions consist of signature-
generation (generate), signature-compare (compare), and signature-preparing
(prepare) instructions. For different signature-monitoring techniques, the op-
erations of checking instructions are different.

Instructions are grouped together in basic blocks BB. These blocks always
begin with signature-generation and signature-compare instructions, are then
filled with the block body

and terminate by signature-preparing instructions. If

a block has control flow transfer, control flow instruction (jmp rt) or (brz rz, rt)
ends with the block. Since the original instructions of the block do not alter the
program control flow, they can be abstracted as an entirety, in other words,
the block body.

The machine states can be modeled as a tuple (C, H, BB, S, PC) that are
composed of code memory C, history H, basic block being executed BB, sig-
nature variables S, and program counter PC. These are defined as follows:

 Code memory C[] is a partial map from addresses to valid basic
blocks. Block addresses are all ordered. We use the notation l+1 to refer
to the address of the block, which follows the block at l. If a block at l
ends with a conditional branch, we assume that l+1 inhabit the domain of
C. In other words, conditional branch always have a block to fall through
to.

 History H is a sequence of labels that record basic blocks being executed
during the current execution. When a program is completed executing, H
denotes the execution path.

 Block BB denotes the basic block being executed.

 Signature variables S have two components, namely, the dynamic signa-
ture variable G and the assistant signature file A. A[] is a mapping
from assistant signature variables to the values they contain. Different
signature-monitoring mechanisms introduce different assistant signature
variables.

 Program Counter PC refers to the next instruction to be executed.
To describe the fault-tolerant program behavior after an error occurs, we in-

troduce three special “final states”. The detected state represents a state in
which an error has been detected, whereas the invalid state represents a
state when an error causes transition to an invalid address. The exit state
represents a state that program exits normally, though an error occurs.

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1437

Address values

Program Conter

Branch condition

Branch intention register

Signature values
Dynamic signature

Assistant signature variables

Assistant signature file

Signature variables

History

Control flow instruction
Checking instruction

Blocks Body

Basic blocks

Code memory

State

Final state




 l
PC

rz
rt
s
G

a

A
S

H

i
c

 b
BB

C

::= n
::= l
::= true | false

::= l
::= n
::= s
::= a1 |...an

::=. | A, a -> s
::= (G, A)

::=l1,...ln

::= jmp rt | brz rz,rt
::= | generate G, a, s
 | compare G, s
 | prepare a, a, s

::= original instruction list

::= generate G, a, s;

 compare G, s;

 b ;

 prepare a, a, s ;

 i | .

::= . | C, l ->BB

::= (C, H, BB, S, PC)

::= detected |exit | invalid

Fig. 2. Syntax of instructions and machine states

4.2. The Semantics of the Machine

This section formalizes the operational semantics of the control flow machine.
Generally speaking, the operational semantics are defined as the rule (1),
which expresses that state transfers to state by a step execution under
certain conditions.

1 2

step

Conditions

 

(1)

Rule (2) illustrates the fault model. As an established standard, the current
study adhered to the Single Event Upset (SEU) model [7], which states that
only one fault occurs per execution. With signature-monitoring mechanisms
only focusing on CFE, SEU can be modeled as illegal transitions to other in-
structions that are different from the expected target. Under the semantics of
the control flow machine, error occurrence can be described by the rule error,
which expresses that when CFE occurs, the program control flow transfers to
a random instruction rather than to the expected instruction (denoted as ex-

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1438 ComSIS Vol. 9, No. 4, Special Issue, December 2012

pect(PC)). Sometimes, a CFE may cause a program to jump to an invalid
address. CFE may occur any time as the rule can apply any time.

' (exp ()) & & '

(, , , ,) (, (;), ', , ') / ()error

PC ect PC BB BB

C H BB S PC C H BB BB S PC invalid H

 



(2)

Several notations are introduced to explain the following rules. Notation
Sval(a) denotes the value of a. Similarly, Rval(rt) refers to the value of rt. Nota-

tion S[a s] corresponds to updated assistant signature variables file with
variable a mapped to s. PC++ denotes incrementing PC by 1, when the exe-
cution of an instruction is complete.

Rule (3) expresses the execution of a jump instruction. The control flow is
transferred to a new block when rt contains the address of a valid block.

() () & & ' (())

(, , , ,) (, (;), ', ,)()
val val

jmp rt

val

R rt Dom C BB C R rt

C H BB S PC C H BB BB S R rt

 



(3)

The rule (4), which is for the conditional branch instruction, similarly follows
jump instructions when the branch condition is satisfied.

