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Abstract. Ant Colony Optimization (ACO) algorithms often suffer from 
criticism for the local optimum and premature convergence. In order to 
overcome these inherent shortcomings shared by most ACO 
algorithms, we divide the ordinary ants into two types: the utilization-
oriented ants and the exploration-oriented ants. The utilization-oriented 
ants focus on constructing solutions based on the learned experience 
like ants in many other ACO algorithms. On the other hand, inspired by 
the adaptive behaviors of some real-world Monomorium ant species 
who tend to select paths with moderate pheromone concentration, a 
novel search strategy, that is, a completely new transition rule is 
designed for the exploration-oriented ants to explore more unknown 
solutions. In addition, a new corresponding update strategy is also 
employed. Moreover, applying the new search strategy and update 
strategy, we propose an improved version of ACO algorithm—
Moderate Ant System. This improved algorithm is experimentally 
turned out to be effective and competitive. 

Keywords: Ant Colony Optimization; Adaptive behavior; Traveling 
Salesman Problem; Local optimum; Premature convergence 

1. Introduction 

Combinational optimization (CO) problems exist widely in the real world and 
many of them are non-deterministic polynomial time hard (NP-hard). NP 
problems are decision problems where the solutions can be recognized in 
polynomial time by a non-deterministic Turing machine. And NP-hard 
problems are at least as hard as the hardest problems in NP. Such problems 
need not be in NP; indeed, they may not even be decision problems [1,2]. As 
a particular kind of optimization problems, CO problems play an important 
role be it in theory or in practice. Traditional algorithms can obtain the optimal 
solution to NP-hard CO problems but often at the cost of great computational 
time, which is infeasible for any practical application [3]. Swarm intelligence, 
inspired by the social behaviors of real animals, provides a novel way to deal 
with such complicated optimization problems [4]. Swarm intelligence 
algorithms, which usually are approximation algorithms, can compute 
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satisfactory solution in markedly less time. Particularly, ant colony 
optimization (ACO) is a typical sort of SI algorithms. For many problems, 
ACO algorithms generate competitive results that are very close to the best 
known solutions while on some problems like quadratic assignment problem 
(QAP) they are the state-of-the-art [5].  

ACO takes inspiration from the foraging behaviors of real ants which can 
always find the shortest path between their nests and food sources. The 
famous experiment, known as “shortest bridge” experiment, simulates the 
behaviors and explains the optimization ability [6,7]. When there are more 
than one path between a nest and a food source, each ant will choose one 
path by chance. And the ants will return to their nest as soon as they arrive at 
the food source. Meanwhile, they lay pheromone on the paths they have 
passed. It is obvious that it takes less time for the ants that choose the 
shorter path to get back to the nest. Accordingly, the shorter path gains more 
pheromone from ants than longer paths because of the high round-trip 
frequency. After that, ants in the nest tend to choose the path with higher 
pheromone concentration instead of random selection when departing for the 
food source. Thus, an increasing number of ants will be attracted to the 
shorter path and those ants will lay more pheromone on the shorter path over 
time. Eventually, the path between the nest and the food source selected by 
almost all of the ants, that is, the shortest path, is found. An individual ant has 
little intelligence. However, a swarm of ants achieves incredible high 
intelligence [8]. The term “stigmergy” is used to illustrate the distinguished 
capability that owned by ants as well as other animals. Specifically, 
stigmergy, refers to a self-organized mechanism which describes such an 
activity: a number of individuals interact with each other indirectly via 
modifying the common environment which serves as a medium; in other 
words, ants affect the local environment and the environment feeds back to 
ants, thus, ants exchange information; as a consequence, the interaction 
contributes to the update of the environment which affords a new platform for 
new interaction 5. Drawing on this mechanism, a multitude of ant algorithms 
have been created and ACO meta-heuristic is used to describe these 
algorithms in a more general way [9],

 
however, ant algorithms are not 

confined to ACO. 
The usual method to examine the effectiveness of a new algorithm is to 

apply it to some problems and compare its performance with that of already 
known algorithms. Traveling Salesman Problem (TSP), probably the best 
known instance of NP-hard problems [100], is firstly used to evaluate ACO’s 
performance, which indicates its central role in the development of ACO [11]. 
Subsequently, TSP has served as a benchmark for the sake of comparison 
with other optimization methods. TSP stems from a real-world problem: given 
a set of cities and their pairwise distances, the goal is to find the shortest tour 
that visits each city exactly once. In more formal terms, the task is to find a 
Hamiltonian circuit of minimal length on a fully connected graph [12]. There 
are quite a few TSP data sets that are available, and our experiments are 
based on these data sets as well.  
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Overall, the existing ACO algorithms share similar search and update 
strategies. More precisely, the transition rules that they employ render them 
in favor of components with higher pheromone concentration during the 
construction of feasible solutions. And update rules are more likely to give the 
better solutions more pheromone when updating the pheromone trails [13]. It 
is evident that transition rules and update rules supplement each other. The 
average quality of solutions benefits from the selection bias and update bias 
indeed. On the other hand, taking into account that ACO is an iterative 
approach, the biases may lead to premature convergence and local optimum, 
that is, limit the discovery of new or better answers, which is the starting point 
of our research. As a matter of fact, not all species of ants in the real world 
tend to select paths with more pheromone. According to some new research 
[14], some kinds of ants will strike a balance between paths with different 
quantity of pheromone. They prefer paths with moderate pheromone rather 
than paths with overly high or overly low pheromone concentration. Inspired 
by this, we present an improved ACO algorithm by bring in an extra transition 
rule and the counterpart update rule. The improved ACO algorithm is 
experimentally proven that it can obtain better solutions than other ACO 
algorithms in most cases.  

The rest of this paper is organized as follows: Section 2 introduces several 
main ACO algorithms and discusses their design ideas. In Section 3, the 
original idea of Moderate Ant System (MAS) is explained and we present the 
search strategy and update strategy of MAS as well as the concrete 
algorithm. Section 4 gives a performance comparison and analysis between 
our improved algorithm and main ACO algorithms. Finally, Section 5 
concludes the paper.  

2. Related Work 

A lot of ACO algorithms have been proposed since Dorigo et al. introduced 
the first ant algorithm in 1996. Here we present typical ones of them: Ant 
System (AS) [11,15], Max-Min Ant System (MMAS) [16] and Ant Colony 
System (ACS) [17,18]. In order to be in lines with our experiments, we use 
TSP as a specific instance to describe the algorithms. 

For the convenience, Let Gbest is the global best solution. 

2.1. Ant system 

As mentioned above, AS is the first ACO algorithm presented, and 
meanwhile, it is the original version of various ant algorithms as well. 
Therefore, we give a relatively complete but brief introduction of AS first, and 
the same details are omitted when introducing other ACO algorithms. 
Generally, AS and most of other ACO algorithms share the analogous 
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framework in terms of implementation. The main framework of ACO 
algorithms including AS is shown in Algorithm 1. 

Algorithm 1  The framework of ACO algorithms 

  Initialize the parameters and pheromone trails; 

  while termination conditions not satisfied do 

    Step 1: Each ant constructs a solution 

    Step 2: Update the pheromone trails 

  end while 

end 

It can be seen that the core of the algorithms is a loop body and each loop 
consists of two crucial steps: the construction of solutions and the update of 
pheromone trails. The loop body, in fact, is an iterative process through which 
the accumulation of pheromone can play a role. 

Iteration is defined as the interval in (t, t+1) during which each of the m 
ants constructs a solution. In other words, every ant traverses all of the n 
cities in each iteration. AS together with other ant algorithms employs the 
tabu table to record the already visited cities of an iteration in order to obtain 
feasible answers. In Step 1 of Algorithm 1, during the construction of a 
solution, ants choose the next city to be visited via certain search strategy 
which is a stochastic mechanism [19]. When ant k is in city i, the probability 
of going to city j is given by: 
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Where, tabuk is the tabu table of ant k which is comprised of the cities that 
have been visited in the current iteration. The parameters α and β control the 
relative importance of the pheromone τij versus the visibility ηij. The visibility 
represents the heuristic information, which is given by: 

ijij d/1  (2) 

Where, dij denotes the distance between city i and city j. This transition rule 
is also shared by other algorithms. 