,
() () & & ' (())

(, , , ,) (, (;), ', ,)

& & ()
()

val val val

brz rz rt

val

R rt Dom C BB C R rt

C H BB S PC C H BB BB S R

R rz false

rt

  



(4)

Accordingly, the rule (5) describes that the program control flow proceeds
to the next block when the condition is not satisfied.

,
() ()

(, , , ,) (, (;), () 1, ,

& & ()

)
val val

brz rz rt

R rt Dom C

C H BB S PC C H BB C BB S PC

R rz true

  





(5)

The following rules describe state transitions by updating signature varia-
bles. The rule (6) indicates the generation of the dynamic signature of the
current block, where the function f =generate (s1, s2) defines the operations
for signature generation.

, ,
& &

(, , , ,) (, , , ',

' ((),) ' (',)

)
val

generate G a s
C H BB S PC C H BB S PC

G generate S a s S G A

 

 



(6)

The rule (7) describes the mismatch that the dynamic signature is not equal
to the static signature. Hence, an error is detected and the program transfers
to a final detected(H) state, where H represents the sequence of the blocks
during execution.

,(, , , ,) det ()compare G s

G

C H BB S PC ected H

s



(7)

By contrast, the rule (8) describes when the dynamic signature equals the
static signature of the current block, no error is detected and the program con-
tinues with its execution.

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1439

,(, , , ,) (, , , ,)compare G s

G

C H BB S PC C H BB S PC

s

 





(8)

The rule (9) indicates that assistant signature variables are prepared for
transfer control to the next block, where the function f = prepare (s1,s2) defines
the operations for updating the assistant signatures.

, ,(, , , ,) (, , , ',)

' (()) & & ' (, '),
val

prepare a a s

S

C H BB S PC C H BB S PC

A prepare a a S G As

 

 



(9)

5. Implementation

In this section, we first refine the execution of the control flow machine into a
state transition system, and then describe its translation to the input language
of the model checker for automatic verification.

5.1. The State Transition System

As aforementioned, a state of the control flow machine is formally represented
by a tuple =(C, H, BB, S, PC). Transitions between these states formalize
the effect of the execution of an instruction. The fault-tolerant program execu-
tion then can be refined into a state transition system with one assembly in-
struction per state.

To explain the component C in the transition system, all basic blocks are
numbered and each one is uniquely identified by an address represented by a
special symbol. The addresses of the instructions in the basic blocks are also
represented by symbols. For instance, the address of the first basic block
(BB1) is “#BB1”. The addresses of the instructions in BB1 are identified as
#BB1(gen), #BB1(comp), #BB1(body), #BB1(pre), and #BB1(bran).

In the machine state, H represents the sequence of blocks involved during
the current execution. When the execution is complete, H becomes the exe-
cution path. In an assembly program, if the branch conditions are identified,
their execution paths are also identified. To express all execution paths, a
tuple Con=(c1,c2,…cN) is introduced, where ci is a Boolean variable that de-
notes the branch condition of BBi and N is the total number of basic blocks in
the program. If BBi is not a branch block that exits with a branch instruction, ci

is reserved as “false” and not modified by the model-checking tool during the
verification.

The states of control flow machine can be simplified by a tuple = (PC, S,

Con, error), where is the set of states of the state transition system. The
state variables are defined as follows:

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1440 ComSIS Vol. 9, No. 4, Special Issue, December 2012

 PC: a Program Counter variable PC explicitly controls the sequencing of
instructions. As aforementioned, the addresses of all basic blocks are
represented by symbols. Therefore, the domain of PC can be represent-
ed by a set {#BB1(gen), #BB1(comp), #BB1(body), #BB1(pre),
#BB1(bran), ………., #BBN(gen), #BBN(comp), #BBN(body), #BBN(pre),
#BBN(bran), Normal_exit, Fault_detected and Invalid_address}. To de-
scribe the final states, three special symbols, namely, “Normal_exit”,
“Fault_detected” and “Invalid_address” are introduced. In the absence of
error, program normally exits and PC eventually transforms to “Nor-
mal_exit”. Conversely, if an error occurs and is caught by the signature-
monitoring mechanism, PC transforms to “Fault_detected”. Moreover, if
an error causes transition to an invalid address, PC transforms to “Inva-
lid_address”.

 S is a set of signature variables {G, a1,a2,..aM} that are introduced to rep-
resent the signature information, where G denotes the dynamic signa-
ture, ai denotes the assistant signature variable and M denotes the num-
ber of introduced assistant signature variables. The values of the signa-
ture variables are updated upon executions of signature generation and
preparing instructions. In the CFCSS algorithm, for example, when the
generation instruction “xor G, G, di” is executed, the dynamic signature G
is updated as “G di”. Similarly, when the preparing instruction “xor D,
Sh, Sk” is executed, the assistant signature D is updated as “Sh Sk”.