After each iteration, Step 2 of Algorithm 1 is performed. The pheromone τij 
linked to the path connecting city i and j, is updated as Eq. (3). 




m

k

k
ijijij tt

1

)()1()1(   (3) 

Where ρ is the evaporation rate, m is the number of ants, and Δτij
k
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quantity of pheromone laid on path(i,j) by ant k: 






otherwise

touritsinjipathusedkantifLQ Kk
ij

0

),(/
  (4) 



An Ant System based on Moderate Search for TSP 

ComSIS Vol. 9, No. 4, Special Issue, December 2012 1537 

Where, Q is a constant and Lk is the tour length of the solution obtained by 
ant k. 

2.2. Ant system with elitist strategy 

ASelite is the fisrt improved version of the original AS. In order to make the 
best-so-far solution more attractive to ants in the follwing iterations, the best-
so-far solution is given extra pheromone. The best-so-far solution is called 
global-best solution and the ants who obtain this solution are called elitist 
ants. The update formula of pheromone is given by: 

e
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Where e denotes the elitist ants, ne denotes the number of elitist ants and 
e
ij  is defined as follows: 
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Where L
gb

 is the tour length of global-best solution. 
The elitist strategy enables AS to improve the quality of average solution 

and to find better solutions at earlier time. However, the strategy narrows the 
difference between selections of different ants. 

2.3. Rank-based Ant System 

ASrank draws on the concept of ranking and adopts it into the pheromone 
update procedure. The n ants are ranked according to the quality of their 

solutions in decresing order (i.e., L1L2Lm) . σ is a parameter of ASrank. 
Only the paths included in the solutions of σ-1 best ants acquire extra 
pheromone and the amout depends directly on the ant’s rank μ and the 
quality of its solution. Moreover, the paths belong to global-best solution L

gb
 

receive an additional amount of pheromone which depends on the length of 
L

gb
, weighted by parameter σ. The pheromone update function is given by: 
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where e
ij as Eq.(6) and  ij  as Eq.(8). 
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2.4. Max-Min Ant System 

MMAS differs from the AS in two main aspects: only the best ant is allowed 
to update the pheromone trails, and the value of pheromone on the paths is 
bound. The pheromone update function is implemented as follows: 

max
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Where τmax and τmin are the upper bound and lower bound of the amount of 

pheromone on the paths, respectively. And a
bx][  as Eq.(10) and best

ij  as 

Eq.(11). 















otherwisex

bxifb

axifa

x a
b][  (10) 











otherwise

Gjipath
L

best
best

best
ij

0

),(
1

  (11) 

Lbest is the length of the tour obtained by the best ant. It can be the best 
solution found in the current iteration—iteration-best, Lib or the best solution 
found since the beginning of the algorithm—global-best, Lgb , or a 
combination of both. 

With respect to the upper and lower bounds on the pheromone values, τmax 

and τmin tend to be set empirically and are determined on a case-by-case 
basis. Nevertheless, there are still some guide lines that have been proposed 
for defining τmax and τmin on the basis of analytical considerations. 

2.5. Ant Colony System 

The most significant contribution of ACS is the introduction of a local 
pheromone update in addition to the pheromone update applied at the end of 
the construction process, which is more in line with the natural behavior of 
real ants. 
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The local pheromone update is executed by all the ants after each 
construction step of the n steps of an iteration. Moreover, each ant applies it 
only the last path which has just been traversed: 

0)1(   ijij  (12) 

Where φ(0, 1] is the pheromone decay coefficient, and τ0 is the initial 
value of the pheromone trail on the path. 

Similar to the MMAS algorithm, the pheromone is also updated at the end 
of each iteration by the iteration-best or the global-best ant only. However, 
the update function is slightly different: 
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where  

bestij L/1  (14) 

As in MMAS, Lbest can be either Lib or Lgb. 
ACS also uses a different transisiton rule, called the pseudorandom 

proportional rule. If let k be an ant located on city i, q0 [0, 1] be a parameter 
and q be a random value in [0, 1], then the next city j is selected according to 
Eq.(15) with q≤q0 , else Eq.(1). 
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Additionally, ACS employs the candidate lists to make the selections prefer 
some nearer cities during the construction process. In the TSP instance, each 
of the n has a candidate list. The city i’s candidate list consists of a certain 
number of cities which are the closest ones to city i. Obviously, the candidate 
lists of the cities can be built prior to the loop body and they remain stable 
when performing the algorithm. When an ant is at city i, it will choose the next 
city among those of city i’s candidate list which are not visited yet in the 
current iteration. Only if all of the cities in the candidate list are included in 
tabu table, would the other cities be selected according the transition rule. 

3. Moderate Ant System 

3.1. Design Ideas of MAS 

Typically, the designs of existing ant algorithms manifest two common 
apparent principles: ants prefer paths with higher pheromone concentration 
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when constructing a feasible solution at an iteration; the paths belong to the 
good solutions tends to gain greater amount of pheromone when updating the 
pheromone trails. Clearly, the two principles strengthen each other. These 
two principles are able to improve the quality of the solutions and speed up 
the convergence to some extent.  

However, if ants select the paths at a probability in proportion to the 
pheromone concentration, the chances of finding new solutions would 
decrease over time. As can be seen from Figure 1, suppose that there is only 
one food source in the upper path at the beginning, definitely, all the ants will 
converge to the upper path, and new ants will make the same choice as well 
because of the great amount of pheromone laid on the upper path, even 
when a new food source appears in the lower path. According to Figure 2, 
there are two food sources in the two paths. The upper food source is nearer 
to the nest than the lower food source. Accordingly, ants go there and back 
between the upper food source and the nest more frequent and deposit more 
pheromone on the upper path. Thus, ants will converge to the upper path 
eventually. Under both the two circumstances, the ability to find new food 
sources (solutions) are limited by selection bias and update bias of traditional 
principles which are illustrated above when solving a concrete problem such 
as TSP. 

 

 

Fig. 1. A new food source appears after convergence 

 

Fig. 2. Two food sources in different length of paths 

Actually, the advantages that acquired by applying the principles are 
accompanied by premature convergence and local optimum which are highly 
criticized. In consideration of this, we intend to explore other principles to 
overcome these drawbacks. In particular, some research in animal behavior 
field offers us an alternative way to design new ACO algorithms. 

In the natural world, there are some Monomorium ant species (e.g., 
M.niloticum, M.najrane, M.mayri) that dislike overly high pheromone 
concentration. Instead, moderate pheromone concentration renders them 
more active and paths with too high or too low pheromone concentration 
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induce either no response or repellency [14]. This is the adaptive behavior of 
the three Monomorium ant species. They regard paths with moderate amount 
of pheromone as promising sources and tend to choose them, which seems 
to run contrary to the traditional principles used in ant algorithms.  

In the view of traditional design ideas, ants have a better chance to choose 
paths with higher pheromone concentration. There are two main reasons that 
cause the high pheromone. Firstly, if there are numerous ants traveling the 
same path, it indicates that ants for the food source on the path are enough. 
Thus, a multitude of ants travel the path and lays a great amount of 
pheromone on the path. Secondly, if ants can frequently travel the same 
path, it indicates that the food source on the path is close to the nest and do 
not require too much ants. In this case, a few ants travel the path frequently 
and also deposit a great amount of pheromone. Two different behaviors end 
with the same result. At a deeper level, it involves an important problem to 
ants, that is, distributing the workforce. Be it sufficient ants selecting a path or 
ants traveling a path frequently enough, it is unnecessary to allocate more 
ants to the path whose pheromone concentration is already high enough. 
Otherwise, it would be a waste of workforce. Therefore, the Monomorium ant 
species’ adaptive behavior (tend to choose the paths with moderate 
pheromone concentration) is understandable and reasonable. It equips the 
ants with the ability to distribute their workforce more probably and efficiently.  

Inspired by the adaptive behavior of the Monomorium ant species, we 
develop a novel ACO algorithm -- Moderate Ant System (MAS). In MAS, a 
new transition rule which can enhance the capability to find new solutions is 
designed. Furthermore, in order to match the new transition rule and improve 
the performance of the algorithms, new update rule is designed as well.  