The symbol “ ”denotes the bitwise XOR operation. Different signature-
monitoring mechanisms have different signature computations.

 Con: To express all execution paths, a tuple Con=(c1,c2,…cN) is intro-
duced. During verification, the values of (c1,c2,…cN) are comprehensively
modified by the model-checking tool, thus allowing the exploration of all
execution paths.

 error is introduced to specify when a CFE occurs. According to the fault
model, an error can occur any time during the execution. To describe the
occurrence of the error, a set of Boolean expressions {error ==
#BB1(gen), error == #BB1(comp), error == #BB1(body), …, error ==
#BBN(body), error == #BBN(pre) and error == #BBN(bran) } are intro-
duced. Only one expression can be true in an execution and the identifi-
cation of the true expression is random. For instance, if the value of “er-
ror == #BBi(body)” is true, it denotes that an illegal transition is trans-

ferred from the original instructions of BBi. And the destination of the ille-
gal transition is comprehensively modified by the model-checking tool,
thus covering all fault scenarios.

The transition system can then be modeled as < >, where is

the set of states, denotes the set of actions, denotes the transition rela-
tion, and is the set of initial states. A state is initial if and only if PC is equal
to the first instruction of the entry block, and then an initial value is declared
for every other state variable. For signature variables, their initial values are
determined by the signature-monitoring mechanism. For variables in Con and
error, their initial value is randomly selected in their pre-defined domain. By

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1441

modeling each instruction execution as an action, the transition is defined

as , where and are the current and next states.
Fig. 3 demonstrates an example how states transfer with the execution of

the program. Fig. 3a illustrates the execution of a basic block, where the solid
lines show the correct control flows and the dashed line represents the illegal
transition caused by a CFE. The corresponding state transitions of Fig. 3a are
shown in Fig. 3b. The circles denote the states, which are represented by a
tuple that contains the assignment of current values to the state variables. By
modeling each instruction execution as an action, the current state is trans-
ferred to the next state with some variables updating by the execution. If an
error occurs, program control flow transfers to a random instruction that is
different from the expected one. Correspondingly, the current state transfers

to the next state that is not the expected one, such as the transition from to

 that illustrates the occurrence of a CFE.

Ω1

Ω2

Ω3

Ω4

Ω5

Ω6
Ω7

Ωr

generate G, a,s

compare G,s

Block Body

prepare a,a,s

brz rz, #BBh+2(gen)

 an illegal

transition transfers

to BBr

Block Body

entry BBh

generate G, a,s generate G, a,s

if ch=false,

entry BBh+1

if ch=true,

entry BBh+2

…

…
…

… …

…

(b)(a)

A1 = executing

“generate G, a,s”

A2= executing

“compare G,s”

 an illegal transition

Ω1:= <PC = #BBh(gen),

(G = sh-1, a1=s,…),

(c1= false,…ch= true,..),

(error==#BBh(body))=true>

Ω2:= <PC = #BBh(comp),

(G = sh, a1=s,…),

(c1= false,…ch= true,..),

(error==#BBh(body))=true>

Ω3:= <PC = #BBh(body),

(G = sh, a1=s,…),

(c1= false,…ch= true,..),

(error==#BBh(body))=true>

Ωr:= <PC = #BBr(body),

(G = sh, a1=s,…),

(c1= false,…ch= true,..),

(error==#BBh(body))=true>

Fig. 3. Examples of state transitions

5.2. Translation to NuSMV

In the current study, the model-checking technique is adopted to verify the
effectiveness of signature-monitoring mechanisms. The model checker
NuSMV is selected for two reasons. First, the input language of NuSMV is
syntactically and semantically similar to the general description of a finite state

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1442 ComSIS Vol. 9, No. 4, Special Issue, December 2012

transition system. Second, NuSMV has a powerful symbolic representation
and an expressive Computation Tree Logic (CTL) that specify properties to be
checked. To verify a finite system in NuSMV, it has to be described in the
SMV input program. The translation of the state transition system into an SMV
program is then described.

An SMV program is composed of variable declaration, state initialization,
state transitions and a list of properties written in CTL formula. The complete
syntax of the SMV language is described in the SMV documentation [6]. The
steps for the translation are as follows:

Step1: Defining an SMV module
The state transition system can be described using a model. The SMV pro-

gram must have a main MODULE, so the system can be represented by the
main MODULE.

Step2: Defining each state variable
Each state variable in the transition system is directly mapped into an SMV

variable. An SMV variable for each variable in the transition system is then
declared and its domain is pre-defined. The keyword VAR is used to declare
variables.