3.2. Concrete Algorithm 

MAS is an improved version based on AS, differs from AS in search and 
update strategy (i.e., transition rule and update rule) corresponding to the two 
main steps of Algorithm 1. 

Search strategy of MAS. Selection bias contributes to the average quality 
of solutions while it brings the premature convergence and local optimum at 
the same time. In order to conquer the disadvantages, more explorative 
operations are needed. Meanwhile, as a sort of iterative algorithms, the 
solutions are improved gradually, so the average quality of solutions is 
supposed to be guaranteed as well. Therefore, a balance should be struck 
between exploring new knowledge and exploiting the already-known 
knowledge. In the ACO algorithms introduced in Section II, all the ants fulfill 
the same obligation. To be more exact, all of the ants construct the solutions 
according to the same transition rule. For that reason, in MAS, the ants are 
divided into two categories: the utilization-oriented ants and the exploration-
oriented ants. The two sorts of ants are entrusted with different tasks, 
respectively.  
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First, actually, the utilization-oriented ants share the same business with 
that of the ants in most ACO algorithms. This kind of ants mainly 
concentrates on utilizing the search experience accumulated by the iterative 
process in previous iterations. They choose the paths with higher pheromone 
concentration at a higher probability. During the construction of solutions, the 
utilization-oriented ants make their choices according to the probability 
distribution given by Equation 1 which is same to the ordinary ants. 

Second, the design of exploration-oriented ants is inspired by the 
Monomorium ant species and is the core of MAS. The utilization-oriented 
ants perform a biased search and they can choose poor paths (with lower 
pheromone concentration) but at a low probability. Unlike the utilization-
oriented ants, in order to explore more possibilities, the exploration-oriented 
ants employ a more aggressive transition rule which is discussed in detail.  

The pheromone concentration determines the choices of ants in real world, 
while in ACO algorithms, the combination of pheromone and visibility 
determines the choices of ants for the sake of better performance. Here, infoj 
is used to represent the integrated factors on the path from city i to city j, and 
infoij is given by: 

 ijijijinfo   (16) 

Drawing on the search strategy of Monomorium ant species, the new 
transition rule should make the ants tend to select paths with moderate 
information instead of too much or too little information. 

Suppose that ant k is at city i at step t of an iteration. When selecting the 
next city as part of the solution, ant k has n-t adjacent cities available. 
According to Figure 3, from city i’s point of view, the information values on 
the n-t adjacent paths can be regarded as a stochastic variable follow a 
normal distribution N(μ,σ

2
) since n in TSP is usually a big enough number.  

 
 

 

 

 

 

 

 

 

Fig. 3. n-t choices of an ant at city i at step t 

The parameters of N(μ,σ2) are estimated as follow: 
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In addition, attractionij is defined as follows: 
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Which denotes the attraction of path from city i to city j for the exploration-

oriented ants in MAS. If let k be an ant located on city i, q0[0, 1] be a 
parameter, and q be a random variable uniformly distributed in [0, 1], then 
the exploration-oriented ants will choose the next city j according to Eq.(20) 
with q ≤q0, else Eq.(19) is used. 
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With probability q0, the exploration-oriented ants select the most moderate 
path in terms of attraction, while with probability (1- q0), the exploration-
oriented ants incline to select the more moderate paths but have a chance to 
select other paths. 

The number of the utilization-oriented ants and the number of the 
exploration-oriented ants are important parameters of MAS. Tuning their 
numbers can affect the degree of utilization and exploration (i.e. decide 
whether to attach more importance to utilizing the learned search experience 
or exploring new solutions). If there are far more exploration-oriented ants 
than utilization-oriented ants, the algorithm is about to lose the benefit 
brought by the iterative process on the basis of relatively good solutions and 
achieve poor performance. 

Update strategy of MAS. In order to achieve the greatest effect of our 
new transition rule, the counterpart update strategy is designed and employed 
in MAS. The update strategy in MAS consists of two parts: the evaporation of 
pheromone trails and the accumulation of pheromone trails. The evaporation 
lessens the pheromone value on paths while the accumulation adds the 
pheromone value on paths. 

In MAS, similar to the phenomenon in the real world, the pheromone on all 
of the paths evaporates over the time, which is implemented by:  

0)()1()('   tt ijij  (21) 

Where ij(t) represents the pheromone concentration on the path between 
city i and city j after evaporation but before given extra pheromone at the tth 
iteration. Additionally, τ0 is initialized by a very small value. It is evident that 
the lower bound of the pheromone value on a path is τ0. The evaporation can 
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avoid unlimited accumulation of the pheromone trails.  Moreover, if a path 
does not gain extra pheromone in several consecutive iterations, its 
corresponding pheromone concentration decreases rapidly until the 
pheromone trail value is equal to τ0.  

After evaporation, the accumulation of pheromone trails is performed. Not 
all of the paths gain extra pheromone. As in ASrank, only paths belonging to 
the best nb-1 solutions in an iteration are given extra pheromone in MAS and 
the amount of extra pheromone that paths gain depends on the rank of 
solutions. The better the rank is, the more pheromone paths of the solutions 
gain. These paths are provided with strong additional reinforcement and in 
the following iterations will attract more utilization-oriented ants. However, the 
update rule is quite different from that of ASrank, which is given by: 
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It means that nb-1 ants (be it utilization-oriented ants or exploration-
oriented ants) will deposit extra pheromone to the paths they visited at the 
current iteration. It is notable that these nb-1 ants accumulate the pheromone 

trails one by one and ij(t) is updated at the same time, so ij(t) may differ 
from ant to ant. Hence, it is easy to prove that the upper bound of the 

pheromone value on a path is ∆ij. According to our research, using Lgb to 

calculate ∆ij in MAS achieves better performance than using Lib, especially 
when MAS is applied to TSP data sets with more than 200 cities. 

MMAS employs pheromone limits to prevent the pheromone value on the 
paths from overly low or overly high, thus, MMAS is able to avoid algorithm 
stagnation. In particular, MAS implements the similar limits in an implicit 

manner. The pheromone trails in MAS are guaranteed that (i,j): τ0≤τij≤Δτij, 
which will contribute to the performance of MAS as well. 

Pseudo-code of MAS. On the basis of the designed search strategy and 
update strategy, as can be seen in Algorithm 2, the pseudo-code of MAS is 
given. 

Algorithm 2  Moderate Ant System 

  Initialize the parameters and pheromone trails; 

  while termination conditions not satisfied do 

    begin 

      Step 1:  

        For each utilization-oriented ant 

          Construct a solution according to Eq. 1. 

        End For 

        For each exploration-oriented ant 

          Construct a solution according to Eq. 19, 20. 

        End For 

      Step 2:  

        For all the paths 

          Update the pheromone trail as Eq. 21. 
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        End For 

        For the paths belonging to the nb best solutions 

          Update the pheromone trail use Eq. 22. 

        End For 

    end while; 

end. 

4. Experimentation 

To show the performance of MAS and compare it with other ACO algorithms 
(i.e., AS, ASelite, ASrank, MMAS, and ACS), these experimentations are 
completed that based on the TSPLIB’s data sets (http://www.iwr.uni-
heidelberg.de/groups/comopt/software/TSPLIB95/). 

4.1. Data Sets Used 

In the following experimentations, 10 test data sets are employed. Table 1 
illustrates the data sets and their size used in the experiments. 

Table 1. TSP test data sets 

Data set Number of cities 

att48.tsp 48 

eil76.tsp 76 

u159.tsp 159 

ts225.tsp 225 

pr439.tsp 439 

rat575.tsp 575 

p654.tsp 654 

d1291.tsp 1291 

vm1748.tsp 1748 

u2152.tsp 2152 

4.2. Parameters Setup 

Our experimentation is based on ACOTSP which offers a high-quality 
implementation of various ACO algorithms for TSP [20]. With the common 
code, MAS is developed and compared in the same framework. And the 
parameters adopted in the experimentation are the default parameters set in 
ACOTSP. The main parameters used in the experiments are set as shown in 
Table 2. 