Step3: Defining the initial state
Each SMV variable is assigned to its initial value, using the INIT statement.
Step4: Defining transition relations
First, for each transition in the state transition system, the current state is

defined with its enabling conditions in the DEFINE statement. For a transition

from to , as shown in Fig. 4, its corresponding DEFINE statement is

“ t1:=(PC = #BBh(gen))∧(G=Sh-1∧a=s∧…) ∧(c1=false∧…∧ch=true…)∧((er-

ror==#BBh(body)) = true…)”.

Second, for each SMV variable v, a next statement is declared, which is
expressed as follows:

next(v):=case

 t1 : v’;

 t2 : v’’;

 TRUE:v;

 esac;

Thus, if condition t1 is true, v is updated as v’. Similarly, v is updated as v’’
when t2 is satisfied. Otherwise, no condition is true, v keeps the original value.

Step5: Defining the constraints for the error model
According to the SEU model, only one fault occurs during an execution.

Hence, a constraint should be declared under the keyword INVAR. As afore-
mentioned, a set of Boolean expressions {error == #BB1(gen), …. error =
=#BBN(pre) and error == #BBN(bran)} is introduced to describe the error oc-
currence. By defining each expression as a DEFINE statement, such as “hi=
(error == #BBj(body)) ”, the fault model, which indicates that only one error
occurs per execution, can be expressed as the following INVAR statement:

 h1 + h2 + h3 +...+hW = 1

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1443

where W represents the number of Boolean expressions.
Step 6: Defining the property to be verified
The basic principle of model checking is that the model under validation

should satisfy a desired property. The property, which characterizes signa-
ture-monitoring mechanisms, states that if a CFE disrupts the control flow
execution, the error is ultimately detected. This property can be described in a
CTL formula.

AG (h1 + h2 + h3 +...+hW =1 → AF(PC=fault_detected))

The CTL formula shows that in all state sequences from the initial state, if a
CFE occurs, the program control flow is eventually transferred to the final
state “fault detected”.

6. Case Studies

In this section, we apply the verification method to two reprehensive error
detection algorithms: CFCSS and DSM.

6.1. Model Checking of CFCSS algorithm

CFCSS is a pure software method proposed by researchers in the Stanford
University [11]. CFCSS has been widely used in safety-critical systems. In the
CFCSS algorithm, each block is numbered and assigned a unique static sig-
nature. Two basic checking instructions, namely, “xor G, G, d” and “bne G, S,
error” are inserted at the beginning of each basic block, where G denotes the
dynamic signature and S denotes the static signature. For each block that has
more than one predecessor, a checking instruction “xor G,G,D” is inserted
after the instruction “xor G, G, d”, where D denotes the assistant signature.
Finally, for each block that has more than one successor, a checking instruc-
tion “xor D,Sh,Si” is inserted after the instruction “bne G, S, error”. Given the
limited space, the details of the CFCSS algorithm are presented in [11].

According to the characteristic of checking instructions in CFCSS algo-
rithm, basic blocks can be classified into the following kinds (seeing Fig. 4):

 one to one: a block has only one predecessor and each of its successors
has only one predecessor.

 one to many: a block has only one predecessor and at least one of its
successors has more than one predecessor.

 many to one: a block has more than one predecessor and each of its
successors has only one predecessor.

 many to many: a block has more than one predecessor and at least one
of its successors has more than one predecessor.

Let Si be the static signature of basic block BBi, and di be the signature dif-

ference which is calculated as di = Si ⊕Sj (BBj is the successor of BBi).

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1444 ComSIS Vol. 9, No. 4, Special Issue, December 2012

The added checking instructions in Fig. 4 are PowerPC instructions [15].

many to many

xor G,G,di

bne G,Si,error

 Bi

one to one

many to one

xor G,G,di

xor G,G,D

bne G,Si,error

 Bi

xor G,G,di

xor G,G,D

bne G,Si,error

xor D,Sh,Si

 Bi

one to many

xor G,G,di

bne G,Si,error

xor D,Sh,Si

 Bi

…

…
…

BBj

BBi BBh BBi

BBj

BBi

…

BBh

BBj
BBj

BBi

* *

* *

Fig. 4. The added checking instructions for different kinds of blocks

According to the verification, the results are shown in Table 1 and Table 2.
They are obtained by statistically analyzing the counterexamples NuSMV re-
ports. Before identifying the results, we introduce several notations. We use
the notation Suc(BBi) to denote the set of all successors of BBi. Correspond-
ingly, we use the notation Pred(BBi) to denote the set of all predecessors of
BBi. We use the symbol “IGi1” to denote the checking instruction “xor G, G, di”
of BBi. Similarly, the symbols “IGi2”, “ICi”, “IPi” are used to denote the checking
instructions “xor G, G, D”, “bne G, Si, error” and “xor D, Sh,Sj”, respectively.
And the symbol “IOi” is introduced to represent the original instructions of BBi.

A CFE can be modeling as a transition from the source instruction to the
sink instruction. Table 1 lists the verification results for the CFEs between two
blocks without any direct legal control flow transfers. In other words, BBm is
not in Suc(BBi) and BBi is not in Pred(BBm). Table 2 lists the verification re-

sults for the CFEs between two blocks BBi and BBj, where BBj∈ Suc(BBi).

Table 1. Part I: the verification results of checking capacity for CFCSS .

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1445

Table 2. Part II: the verification results of checking capacity for CFCSS .

The symbol “” indicates that the illegal transitions from the source instruc-
tion to the sink instruction can be checked by CFCSS algorithm, while symbol
“×” indicates that the illegal transitions cannot be detected. Other symbols
describe illegal transitions that cannot be detected under certain conditions.
The undetected errors and proofs are obtained by analyzing the counter-
examples reported by the model checker NuSMV. They are as follows:

 “×”: When the dynamic signature G and the assistant signature D are up-
dated at BBi, control flow skips IOi of BBi and transfers to IGj1 of BBj,
where BBj Suc(BBi). These illegal transitions cannot be detected.

 “#”: Undetected errors are grouped into two cases: 1) when new G and
new D are generated at BBi, control flow transfers to IOm of BBm, where
BBm Pred(BBj) and BBj Suc(BBi) and 2) when new G and new D are
generated at BBi, control flow transfers to IGm2 of BBm, where BBm
 Pred(BBj) and BBj Suc(BBi).
Proof. Suppose an illegal branch brim takes from IOi of BBi to IOm of BBm,
where BBm Pred(BBj) and BBj Suc(BBi). At BBi, G is equal to Si and D

is equal to Si Sm (picked arbitrarily). After brim is taken, the original in-
structions of BBm are executed, and then control flow transfers to its suc-
cessor BBj. The checking instructions of BBj update G= G dj D = Si

 (Sj Sm) (Si Sm) =Sj. With G equal to Sj, the checking instruction
“bne G, Sj, error” does not detect the mismatch. Therefore, the error can-
not be detected. Other cases labeled by “#” can be proved in the same
way.

 “”: An illegal transition taken from IGi1 of BBi to IGj1 of its successor BBj
cannot be detected if and only if BBi is a “many to many” block. Similarly,
illegal transitions taken to IOm of BBm cannot be detected, where BBm

Pred(BBj).
Proof. Suppose brij is an illegal branch, where BBj Suc(BBi), BBh
Pred(BBi), and BBk Pred(BBi). At BBi, G is equal to (Sh di) and D is

equal to (Sh Sk). After brij is taken, the checking instructions of BBj up-
date G, where G = (Sh di) dj D= Sh (Si Sk) (Si Sj) (Sh
 Sk) =Sj. Therefore, this illegal branch is not detected. Illegal transitions
taken from IGi1 to IOm of BBm can be proved similarly.

 “”: Undetected errors of this kind are caused by the design of signa-
tures. Suppose that BBh Pred(BBi) and BBk Pred(BBi), BBm is a ran-
dom block. If equation (10) is satisfied, illegal transitions taken from IGi1

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1446 ComSIS Vol. 9, No. 4, Special Issue, December 2012

of BBi to ICm of BBm or from IGi2 of BBi to IGm2 of BBm cannot be detect-
ed, where BBm has more than one predecessor.

 Sm = Sh Sk Si (10)

Proof. With brim as an illegal branch, as aforementioned, and the signa-
ture design satisfies equation(10), after the instruction “xor G,G,di” of BBi
is executed, brim is taken, where G is equal to (Sh di) = Sh (Sk Si).
With Sm equal to Sh Sk Si, the instruction “bne G, Sm, error” of BBm
cannot detect the error. The detection process of illegal transition from
“xor G,G,D” of BBi to “xor G,G,D” of BBm is similar.

 Undetected errors of this kind are also caused by the design of assigned
signatures. If equation (11) is satisfied, illegal branches taken from ICi,
where the new G at BBi is generated, to IGm1 of BBm are not detected,
where BBm has more than one predecessor. Similarly, illegal transitions
to the original instructions of the predecessor BBm also cannot be detect-
ed. D is determined by the block that is executed prior to BBi.

Sm = Si dm D (11)

Proof. With brim as an illegal branch, as aforementioned, the signature
design satisfies equation (11). After the new G of BBi is generated, brim is
taken, where G is equal to Si. The checking instructions of BBm update
G, where G=Si dm D=Sm. Therefore, brim cannot be detected.