As the solutions that ACO algorithms obtain may vary from try to try due to 
the use of probability. To be fair and get accurate results, we run each 
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algorithm 10 times, respectively. And in each try, the maximum runtime is set 
to 10 seconds. Because ACO algorithms are iterative algorithms, the runtime 
should not be too short. 10 seconds is an acceptable time for most 
application and the obtained results are relatively stable. And we also do the 
experiments with runtime set to 15s and 20s, however, the difference of 
solutions’ quality over the three runtimes is quite small, not greater than 
0.5%. In addition, in order to examine the usefulness of our new search 
strategy and update strategy, local search is not employed in all tested 
algorithms. 

Table 2. Main parameters 

Parameters Value Memo 

α 1.0 For all  

β 2.0 For all 

ρ 0.5 For all 

m 25 For all 

tries 10 For all 

runtime 10s For all 

ne 100 For ASelit 

σ 6 For ASrank 

q 0.5 For ACS 

φ 0.1 For ACS 

size of candidate list 20 For ACS 

number of utilization-oriented ants 13 For MAS 

number of exploration-oriented ants 12 For MAS 

q0 0.8 For MAS 

nb 6 For MAS 

4.3. Experimental Results 

The results obtained are presented in Table 3 and Table 4. Table 3 illustrates 
the shortest tour lengths (best solutions in 10 tries) obtained by the six tested 
ant algorithms on the 10 test data sets, while Table 4 illustrates the average 
tour lengths (average solutions of 10 tries) obtained by the six tested ant 
algorithms on the test data sets. Table 5 and Table 6 give the results of the 
best performer for each algorithm regarding the shortest tour and the average 
tour, respectively. 

In order to show the performance of different ACO algorithms more clearly, 
Relative Solution Quality (RSQ) of algorithm A, achieved on data set D, is 
defined as follows: 

%100)1(, 





BestWorst

Bestsolution
RSQ A

AD  (23) 

Where solutionA denotes the solution (the shortest tour length or average 
tour length) obtained by algorithm A. Best denotes the best solution (the 
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shortest tour length or average tour length) obtained by the six tested ant 
algorithms, and Worst denotes the worst solution (the shortest tour length or 
average tour length) obtained by the six tested ant algorithms. Obviously, the 
greater the value of RSQ is, the better the solution.  

Given the definition of RSQ, two line graphs are created. According to 
Figure 4, the RSQ of MAS stabilizes at 100% or very close to 100%. To be 
more exact, MAS obtains the best solution on all data sets except att48.tsp 
(RSQ= 96.55%), rat575.tsp (RSQ= 95.39%) and vm1748.tsp (RSQ= 
89.99%). MMAS and ACS are commonly regarded as very effective ACO 
algorithms. Both of them achieve good performance but second to MAS in 
terms of finding the shortest tour. As shown in Figure 5, in terms of average 
solution quality, MMAS performs best. MAS also obtains decent average 
solutions. Specifically, MAS get best average solutions in four TSP data sets. 
And it performs better than ACS and only second to MMAS. By comparison, 
AS’s performance is the poorest regarding both the best solutions and the 
average solutions. 

Table 3. The shortest tour lengths obtained  

Data set AS ASelite ASrank MMAS ACS MAS 

att48.tsp 11438 11572 11300 11021 11021 11040 

eil76.tsp 557 561 564 554 554 551 

u159.tsp 47850 47301 47671 45319 45423 43270 

ts225.tsp 133006 131776 131386 130814 130711 129167 

pr439.tsp 123827 122977 121706 118915 120870 118274 

rat575.tsp 7889 7877 7822 7668 7607 7620 

p654.tsp 41935 41585 41408 40618 41234 39975 

d1291.tsp 58890 57140 57357 55728 56244 55698 

vm1748.tsp 405534 398635 396208 396144 397473 397084 

u2152.tsp 75140 75173 75002 73809 74058 73773 

 
MAS’s quality of average solutions is not as good as that of best solutions. 