Oh et al. [11] evaluated the effectiveness of CFCSS by fault injection ex-
periment and their experimental results show that the CFCSS algorithm in-
creases the error detection capability by an order of magnitude. However, the
results do not exactly specify which faults do not attempt detection. As of this
writing, the present study is a pioneer evaluation of the effectiveness of the
algorithm and the identification of undetected errors.

6.2. Model Checking of DSM algorithm

DSM is a software-based signature analysis technique presented by TMA
laboratory [9]. In DSM, each basic block is associated to an identification
number (IDB) and each interblock transition is assigned as:

signature = IDBsource | IDBdestination (12)

where operator “|” represents the concatenation function.
In addition to the transition signatures, some local cumulative signatures

Ni1, Ni2, Ni3 are introduced. These signatures are integer numbers that are
unique for each basic block. The condition expressed by (13) is satisfied by
the design.

N = N11+ N12 +N13 =….= NN1+ NN2 +NN3 =0 (13)

The local cumulative signatures ensure that: (1) a source block transfers
control to the first instruction of the destination block and (2) the signature-

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1447

checking instructions are correctly executed. Fig. 5 demonstrates how control
flow is checked [9], where B denotes the dynamic transition signatures and R
denotes the static transition signatures. The details of DSM algorithm refer to
[9].

N=N+Ni1

Basic block i

B=B|IDBi

bne B,R,error

N=N+Ni2

R=brnext

B=IDBi

N=N+Ni3

B=B+N

Ensure basic block i

receives control at its first

instruction

Dynamic signature

depends on the identifiers

of the source and

destination blocks

Ensure that checking

instruction are not skipped

Prepared for transfer

control. In absence of

error, N =0

Fig. 5. The implementation of DSM algorithm

By applying the proposed method to validate DSM algorithm, the verifica-
tion results are listed in Table 3. Notations “ILi1”, “ILi2” and “ILi3” are introduced
to represent the instructions “N=N+Ni1”, “N=N+Ni2” and “N=N+Ni3”, respective-
ly. “IOi” is used to denote the original instructions of BBi. “IGi” denotes the
signature generation instruction “B=B|IDBi”. “ICi” denotes the compare instruc-
tion “bne B,R,error”. “IPi1”, “IPi2” and “IPi3” are used to denotes the prepare
instruction “R=brnext”, “B=IDBi” and “B=B+N”, respectively. In Table 3, there
are no legal control flow transitions between BBm and BBi.

Table 3. the verification results of checking capacity for DSM.

source
sink

ILi1 IOi IGi ICi ILi2 IPi1 IPi2 ILi3 IPi3

ILm1       # # 
IOm         
IGm         
ICm         
ILm2         
IPm1         
IPm2         
ILm3         
IPm3         

In [4] and [9], DSM algorithm is validated to have the ability to detect all the

illegal interblock transitions. However, we found four kinds of errors that can-
not be detected under certain conditions. These undetected errors are as fol-
lows [14]:

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1448 ComSIS Vol. 9, No. 4, Special Issue, December 2012

 “#”: Illegal branches that are transferred from one of the instructions be-
tween “B=IDBi” and “N=N+Ni3” of BBi, to the instruction “N= N+Nn1”of BBn
cannot be detected, where BBi Pred(BBn) and Suc(BBn) . These
faults do not cause wrong outputs and can thus be negligible.

 “”: Illegal branches taken from one of the instructions “B=B|IDBi; bne B,
R, error” of BBi to the instruction “bne B, R, error” of BBn cannot be de-
tected, where Suc(BBn) .
Proof. Assuming that brin is an illegal branch and the branch is trans-
ferred from “B=B|IDBi” of BBi and landed at “bne B, R, error” of BBn,
where Suc(BBn) , when brin is taken, R is still equal to B because the
new R is not generated at BBi. Therefore, they match and brin is not de-
tected.

 “”: Undetected errors of this kind are caused by the design of local cu-
mulative signatures. If equation (14) is satisfied, illegal branches are
transferred from one of the original instructions of BBi to the checking in-
struction “R=brnext” of BBm, which are cannot be detected. BBi and BBm
are arbitrary basic blocks of the program.

Ni1+ Nm3 = 0 (14)

Proof. If brim is an illegal branch and it is taken from one of the original in-
structions of BBi, skipped the rest of the checking instructions, and then
landed at the instruction “R=brnext” of BBm. At BBi, N is equal to Ni1. After
brim is taken, the new R is generated to the transition signature, depend-
ing on the identifiers of BBm and its successor. B is updated to the identi-
fier of BBm and N is added by Nm3. If equation (14) is satisfied, N equals
to zero. The control flow then transfers to the successor of BBm. Consid-
ering that R and B are updated at BBm, the execution of the program con-
tinues without detecting brim.

 “”: Undetected errors of this kind are also caused by the design of local
cumulative signatures. If equation (15) is satisfied, illegal branches that
are transferred from the instructions “N=N+Ni2” of BBi to the checking in-
struction “N=N+Nm2” of BBm are not detected. BBi and BBm are arbitrary
blocks of program.

Ni1+ Ni2 + Nm2+ Nm3 = 0 (15)

Proof. If brim is an illegal branch, as aforementioned, and the signature
design satisfies equation (15). After the instruction “N=N+Ni2”of BBi is ex-
ecuted, brim is taken, where N is equal to (Ni1 +Ni2). At BBm, the checking
instructions generate R and B. N is updated as N= N+Nm2 +Nm3 = (Ni1
+Ni2) +Nm2 +Nm3 =0. Given that equation (15) is satisfied, no error is de-
tected when the control flow is transferred to the successor of BBm.

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1449

7. Comparisons

As illustrated in Section 2, some earlier works have proposed the use of mod-
el checking in evaluating system dependability. The work with more similarity
to ours is described in [4], but ours is much more general and practical. The
comparisons are as follows:

 We provide a general approach to evaluate all signature monitoring
techniques, while the technique in [4] is just aimed at the DSM technique.

 In [4], the model checking computation time increases at a polynomial
rate of the addition of instructions of the model, and the amount of
memory needed is a potential bottleneck for large models. It is known as
the state-space explosion problem. In this study, we offer a solution to
solve this problem. The states variables consist of (PC, S, Con, error), so
the state space increases at a polynomial rate of the addition of the basic
blocks for a given program. Therefore, the memory cost and computation
time can be seen as a biquadrate function of N, where N denotes the
number of basic blocks. Apparently, the number of basic blocks is much
less than the number of instructions for a given program. So our ap-
proach is more efficient in optimizing the state space exploration. From
the viewpoint of model checking, our approach avoids the state-space
explosion problem.

 In contrast with the verification results in [4], our verification results can
be used to design signatures as the signature variables are involved in
the model. For instance, to dissatisfy the condition expressed by “Ni1 +
Ni2 + Nm1 +Nm2 =0”, illegal transitions symbolized by “” in Table 3 can be
detected by DSM algorithm.

8. Conclusions

In this paper, we presented a novel approach for evaluating the effectiveness
of signature-monitoring techniques. We initially modeled the program that was
strengthened by signature-monitoring algorithms as a control flow machine.
The execution of the assembly program modeled by the control flow machine
is specified using a step-operational semantics, which maps a machine state
to other machine states. We then refined the control flow machine into a state
transition system and proposed a translation procedure to translate the state
transition system into the input program of the model checker NuSMV for au-
tomatic verification. Finally, we applied the approach to two reprehensive error
detection algorithms, namely, CFCSS and DSM. The undetected errors were
analyzed based on the counter-example reported by NuSMV. As of this writ-
ing, this is a pioneer evaluation of signature-monitoring techniques, where
undetected errors are also uncovered for the first time.

In our future research, we shall improve the algorithm design according to
the verification results. We shall also design a lexical analyzer which can
translate the state transition system into SMV programs automatically.

Lanfang Tan, Qingping Tan, Jianjun Xu, and Huiping Zhou

1450 ComSIS Vol. 9, No. 4, Special Issue, December 2012

References

1. Gnesi S., Lenzini G., Latella D., Abbaneo C., Amendola A., and Marmo P.: An
Automatic SPIN Validation of a Safety Critical Railway Control System. In Pro-
ceedings of the International Conference on Dependable Systems and Networks,
New York, NY, USA, 119-124. (2000)

2. Ramachandran P., Kudva P., Kellington N.: Statistical Fault Injection. In Proceed-
ings of the 38th International Conference on Dependable Systems and Networks.
Conference Publishing Services, Anchorage, USA, 122-127. (2008)

3. Kljaich J., Smith B. T., Wojcik A. S. : Formal Verification of Fault Tolerance Using
Theorem-Proving Techniques. IEEE Transaction on Computers, Vol. 38, No. 3,
366-376. (1989)

4. Nicolescu B., Gorse N., Savaria Y.: On the Use of Model Checking for the Verifica-
tion of a Dynamic Signature Monitoring Approach. IEEE Transactions on Nuclear
Science, Vol. 52, No. 5, 1555-1561.(2005)

5. Tomoyuki Y., Tatsuhiro T., Tohru K.: Automatic verification of Fault Tolerance
Using Model Checking. In Proceedings of the 8th Pacific Rim International Sym-
posium on Dependable computing. Conference Publishing Services, Seoul, Korea
95-102. (2001)