It is understandable because the new search strategy allocate part of the ants 
(the exploration-oriented ants) to focus on founding new tours and diversify 
MAS’s choices rather than finding solutions around best-so-far tours. By and 
large, in lines with the design intent, MAS is able to find better solutions than 
other ant algorithms in most cases. To a large extent, MAS addresses the 
inherent problems (i.e., premature convergence and local optimum) existing 
widely in ACO algorithms by applying new search strategy as well as the 
counterpart update strategy. Although the average solutions of MAS are not 
the best among all of the tested algorithms, MAS obtains satisfactory average 
solutions as well due to the reservation of the ordinary ants (the utilization-
oriented ants in MAS). Considering that TSP aims at finding the shortest tour, 
all other solutions become worthless as soon as a shorter tour is found. 
Therefore, in conclusion, MAS is very competitive and significant. 
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Table 4. The average tour lengths obtained 

Data set AS ASelite ASrank MMAS ACS MAS 

att48.tsp 11889.3 11682.3 11581.7 11071.7 11067.8 11584.8 

eil76.tsp 567.9 586.8 581.5 559.9 561.2 572.2 

u159.tsp 49168.4 48348.6 48396.2 46208.5 46378.9 43340.6 

ts225.tsp 135751.7 134408.1 132394.3 132575.9 132289.4 132198.4 

pr439.tsp 126033.8 125511.9 124594.4 123619.4 124463.8 124065.4 

rat575.tsp 7950 7921.8 7902.6 7830.9 7834.7 7800.5 

p654.tsp 42682.7 42818.6 42700.6 41873.2 42233.9 41661.8 

d1291.tsp 59487.7 58324.2 58073.3 57397.4 57725.6 57605.1 

vm1748.tsp 409406.6 404314.6 401487.7 401273.0 403220.4 402692.3 

u2152.tsp 76209.4 75608.9 75621.3 74486.6 74733.5 74759.0 

Table 5. Results of best performers in terms of the shortest tour 

Data set 
Best 

Performer 
Tour Length 

att48.tsp MMAS, ACS 11021 

eil76.tsp MAS 551 

u159.tsp MAS 43270 

ts225.tsp MAS 129167 

pr439.tsp MAS 118274 

rat575.tsp ACS 7607 

p654.tsp MAS 39975 

d1291.tsp MAS 55698 

vm1748.tsp MMAS 396144 

u2152.tsp MAS 73773 

Table 6. Results of best performers in terms of the average tour 

Data set 
Best 

Performer 
Tour Length 

att48.tsp ACS 11067.8 

eil76.tsp MMAS 559.9 

u159.tsp MAS 43340.6 

ts225.tsp MAS 132198.4 

pr439.tsp MMAS 123619.4 

rat575.tsp MAS 7800.5 

p654.tsp MAS 41661.8 

d1291.tsp MMAS 57397.4 

vm1748.tsp MMAS 401273.0 

u2152.tsp MMAS 74486.6 
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Fig. 4. Best solutions obtained by the tested algorithms. The data sets are sorted by 
the size in ascending order. 

 

Fig. 5. Average solutions obtained by the tested algorithms. The data sets are sorted 
by the size in ascending order. 
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5. Conclusion 

This paper discussed the shortcomings of several main ACO algorithms 
which often get in trouble in local optimum and premature convergence when 
searching the optimum solution owing to the selection bias and update bias. 
To overcome these obvious defects, we propose a new ACO algorithm 
named Moderate Ant System. In MAS, the ordinary ants are divided into two 
groups, the utilization-oriented ants and the exploration-oriented ants. As for 
the exploration-oriented ants, taking inspiration from the adaptive behavior of 
the Monomorium ant species, a novel transition rule is designed and adopted 
by the exploration-oriented ants. The new transition rule requires a little more 
time and space, but the extra overhead is linear complexity. Moreover, we 
also design new update rules to match MAS’s search strategy. Taking TSP as 
an example, ten standard TSP test data sets are employed to examine the 
performance of MAS algorithm in the experiments. As a result, MAS does 
achieve our design intent and conquer the known defects to some extent. 
Overall, the best solution of MAS is better than that of other ant algorithms at 
the expense of slightly losing the average solution quality.  

In the future work, more thorough experimentation and further investigation 
into MAS algorithm are required in order to explore more characteristics of 
MAS and perfect the performance of MAS. Moreover, we are planning to 
apply MAS to other classical problems and give a further study about the 
performance of MAS.  
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