6. Roberto C., Alessandro C., Charles A. J. , Gavin K., Emanuele O., Pistore M. ,
Roveri M., Andrei T.: NuSMV 2.4 User Manual. [Online]. Available:
http://nusmv.fbk.eu/NuSMV/userman/v24/nusmv.pdf (current 2005)

7. Vemu, R., Gurumurthy, S., Abraham J. A.: ACCE: Automatic correction of control-
flow errors. In Proceedings of 2007 International Conference on TEST. Confer-
ence Publishing Services, Santa Clara, USA, 1-10. (2007)

8. Goloubeva O., Reaudengo M., Sonza Reorda M., Violante M.: Soft-Error Detec-
tion Using Control Flow Assertions. In Proceedings of the 18th IEEE International
Symposium on Defect and Fault Tolerance in VLSI Systems. Boston, USA, 581-
588. (2003)

9. Nicolescu B., Savaria Y., Velazco R. : Software detection mechanisms providing
full coverage against single bit-flip faults. IEEE Transaction on Nuclear Science,
Vol. 51, No. 6, 3510-3518. (2004)

10. Borin E., Wang C., Wu Y.F., Araujo G. : Software-Based Transparent and Com-
prehensive Control-Flow Error Detection. In Proceedings of the 4th ACM/IEEE In-
ternational Symposium on Code Generation and Optimization. New York, USA.
(2006)

11. Oh N. , Shirvani P.P., McCluskey E.J.: Control-Flow Checking by Software Signa-
tures. IEEE Transactions on Reliability, Vol. 51, No. 2, 111-122. (2002)

12. Aho A.,Sethi R., Ullman J.: Compilers: Principles, Techniques and Tools(2nd
Edition). Addison-Wesley, Boston, USA.(2007)

13. Reinhardt S. K., Mukherjee S. S.: Transient fault detection via simultaneous multi-
threading. In Proceedings of the 27th Annual International Symposium on Com-
puter Architecture. ACM Press, Vancouver, Canada.(2000)

14. Tan L., Tan Q., Xu J., Li J.: A note on “On the Use of Model Checking for the Veri-
fication of a Dynamic Signature Monitoring Approach. IEEE Transaction on Nucle-
ar Science, Vol. 58, No. 1, 359-359. (2011)

15. Programming Environments Manual for 32-Bit Implementations of the PowerPC™
Architecture. [Online]. Available: www.freescale.com (current 2005)

16. Arora A. and Gouda M.: Closure and Convergence: A Foundation of Fault-Tolerant
Computing. IEEE Transactions on Software Engineering, Vol.19, No.11, 1015–
1027. (1993)

http://nusmv.fbk.eu/NuSMV/userman/v24/nusmv.pdf

Formal Verification of Signature-monitoring Mechanisms by Model Checking

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1451

17. John R.: Systematic Formal Verification for Fault-Tolerant Time-Triggered Algo-
rithms. IEEE Transactions on Software Engineering, Vol.25, No.5, 651–660.
(1999)

18. Daniel L. and Ruben A.: Formal Verification of Fault Tolerance Aspects. [Online].
Available: http://www.software3.net/f/formal-verification-of-fault-tolerance-aspects-
w290 (current 2005)

19. Sexton F. W.: Destructive single-event effects in semiconductor devices and ICs.
IEEE Transactions on Nuclear Science, Vol. 50, No. 3, 603–621. (2003)

20. Meng Z., Anita L. and Daniel J. S.: Analyzing Formal Verification and Testing Ef-
forts of Different Fault Tolerance Mechanisms. In Proceedings of the 24th IEEE In-
ternational Symposium on Defect and Fault Tolerance in VLSI Systems, Chicago,
IL, USA, 277-285.(2009)

Lanfang Tan received the B. S. degree from the Department of Computer
Science, National University of Defense Technology in 2008. She is currently
pursuing the Ph.D. degree. Her research interests include software fault-
tolerance, formal verification, model checking and dependable computing.

Qingping Tan received his M.S. and Ph.D. degrees in computer science from
the National University of Defense Technology in 1988 and 1992, respective-
ly. He is currently a professor and Ph. D. supervisor at National University of
Defense Technology. He is also a visiting scholar at the University of Pisa in
2009. His research interests include software engineering, programming lan-
guages, compilers, software fault-tolerance and dependable computing.

Jianjun Xu received his M.S. and Ph.D. degrees in computer science from
the National University of Defense Technology in 2006 and 2010, respective-
ly. He is a full-time Lecturer in the Computer Science School at the National
University of Defense Technology. His research is focused on program analy-
sis, compiler for fault tolerance.

Huiping Zhou is an Associate Professor in the Computer Science School at
the National University of Defense Technology. His research is focused on
programming languages, compilers and software fault-tolerance.

Received: February 18, 2012; Accepted: November 26, 2012.

